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Abstract—Bose-Einstein condensation is studied as a phenomenon of spontaneous symmetry breakdown. The
order parameter is the condensate wave function. We analyze the functional dependerice of the free energy on
the order parameter. An expression for the order parameter in terms of the Green’s function of the theory is
derived. A method for deriving the thermodynamics of a Bose—Einstcin condensed system is provided. For the
Bogoliubov condensate, we derive the London relation and an equation of state valid for very low temperatures.
Finally, we discuss the loop expansion method, which provides a framework for computational calcuiations of

the thermodynamics of Bose-Einstein condensed systems.

1. INTRODUCTION

The vast interest in Bose-Einstein condensation
(BEC) arises from the fact that this phenomenon is
composed of several physical disciplines, promoting
the crecation of a link between them. As a phase transi-
tion in thermodynamics or as matter waves in quantum
coherent phenomena up to quantum field theory, where
BEC is seen as a spontaneous breaking of symmetry,
the possibility of experimental observations and tests of
fundamental theories has reinvigorated the field.

When the symmetries of the physical states are
smaller than the symmetries of the Hamiltonian, there
occurs spontaneous symmetry breakdown [1]. Sponta-
neous symmetry breakdown plays an essential role in
the formulation of the now standard theory of funda-
mental interactions. In fact, identification of the
SU(2) x U(1) gauge symmetry and its spontaneous
breakdown, by using the Higgs mechanism, was the
key to understanding electroweak interactions [2].

The relevance of spontaneous symmetry breakdown
in condensed matter physics has been stressed mainly by
Anderson 3], who has suggested that broken symmetry
is one of the two most important principles of condensed
matter physics. Anderson has also advanced the idea that
this basic notion will be essential to understanding many
physical phenomena and to establishing an alternative
methodology in condensed matter physics.

When spontaneous symmetry breakdown occurs,
one needs a new variable in order to specify the micro-
scopic state in the lower symmetry phase. This new
variable (“created by the breakdown of symmetry” [3])
is the order parameter. We shali assume that the order
parameter can be parameterized in terms of local gen-
eralized variables (;:

Qi = ilx). (1.1)

The above comment implies that, in order to get the
hydrodynamics of the fluid or the thermodynamics of
the system (in equilibrium), one has to determine the
free energy dependence on these generalized variables.
This means that, in order to obtain a complete descrip-
tion of the phenomena, one has to know the free energy
functional

g; = %[V’ Tv Qi! auQi]9 (1°2)

where the functional & depends not only on Vand 7 (as
usual, when there is no spontaneous symmetry break-
down) but also on the order parameter and its deriva-
tives.

From the generalized free energy, one can introduce
generalized forces as “gradients” of the generalized
coordinates:

3F
Fil®) = s (1.3)
One can also define generalized momenta as
~ 5F
nY(x) = ———. (1.4)
’ 8(3,0'(x)]

As a basic principle, one foliows Anderson and
imposes that the generalized forces vanish. That is, the
basic equation when there is a breakdown of symmetry is

3F

= =0= Fi(-x)-
000, = glx)

(1.5)

The field configurations Q; (x), for which the gener-

alized free energy is stationary, are the actual values of
the order parameter of the system. In the case of BEC,

Q! is the order parameter in the condensed phase. The
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Ofder.parameter is associated with the condensate wave
function.

We shall see in this paper that proper identification
and explicit construction of the functional F by using
the field theoretical approach introduces an alternative
methodology for dealing with the phenomenon of
Bose-Einstein condensation.

When one assumes that the order parameter is x and
t dependent (local order parameter), the vanishing of
the generalized force leads Lo conservation laws. In the
case of macroscopic occupation of a quantum state, one
gets for one of the coordinates

'y (x) = 0, (1.6)

where ,(x) is defined in (1.4). We shall see later that
(1.6) corresponds to the continuity equation in hydro-
dynamics. The other equation is a generalized Ber-
noulli equation describing isentropic potential flow.

We have also presented in this paper how the ther-
modynamics of the system, when BEC occurs, can be
inferred. Some modifications are needed in order to
deal with the thermodynamics of a condensed system.
Among these modifications, we call attention to the
“imaginary time” field configurations and periodic
boundary conditions. In order to distinguish the hydro-
dynamics from thermodynamics, we work with the
grand partition potential in the latter case.

This paper is organized as follow. In Section 2, we
present an explicit representation of the functional
dependence of the free energy on the order parameter.
We show also how field theory provides a method for
C.ompluting, from microscopic theory, the relevant func-
tional.

_ The hydrodynamic equation follows from the gener-
alized equilibrium conditions; so, Section 3 is dedi-
cated 1o a full derivation of (he ensembie average pro-
viding the most important hydrodynamic equations,
which in our previously work was referred to as the
Ehrenfest theorem.

In our early publication [4], we explored fluidity
properties using a description of density and phase as
dynamic variables. Nevertheless, that formalism can be
expanded to include a thermodynamic description of
the system, from which we can obtain not only hydro-
dynamics characteristics but also the overall thermody-
namic behavior.

In Section 4, we present an approach for deriving
the thermodynamics of the system in the presence of
the condensate. We use the background field methed in
order to make explicit the dependence of the Gibbs
potential with the order parameter. The Gibbs potential
is the generating functional of the irreducible Green’s
function of the theory at finite temperatures. The order
parameter is the ficld configuration that minimizes the
generating functional.

In Section 5, we discuss the Bogoliubov condensate.
The relevance of this particular type of condensate is
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that it describes condensation of zero-momentum parti-
cles. It is relevant in the study of superfluidity. The ther-
modynamics of the system can be inferred, in this case,
from the Green’s functions of the theory computed at
Zero momentum.

Explicit and general resuits for the Bogolinbov con-
densate are presented in Section 6, where we derive an
equation of state and the London relation.

In Section 7, we present a systematic method in field
theory for making predicting the thermodynamics of
the condensed phase. This method is loop expansion.
Some results are derived for the zero-loop and one-loop
approximations,

Conclusions are given in Section 8.

2. GENERALIZED FREE ENERGY

In this section, we will show that field theory pro-
vides a very convenient method for defining the gener-
alized free energy and a well-defined scheme for com-
puting it.

The partition function Z of a many-body system will
be obtained, within the field theoretical approach, from
the Wiegel~Jalickee representation [5]. Within this rep-
resentation, Z is given as a sum over field configura-
tions [5, 6] as

z=e"= J’wa@w*e’ijd“’“”""’""’, @.1)
where F in (2.1) is the free energy and £ is the
Lagrangian density, which can be written, in the nonrel-
ativistic case, as

-£ = i\v";—,a-tw —- v+, vl (22)

As usual, one splits # in (2.2) into two terms. There
is a kinetic term (X) and an interaction term .. That
is,

%= K+%,‘m

. (2.3)
- );m(v Ly UGywry + Honlyyl,

where the term Uy*y takes into account the interaction
with external forces.

The average over the ensemble of an observable
0O [y] is defined as

e-ijmjdx:ew. 3,

(Dly)) = 2" [DyDy*Oly] . (24)

Ore can change the integration variables in (2.1) to
new variables p(x) and ¢(x) defined by

w(x) = Jpx)e”. 2.5)
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In terms of the variables p and ¢ defined in (2.5),
one can write (2.1) as

—i{drdx2'{p, ¢, 3,p, 9,0) )
! TR, (26)

Z=¢"%= j@p%me
where J is the Jacobian of the transformation (2.5) and
£L'lp, @, 9,p. 9,9)] is given by

E'[p, 0P, 9,0,0] = +p%if +#H[Vo,p, Vp]
2.7)

= 9204 2 (Vi) + V() - 2
= +p% 45 (Vm) +5-V(/p) - V() + Hinlp].

Spontaneous symmetry breakdown means that the
average defined in (2.4) over the ensemble of the field
operator \ is different from zero in the condensed
phase. One then writes

W) = Jpume =y (x). (2.8)

We shall see later that W (x) is the wave function of
the condensate.

It follows from (2.8) that, since the order parameter
is a complex variable, one has to use two generalized
coordinates. We take these variables to be

Qi(x) = polx),

2.9)
0:(x) = Pol).

In order to get the generalized free energy, all one
has to do is to separate out, in the functional integration
(2.1), the contribution associated with the vacuum
expectation value given by (2.8). In order to get the
dependence of F on (y), we shall employ the back-
ground field method {7]. Suppose we want to separate
out a particular set of field configurations contributing
to the integral (2.6). Let py(x) and @y(x) represent this
set. One writes

plx) = po(x) +p'(x),

) (2.10)
O(x) = Qo(x) + ¢'(x)
or equivalently, by using (2.1),
W(x) = Wolx) +y'(x),
(2.1

YH(x) = Y (o) + yE ().

By integrating over p’ and ' (respectively, y' and
y*') in the functional integral (2.6) {respectively, (2.1)),
we get a partition function that depends on p, and @

(¥, and g, respectively). In this way, one gets, by
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separating out the relevant degrees of freedom, an order
parameter—dependent functional, .

—i%F(Pg, 9o 9,00 ol

Z = Z{pg Qo aup()’ au‘Po] = é€

= [2p Dol 2.12)

% e—ijdrdx.‘f‘l Pot P Qo+ @, dulpg+ Pl Bylog + N

1)

where
3".p() + P', Go + (p'a au(‘PO + (p‘)’ ap(pﬂ + P')]

N . ' .
= (Po"‘P )a_'(‘po"'q))"'%ﬂz(v((‘)o*‘(p))z(z_}:;)

1
+5-(V.Jp+ o)+ Hinalpo + P'1.

1t follows from (2.12) that the free-energy func-
tional is the free energy of the system in the presence of
the background fields py and @g [7].

The actual values of the background fields that the
system chooses are those for which the free-energy
functional becomes stationary:

3%
8—"[p0’ Pos aupo’ au(PO] =0, (214)
Po 1Po=Pe
3% .
S Po P 9uPo 0, Pol =0, (2.15)
¢ 9 =9,
or equivalently
8F
sy, 0 =0, 2.16
6%[‘"0 nWol v, (2.16)
3F I
——={Wo, 9, Vo] = 0. (2.17)
8“’3‘ Yo Su¥o l!w3=w:'

That is, those configurations for which the general-
ized forces vanish are the actual values of the order
parameter.

3. HYDRODYNAMICS

In this section, we shall see that the generalized free
energy, defined in (2.12), provides a framework for the
study of fluid motion. This framework is equivalent to
a Hamiltonian formulation for hydrodynamics. In this
formulation, p and ¢, defined in (2.5), play the role of
canonically conjugate field variables. One of the extra
results of this section is to obtain “Ehrenfest theorems”
for the fluid motion. We will see that, in the sense of
averages over the ensemble, the Euler equation and
continuity equation hold true. For time-independent
interparticle interactions and a time-independent exter-
nal potential, one gets also an Ehrenfest theorem asso-
ciated with the Bernoulli equation.

In dealing with fluid motion, we will be interested in
defining, within the functional method, local observ-
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ables, such as the fluid local density, local pressure,
local fluid velocity, etc. All these relevant physical
quantities can be defined as averages over the ensemble
of local operators. These local operators can be defined
as functional derivatives of the generalized free energy
(%) or functional derivatives of averages over the
ensemble of certain physical quantities. In order to
stress the functional derivative definition of these quan-
tities, we will name them local and we shall use a label
I to identify them. That is, we write, for an arbitrary

quantity F (x), the local quantity F° Hx) as

8
doux)

with a(x) and G defined accordingly. The local fluid
density, defined as the vacuum expectation value of the
density operator, can be written in the form of func-
tional derivatives of the generalized free energy as

Fix) = (F(x) = (6), 3.0

. G
Pl(x) =(p(x) = 5?7@:_) 3.2

whereas the local current defined as
f=(p ) 63

is the functional derivative of the gradient of @. In ather
words, from (1.4), j' is the spatial component of the
generalized momenta:

3F

i® = swem 64
The interaction energy can be written as
Hy = [p(x)etx p)dx+ [URPGIE  (33)

where U(x) is the external potential and e(x, p) is the
per-particle internal energy (local internal energy).

The local external force is the force that a single par-
ticle experiences when the system is under the action of
an extcrnal potential U{x). The local force is then

F. . (x) = =VU(x). 3.6)

The local internal energy and pressure are those
associated with the energy and pressure of a single par-
ticle in the fluid. From (3.5), it follows that the local
internal energy should be identified with the average
over the ensemble of the energy per particle (e):

e'(x) = (e(x, p)- 3.7

Following London [9], the local pressure will be
defined as the functional derivative:

o _ ]2, g0, ),
P'(x) = <p (x)j—————sp = dx>.

(3.8)
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Finally, we define the local kinetic energy as kinetic
energy where p is constant:

K'(x) = <-8—‘%‘-5]I?'(.r')dx‘> = <gVA;_(m£))_’> 3.9)

It will be seen later that all these local quantities
(local kinetic energy, local internal energy, etc.) are,
within the quantum context, the operators (or vacuum
expectation values) associated with the classical per-
particle physical quantities.

We are now ready to write the generalized equilib-
rium equations (2.14) and (2.15). By using representa-
tion (2.7) for the Lagrangian density, it follows that
Egs. (2.14) and (2.15) can be written as

) _ 3

_5}“,("» = sp(x)(%)s (3-10)
d _ d .
a—‘<p(x)> = —a(p(x)@f). (3.11)

Equations (3.10) and (3.11) show that p and ¢ are a
canonically conjugate pair of continuous variables.

Equation (3.11) assumes a quite familiar form if one
uses (2.3). Independently of the details of the dynam-
ics, one can write

a(p(x) , T{Vep(xN] _
E +[ P ]_o, (3.12)

which is just the continuity equation. In terms of local
quantities defined in (3.2) and (3.3), one gets

i
R, v.iw =0 3.13)

Continuity equation (3.13) can be written in terms
of the generalized momentum, defined in (1.6), as

o', = 0, (3.14)

_3F _ andmhe OF =)
where n° = 50 =P andn"—s(ak(p) =j

Let us turn now to Eq. (3.10). From (3.5), it follows
that there will be three contributions to SHm , which,
8p(x)

by using (3.7) and (3.8), can be written as

8l‘,inl - ﬂ-_x_) r
p(x) <p(x)>+ (e(x () + U() (3.15)

=K' (x)+ U(x) = (h(x) + U(x),
where K(x) = (%) in (3.15) is the local enthalpy.
LASER PHYSICS
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If one neglects derivatives of the density (aniform
fluid), Eq. (3.10) can be written as

) I

—5 = K(x)+h(x)+U(x) (3.16)
= (K@) +{h(x) + Ux),

where K (x) is defined in (3.9) and £ (x) is defined in

(3.15).

By defining, as usual, the momentum and velocity
operators as

P ()= Vo(x) =mV(x), (3.17)
Eq. (3.16) becomes
2
"a%((P(X)) = <%%> +{(h(x)) + U(x). (3.18)

In terms of the velocity operator defined in (3.17),
Eq. (3.13) becomes

a(%(tx)) +v((p(x)\7(x))) = 0.

If one takes the gradient of (3.18), one gets the force
equation

3.19)

Y I L ()
(P = —V< T >—V (h(x)) + Fu(x).(3.20)

Equations (3.19) and (3.20) correspond to Ehrenfest
theorems for a fluid. Equation (3.19) is a continuity
equation, whercas (3.20) expresses momentum conser-
vation [9].

By assuming & stationary solution to (3.18), one
writes

o(x,1) = — Et+ 0(x). (3.21)
Equation (3.18) becomes
1 /a2
E= (g’ (")> 4+ Ch(x)) + U), (3.22)
2m

which is just the Ehrenfest theorem for the Bernoulli
equation [10].

The solution associated with the fluid at rest and in
equilibrium (o = cte) implies

E = (h(x)) + U(x),
which is the condition for equilibrium i a fluid.

For particles that interact through binary forces, that
is, instcad of p(x)e(x, p(x)) in (3.5), we consider

(3.23)

2o Vi -
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Eq. (3.18) is (for uniform fluid)

) _ [ (VoY)
-&(‘P(x» = <—-—2m >

+ le(x' —x){p(x'Ndx + U(x).

3.249)

The conclusion is that, from the generalized free
energy, we succeeded in getting the fluid equations
(3.19) and (3.20). The continuity equation can be writ-
ten in the form of (1.6). One of the gencralized equilib-
rium equations entails conservation of momentum,
whereas the other equation stands for conservation of
matter.

Tt follows from (3.17) and (3.18) that @ is the veloc-
ity potential. In this way, the velocity potential and the
fluid density constitute a pair of canonically conjugate
variables.

At this point, it is worth stressing the fact that all we
have shown up to now is that, by assuming a functional
dependence of the free energy with regard to the den-
sity and velocity potential, we are able to obtain, from
the generalized equilibrium equations, Ehrenfest theo-
rems for the fluid. The derivation of these equations has
not required associating these quantities with the vac-
uum expectation values of field operators.

4. THERMODYNAMICS IN THE PRESENCE
OF THE CONDENSATE [5, 8]

In this section, we shall analyze how the approach
developed earlier can be useful in deriving the thermo-
dynamics of a Bose-Einstein condensed system. The
method employed here is again the background field
method. Before starting, let us review some results on
the field theoretical approach to the study of the ther-
modynamics of a system in equilibrium. We shall ana-
lyze the grand partition function ‘of the system. This
choice is made in order to make a distinction between
the equilibrium properties and the previous case.

The thermodynamic properties of a system can be
inferred from the grand partition function =:

= = Tr(e™H4Yy, @1

where B =(Ty!, N = jdax\y"\y , and  is the chemical
potential.

Within the functional approach, the grand partition
function can be written as a sum over field configura-

tions satisfying periodic boundary conditions [5, 11,
12]:

y(x, 0) = w(B, x). 4.2)

A functional integration representation for Hamilto-

nian (2.3) has been derived by Wiegel and Jalickee [4].
One writes

Z = [Dy[Dy*exp(-5T¥D), @3)
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where the action S[y] in (4.3) is written as
“ 2
Syl = [ar] d3x(\y*(r, x)bl;('r, X)
0

Vy*(x, 1) Vy(x, 1)
+
2m

—py*(T, x)Y(T, x)) (4.4)

B
+ J-dtjd3XIdBX'w*(x, T)W(x! T)
0

X V(x-x)y*(X, HY(X, T).

The thermodynamic properties of the system can be
inferred from the Gibbs potential Q°, defined as

—BQ=InZ. 4.5)

That is, from £, defined in (4.5), one gets the equa-
tion of state from the equations

P= _(%—S‘f)mf (4.6)

whereas the internal energy (U), free energy (#), and
entropy (S) are obtained from

_ 0
U= B_B(BQ)’ 4.8
F = Q+N}1, (49)
_ 20Q°
= B -a—B—— NB. 4.10)

Let us consider now the system in the presence of
the condensate. The condensate can be thought of as a
background field [3, 8]. The presence of the back-
ground field condensate affects the thermodynamic
properties of the system. In order to derive the thermo-
dynamics of the system in this new phase, we separate,
in the functional integration, the background conden-
sate contribution and write

y(x) = W¥(x)+ Wp(x).

By summing over Y'(x), we get a grand canonical
partition function which is a functional of y,(x); that is,

4.11)

Sy,) = e = _[@w*.[gbwe"“‘”‘"’. (4.12)

Q(y,), as defined in (4.3), is a functional of the back-
ground field y,, and it differs from the Gibbs potential
Q° defined in (4.5) by a factor B. Q(y,) represents in
these circumstances the Gibbs potential associated with

MARQUES et al.

the system in the presence of the background field
W,(X, 7). The extrema of this functional, that is,

Q = 0, 4.13)
8\"1’ Yy =V, i
is the temperature-dependent order parameter of the :

phase transition.

We can sce that the thermodynamics of a Bose-Ein-
stein condensed system can also be formulated as a
variational problem. :

It is possible to show, by using the background field l
method |7], that, for v, defined in (4.11) and satisfying
(4.12), one can write '

Qv.) = F(y.),

where
ov. vl = 33 L a,...dxdy,...o
s YuWe l ln!m! Voo tARE)Y) o) m ’
n=im= ¥
(nm) 4.14)
XT (X Xy Yieo Y)W X). 0
xWr:(xn)‘II:‘(y'l)'“Wj(yn)'
Here, I ™(x,, ..., X.; ¥}, ..., Y are the finite-tem-

perature one-particle irreducible Green’s functions of
the theory. That is, the generalized potential is simply
the generating functional of the one-particle ireducible
Green’s functions of the theory. Field theory provides a
scheme for computing the functional F.

From {(4.13), one can write
Qlv,,o,v.] = Ty, 9, ¥.], (4.15)

where I'[y,, d,y,] is the effective action of the theory
computed at those field configurations that satisfy
(4.13).

The basic outcome of expressions (4.13) and (4.15)
is that field theory provides a natural representation for
the grand partition functional dependence on thz order
paramcter {8]. We have seen that representation (2.12)
is useful for deducing the hydrodynamic equations,
whereas we shall see that (4.15) is useful for obtaining
the thermodynamics of the condensed phase.

We shall give explicit examples in the sections that
follow.

In order to illustrate how the method proposed here
works, let us compute Q(p,) explicitly in the case of
free fields.

For free fields, the integral representation (4.3) is
reduced to a quadratic one, namely,

E = |Dy*|D
j v j hd (4.16)
f Sxfw* 0 wy 4 TV VY -i
X exp —J.d‘:j x(\y Eﬁw—p.w w+T)J.
0
LASER PHYSICS Vol. 14 No.7 2004
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We consider this simple exercise to be very relevant,
since it illustrates the fact that the method presented
here provides a clear distinction between the thermody-
namic behavior of a normal system and a condensed
onc.

The functional integral (4.16) cun be easily per-
formed, and the result is that the Gibbs potential is
given by

Vi &'k (& -+)
Q= In|1- .
Bj (2n)’ n( ¢

One gets from (4.17) the thermodynamics of an
ideal Bose gas.

417

Let us consider the condensation of particles in the
p = O state. The Bogoliubov condensate is represented
by the uniform field configurations , (8, 13] (no (x, 7)
dependence); that is,

V(% T) = W (4.18)

By making a substitution (4.11) with y, given by
(4.18), one gets a grand canonical partition that is
dependent on the uniform background field p;, =

YW

E(p;,) - e-Bﬂ(Ph) - eVanJQDW“‘@W*
(4.19)

2m )

Performing now the quadratic integration, one gets

B
X exp[—jd’cj’fx(\p* ;—r\v - py*y +
0

_ _ 17d’p
Q(Pb) = Vreff(ph’ T) = V(_ np, + EJ-(-ET_[T‘

x ln{l . exp[—B(g;n - )]})

The extremum condition (4.13) implies, from
(4.17), that

4.20)

w=0. @21

In this case, we have two phases. In the condensed

phase, u = 0, by imposing this condition and using
(3.19)3.21), one gets the usual results:
3 2
-4k -, (4.22)
B/ 2ny

N 1 3 i

= = Pt d T , 4.23)
v (zn)’J MMy
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k‘l

U _ J' &'k 2m
v (2m)’ FPem _ g
Other thermodynamic variables can be easily writ-
ten out. They are found in textbooks [14] and can easily
be inferred from Egs. (3.19)-(3.23) by taking u = 0 and
pp=0.
The phase transition occurs when p, is different
from zero (p, > 0). From (5.20), it follows that, for free
fields, the dependence of p, on the tempcrature is

4.24)

=._'Y__ 1 ] 1 (4.25
pe =7 (M)gj’a P (4.25)

N (mYVgp 1

‘V'(n’ﬁ) f ke (4.26)

_N [(m 2.3

-5-(E)75) @.27)

where { in (4.25) stands for the Riemann zero functions
¢(x). The condition p, > O implies that BEC occurs for
T > T, where

26

At the critical temperature, the order parameter is
zero.

This example clearly illustrates how the approach
works. It allows us to obtain the thermodynamics of the
system and the temperature dependence of the order
parameter.

(4.28)

5. THERMODYNAMICS OF THE BOGOLIUBOV
CONDENSATE

In this section, we shall apply the approach to study
a very special type of BE condensate. We shall study
the condensation of zero-momentum bosons. The con-
densation of particles in the zero-momentum state isthe
key to understanding the superfluidity of helium 4 i,
13).

In his pioneering work on Bose-Einstein condensa-
tion in an imperfect gas, Bogoliubov [15] argued that,
when BEC occurs, one can treat the creation and
destruction operators b(0) and 4*(0) appearing in the
Fourier cxpansion of the field operator,

¥ = VTN = 2= e ¥,

Jv

(5.1

as classical variables. That means that one can replace
these variables in zero-mode amplitudes by ¢ numbers;

ie. bo= by = No, with Np being the number of par-
ticles in the condensate. The validity of treating these
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variables as classical (c-numbers) is more reliable as
the condensate becomes more and more occupied.

The fact that g in (5.1) can be considered a classi-
cal variable allowed him (and was later on generalized
by Beliaev [16]) to propose an approximate scheme for
calculations when BEC occurs. In the following, we
present a very general method for dealing with the ther-
modynamics of condensation in the zero-momentum
state.

An analog of Bogoliubov’s approach in the func-
tional approach is to associate a uniform background
field (x and 7 independent field configuration) with the
Bogoliubov condensate. Our understanding of Bogoli-
ubov's approach is that it enables one to identify the
p = O state as the relevant degree of freedom and the
variable can be obtained from a variation method.

Let us consider the thermodynamic properties of an
interacting Bose gas described by Lagrangian (2.2) in
the presence of a uniform background field, which we
assume to be real and positive; that is, one writes

¥y = Py

For such a background, one can write, on general
grounds,

52)

r = r(ptb T)
S (5:3)
1 =m o
= VBZ zm,n'r“ )(0"“’0’0’---,0,1');)},* )/2’
m=0n=0
where T™ stands for the Fourier transform of the

one-particle irreducible Green’s function of the theory
taken at zero momenta:

"o, ...,0
( ) (54)

=(n,m)
= r(' (P1s s P veos Pm)‘p,=p2=...=0-
The volume term V in (5.3) comes from the 6 func-

tion involving momentum conservation, whereas B
comes from energy conservation.

If one defines T, as

Cesr(Py T)

- 1 1 (m+em2inm
= Z ;mapb r (01 07 0107--'7 07T
m=0n=0

then, from (5.4) and (4.13), it follows tha, for uniform
configurations, onie can write

Q(pm T) = Vreff(pbr T) = Vrcff(ph! T)

(55
)

(5.6)

We are now ready to establish the framework for
studying zero-momentum Bose-Einstein condensation
in field theory. The equation for determining the num-

ber of particles in the p = 0 state, for example, is equiv-
alent to the equation

drcff
s T = 0.
dpb (pb ) Py = Pe

Solution of (5.7) lcads to the determination of p, as
a function of {4 and 7; that is,

p. = PAT, ). (5.8)

The dependence of the condensate on T and p
requires some care in order to determine the thermody-
namic variables in the condensate phase. One needs 1o
derive Q with regard to the proper variables first and
then substitute the condensate configuration p.

The equation of state, for instance, in the presence

of the condensate, should be inferred from the equa-
tions

(5.7

P= _Feff(pc' | T)’ (59)
N Ol (P T)
S (ol i Ll il . 5.10
V ( al’l )ph = D,- ( )

We say that there is BEC whenever there is a solu-
tion for Egs. (5.7)—(5.10) satisfying the condition

p.>0. (5.11)

From Egs. (5.7) and (5.10), one should get the
expression for the occupation of the p = O state as a

function of %J and T, that is,

N

=olN 7l
pc - pc[vs T-j- (5-12)

The system is supposed to exhibit two phases. In the
noncondensed phase,

p. =0, (5.13)
whereas in the condensed phase,
N
m-qvﬂ. (5.14)

'The critical temperature is that which distinguishes
the two phases, and p, plays the role of the order param-
eter. One defines the critical temperature that for which

N
p(‘[—‘;’ T(] - 0‘

The whole thermodynamics can then be inferred
from Egs. (5.6)<(5.10) with all variables computed for
the field-theoretical configuration that makes I” an
extremum. As far as condensation is concerned,
T_:(p. T) is the relevant potential. In terms of T (P, 1),
we can write, in the condensed phase,

P = —reﬁ(pra T)v

(515

(5.16)
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N _ _l(pp D)

N _ , 5.17
V ap’ pb=pr ( )
OB esr(Psrr 7)1

U = V—eem——— . 5.18
. 619
F = VT (P T) + 1N, (5.19)
S = Bsz — uNB, (5.20)

aﬁ Po=P:

whereas, in the noncondensed phase, the same expres-
sions hold true with p, = 0. Equations (5.16)~5.20) are
the basic set of equations describing the condensation
of zero-momenta particle phenomena.

Although the field-theoretical approach has already
been used to Lreal zero-momentum Bose-Einstein con-
densation, our proposal differs from the previous treat-
ments. We have stressed the need for finding the depen-
dence of the Gibbs potential on the order parameter
and, from this, to derive the whole thermodynamics.
Furthermore, our treatment is very general and explicit
results depend only on our ability to determine

Cew(p, -

6. EQUATION OF STATE AND THE LONDON
RELATION

Although Eqgs. (5.16)—5.20) depend on the thermo-
dynamic potential ", which can be computed explicitly
only under certain approximations (as we shall see in
the next section), one can derive two relevant properties
without explicit knowledge of I'. These properties do
not depend on the dynamics.

The first property that one expects in \helium supcr-
fluid, once this phenomenon is related to BEC, is that
the state of superfluid helium should be characterized
by zero Gibbs energy. In fact, it follows from (5.16)-
(5.20) that

U+ PV = TS(T). 6.1

From (6.1), it follows that the Gibbs energy is zero
in the condensed phase:

G=0 6.2)

As a result of the third law of thermodynamics, one
expects that
lim7S(T) = 0. (6.3)
T—0
By dividing (6.1) by N and then taking the zero tem-
perature limit, we can predict the equation of state:
P
- = —§, 6.4
5 64

where € is the binding energy per atom.
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The static fountain effect can be explained from the
London relation [9]

S
dP = T’dT' 6.5)

We can see that this relation follows as a conse-
quence of our basic equations describing the superfluid
phase. In fact, if one derives the pressure as a function
of 7, one gets (independently of the details of the
dynamics) from (3.19) that

.di) = ar(p(T)‘i& _ (ar(p09 T))
dT op, dT OT  Jog=».
From Eq. (6.1), the London relation (6.5) follows.
We have shown that the London relation follows from

equilibrium thermodynamics when BEC occurs. The
London relation follows also from (6.1) since

dG = VdP-SdT. 6.7

(6.6)

7. LOOP EXPANSION

In this section, we present a specific method for pre-
dicting the thermodynamics of a condensed system.
This method is the so-called loop expansion.

Let us consider the problem of expanding the grand
partition functional in powers of A. That is, one writes

Q(yo(x), T) = T'(Wo(x), T)

= ¥ 2%0yex, v, DA, @b

K=0

where I'® is the Kth term in a series expansion of T in
powers of .

1t can be shown that, in field theory, the contribution
to I'® comes from graphs having K loops; that is, for
computing T'% in (7.1), one considers only those irre-
ducible Green’s function that have K loops. For this rea-
son, expansion (7.1) is also referred to as loop expan-
sion. .

Loop expansion provides a systematic method for
dealing with BEC. As pointed out in [7], the method is
richer and more appropriate than the perturbative
approach or the low-density approximation.

Let us denote by '@ the zero-loop graphs contribut-
ing to this approximation. One has, schematically,

l..ou.n = ;é ,
I.o(z.z)E ><

where the “vertex,” in this case, takes into account the
nonlocality of the interaction.

1{
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At the zero-loop level (or classical level), one can
write

B
0
BQyo(x, 1) = [dr _.' d3x(w5"(x, ‘r)—(%f(x, £
0

V\V:(x’ T): V\Vo(x’ 1)
+
2m

- P, WS (X, r)) a2

B
+ jdxjd’x j SXYE (X T)Vo(%, T)
0

X V(X = x)y§(x', T)Wo(X, T)-

For a hard-sphere gas,

V(x-X) = %S(X—X'). 1.3)
The equation for the order parameter that follows
from (4.13) and (7.2) is

(+§T—2%2,-u)wc(x,m> -

= AW (X, WX, DY(x, 1)) = 0.

We notice at this point that Eq. (7.4) is the imaginary
time version of the Gross—Pitaevskii equation and sat-
isfies the periodic boundary condition (4.2). This is due
{0 the finite-temperature description of a system in
equilibrium.

For time-independent external electromagnetic
external fields, we can search for a solution to the imag-
inary time Gross—Pitaevskii equation (7.4) in the form

i(z%'-l)1
Y .(x,1) =¢ v (x), (1.5)
where n has to be an integer number (n =0, 1, 2,...0)in

order to meet the requirement of periodic field configu-
ration (4.2).

The restriction to n = 0 lead us to the time-indepen-
dent order parameter complex field equation

(V24 Y (x) = —Ay (WX (x).  (76)

As a result of (7.2) and (7.5), one can see that, at the
zero-loop level and for static fields, one has the follow-
ing dependencc of the thermodynamic potential on the
order parameter:

QO = [d'X VWOV (x)
A )
— 00w, 0 + 5w w0

MARQUES et al.

At the zero-loop approximation, one get, from (7.7),
that

- _ai) = | Pewr*
N=-50= [dxyX o0 (1.8)

Defining the number of particles in the condensate by

N, = [d'xwr v,

one can see that, at the zero-loop level, all particles are
in the condensate. That is,

N =N, (1.10)

Let us proceed further and assume that the conden-
sate is a Bogoliubov condensate. In this case, one can
write the Gibbs potential as a function of the conden-
satc py(x) as

(1.9)

A
Q) = V(- nps+301) (7.11)
The condition that Q© be minimum,
(0
aQ =0, (7.12)
aps lp,=»,
leads to the condition
Ap, = U, (7.13)
whereas Eqs. (3.13) and (5.5) imply
N
Pe = v (7.14)

This means that, at the zero-loop level (classical
level), all particles are in the condensate. This approxi-
mation will then be useful for describing the system at
zero temperature and at low densities [19].

The internal energy U is

U= 1‘v(’l’)z,

M\ (7.15)

whereas the pressure can be obtained from (7.11) and
{7.14). We get

- &(ﬂ)z

=3\v)

One notes from (7.16) that, in order for the pressure
to be positive, one has to have

A>0. 717

Condition (7.17) has been emphasized by Bogoli-
ubav [15), who calls it the “condition of thermody-
namic stability of a gas at absolute zero.” This condition
imposes a restriction on the possible types of interact-

(7.16)
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y forces that allow for BEC. Condition (7.17) follows
"also from the requirement that Q° be minimum, that is,

€0 (1.18)

The equation of state (7.16) was derived in [17] for
a hard-sphere gas. Equations (7.13) and (7.15) can be
found in some papers as well as in textbooks [18].

Let us give a general expression for the Gibbs poten-
tial within the one-loop approximation. Within this
approximation, one writes

Qev,) = 2 wo) + 27 (W),

where Q@ is given by (7.2) and QO results in summing
all contributions of the graphs containing just one loop
[20, 21]. It is possibie to show that

(7.19)

e-an“’wo(x. )]

= [DnDn*exps- d‘tdaxl(‘n*,n)G' T\* (7.20)
2 n

=detG'(¥).
Here, G' is a two-by-two matrix given by
G 721

K-AE+203wox D Ay (%)

k\ug(x, 1) K — AE + 2w wo(x)
where
\ 4
K = —ﬂ-'--a—'t. (722)

The final expression for the dependence of the
Gibbs potential as a function of the background field
Yo(x, T) is, from (7.20) and (7.21),

Qo)) = P (o(x)) + B Indet G’ (wo). (7.23)

The expression of the temperature-dependent order
parameter is now obtained from the condition

5Q"(wy)
SWO(X) Vo=V,

B-l 1 3(det G'(Wy))|
FP GGy SWolx)

(7.24)

= 0.
Vo=V,

From the above expression, one wouid be able to
infer the temperature-dependent term

y.(x, T). (7.25)

The Gibbs potential is obtained by substituting
(7.25) into (7.23).
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We shall give explicit examples of this method in a
future publication.

8. CONCLUSIONS

In this paper, we have developed further the notion
that an understanding of many features of a Bose-Ein-
stein condensed system can be achieved from the basic
concept of spontaneous symmetry breakdown.

The central idea in this approach is that, in the con-
densed phase, a certain hydrodynamic potential (Z) ora
thermodynamic potential (Q) is a functional of the
order parameters. This idea is not new and can be traced
back to the works of Ginsburg and Pitaevskii [22] and
Anderson {3].

As far as the hydrodynamic equation is concerned,
the functional depends on the phase and density of the
condensate.

The generalized equilibrium condition

3F
'83(9’ aup» 9, au(p) o =0

lead to the Euler equation, whereas the generalized
equilibrium condition

5F |
_SE(T, Vs P, auP, (P’ ap‘P)-i% - 0

gives the continuity equation.

In this paper, we have presented a method for com-
puting this functional and made some specific predic-
tions.

We have presented the approach in some detail for
determining the thermodynamics in the presence of the
condensate. In particular, we have presented the ther-
modynamics of the condensation of zero-momentum
particles. This condensation is described by the Bogoli-
ubov condensate.

For the Bogoliubov condensate, we can predict not
only that for an increase in temperature by dT will there
be an increase in the pressure dP given by the London
relation [9]

S
dP = VdT
but also a zero-temperature cquation of state
P_
p

where € is the binding energy per atom.

We have presented a general method, loop expan-
sion, for predicting the thermodynamics of a condensed
system. Some specific resulis were obtained for the
zero-loop approximation.
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