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We study non-perturbatively, via the Schwinger-Dyson equations, the leading
infrared behavior of the pressure in the ladder approximation. This problem is dis-
cussed firstly in the context of a thermal scalar field theory, and ihe analysis is
then extended to the Yang-Mills Ltheory at high temperatures. Using the Feynman
gauge, we find a system of two coupled integral equations for the gluon and ghost
self-energies, which is solved analytically. The solutions of these equations sliow that
the contributions to the pressure, when calculated in the ladder approximation, are

finite in the infrared domain.

Typesel Using REVIEX

I. INTRODUCTION

Relativistic field theories at finite temperature have been actively studied in the
past years, because of their relevance to the theory of the early universe and to the
quark-gluon plasma which may be created in heevy ion collisions[l]. The study of
such physical problems requires the computation of the thermodynamic potential,
from which other thermodyn;mic properties, like the pressure, may be determined.
It was pointed oul by Linde[2] that the thermodynamic potential of the Yang-Mills
theory cannot be calculated beyond the fifth order of the coupling constant. This
is related with the infrared singularities of the non-abelian gauge theories at finite
temperatures, which arise from the fact that the magnetic mass vanishes at least up
to second order in perturbation theory. The infrared problem in these theories at
finite temperature is qualitatively different from that at T = 8, manifesting itsel{
by the presence of infrared power divergences in higher orders of the perturbative
expansion.,

One may hope that the use of non-perturbative methods can throw some light
on this problemn. Such methods generally start with & discussion of the relevant
Schwinger-Dyson equations[3]. It is well known that this set of integral equations is
not closed since an n-point function is generally related to the n+1 and =42 functions.
This is what makes the solutions of such problems exceedingly difficult. For this rea-
son one must resort in practice to some approximations, which resuli from truncating
in some way the set of the Schwinger-Dyson equations, This non-perturbative ap-
proach has been used by Jackiw and Templeton[4], to show how super-renormalizable
interactions might cure their infrared divergences. It has also been employed by Man-
delstam(5) to analyze the infrared behavior of the gluon propagator,using the ladder
approximation at 7' = 0. He showed that the ensuing set of the Schwinger-Dyson

equations does provide confinement in the strong coupling regime.




The purpose of this work is to study, in the ladder approximation, the leading
infrared behavior of the pressure in the Yang-Mills theory at high temperatures. Our
approach, via the Schwinger-Dyson equations, is similar in spirit with that advocated
by Kajantie and Kapusta|f]. Namely, we regard the simplified set of these equations
just as a convenieni procedure for summing particular (i:]a.sses of an infinite number
of diagrams in the weak coupling regime. In order to regularize the theory in the
event that no magnetic masses are generated, we shall put an infrared cut-off A on
momenta integrations which arises when calculating the contzibutions te the pressure.
Our aim is to study the possibility of cancellation of the infrared singularities in the
limit A — 0, when summing the whole class of diagrams which coniribute in the
ladder approximation.

As we shall see, even this more modest task is non-trivial and we begin by con-
sidering in Section II the scalar g¢” theory in six dimensions. This modet hes some
similarities with the Yang-Mills theory, such as a dimensionless coupling constant
and asymptotic freedom. Strictly speaking, in this case one could employ the re-
summation method developed by Braaten and Pisarski{7}, because 2 scalar thermal
mass is generated in lowest order. Indeed, such a procedure leads to an infrared finite
expression for the pressure{8]. However, we will use here instead the method described
above, in order to illustrate in a simple way some relevant features which will appear
in the Yang-Mills theory. We consider the truncated set of Schwinger-Dyson equa-
tions which yield consistently the scalar self-energy in the ladder approximation. The
ensuing integral equation is equivalent, under certain conditions to be discussed later,
to a second o:rder differential equation which can be solved analytically in terms of
modified Bessel functions. Using this solution, we show that the corresponding con-
tribution to the pressure obtained in this approximation, is finite in the limit A — 0.

In Seciion III we consider the leading infrared behavior of the SU{N) Yang-Mills

theory at high temper#tures , in the ladder approximation. We work in the Feynman
gauge and obtain a system of two coupled Schwinger-Dyson integral equations, linking
the gluon polarization tensor and the ghost self-energy function. Using the same
reasoning as in the previous section, we show that this system is equivalent to a
fourth order differential equation which describes in this approximaticn the leading
infrared behavior. The solution of this equation is expressed in terms of modified
Bessel functions with complex argument and the corresponding complex conjugate
functions. We find that the relevant contributions to the pressure, as calculated in the
iadder approximation, are finite in the infrared limit A — 0. Some of the mathematical
details which arise during these calculations are given in the Appendices A and B.
Finally, in Appendix C we consider the possibility of the cancellation of the infrared

divergences in the pressure, beyond the ladder approximation.

<

II. THE SIX-DIMENSIONAL SCALAR THEORY

We consider here the scalar theory with a g¢* interaction at the temperature T.
In this theory the formula giving the pressure in the ladder approximation is rather
simple and can be expressed directly in ferms of the self-energy function M. The
Schwinger-Dyson- equation for the scalar self-energy in the ladder approximation it
shown in Fig. (1). Note that the diagrams contribuling to Il have the same combina-
torial factor % to all orders in perturbation theory. The corresponding contributions
to the pressure are represented in Fig. (2.a}.

In order to derive the expression giving the pressure, we use the relation betweer

its functional derivative and the self-energy function[1]:
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where D, is the free particle propagator and 1Pl indicates that only one particle




irreducible diagrams contribute to II. With the help of the graphical representation

given in Fig. (2.}, it is easy to see that (1) implies the relation:
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The factor } arises because in general there are only four ways we can cut the
diagram (2.a) in order to get II in the ladder approximation. The only exception
occurs in the lowest order, where the factor is } instead. The graphical representation
of this formula is shown in Fig. (2.b).

The sum over py should be taken over even frequencies po = 2mnT. However,
the dominant infrared contributions arise only from the terms with zero frequency
(n = 0). When calculating the contributions from eq. (2) corresponding to this
mode, we can put an ultraviclet cut-off of order T on the momentum integration.
This cut-off arise naturally when summing over all modes n. As mentioned in the
Introduction, we shall also put a cut-off A in order to regularize the perturbative
infrared divergences. In this way we find that the leading infrared contributions to

the pressure are given by:

T (7 dp 1.
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P=F -
where dots denote additional subleading and infrared corvergent contributions.

Then, using the Schwinger-Dyson equation for the scalar self-energy function we

arrive at the following integral equation for Tl{p,p, = 0):

o . FT /T &k (1 Nk
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(4)

In order to solve this iategral equation analytically, we will try to convert it
into a Volterra type. This is possible provided we adopt the following maximization

procedure. Let us define:

2
r* forp>k
B fork>p

Using this approach, we then obtain from eq. (4}

2
Hmax(p) = —P2 + 192; g - =+ 'I'E - f dkumux(k) f mux(k ]
(6)

Comparing this with the original equation (4), we note that the first jleration of
(6) with A — 0 yields:

Vi 2
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a result which completely agrees in the high temperature limit with the leading con-
tribution which follows f!'O;l (4). To next order, our procedure yields in this regime
results which are in satisfactory agreement with the ones obtained from equation (4),
which becomes increasingly cumbersome to handle . Since we wish to study only the
main features of the leading infrared behavior, it will be sufficient for our purpose {o
restrict our attention to the Volierra equation (6). For simplicity of notation we shall
drop in what follows the suffix max appearing in (6). After successive iterations, we

encounter the presence of infrared divergent terms in the perturbative series of II:

2 3
2, % T 32 (T (g)_14zfg
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whereasﬁi—,.

With the help of this result and using equation (3), we find that the perturbative

expansion of the pressure exhibits power infrared divergences given by:
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Despite the fact thai equation () cannot be solved perturbatively because the
iterations yield infrared divergent terms, we will show that neverthcles:;s,'a. non-

perturbative solution does exist. To this end, it is convenient to define:
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Then (6) reduces, dropping the inhomogeneous A? term, to the following integral

equation:

_ z I < dy . fFdy
fey= 143 - =2 [ 2w == [T ) (11)

Perturbation theory now corresponds to solving (11} by a power series in z, 8

procedure which, as we have seen, yields power infrared divergences.

But the differential equation which follows from (11):
22 f"—b5zf' + (8 —2z)f =z —8 (12)

has & well behaved solution. The complementary one involves modified Bessel fune-

tions[9] and two constants:
f.(z) = Ac®L{V8z) + B=*Kq(V8z) (13)

Using standard methods we can then find a particular solution in terms of these
modified Bessel functions. The general solution, consisting of the sum of f(z) and

the particular one has the form:

fz)= [A + 2/j} dt (E' - l) K:(\/B_t)} 2*1{VBz) +

4 t3
+ [B v2 [ a (t% - 5) BV 2 Ka(VER) (14)

Substituting this into the integral equation (11), fixes the constants A and B in
terms of the parameters "—'AZ and o. Since I» grows exponentially at large z, it would
produce a divergence in the integral equation as A —+ 0, unlese A = ¢ in this limit.

Indeed, ihe consistency conditions on f{z) at ¢ = % and z = «a, demand A to vanish

when A — 0, while B becomes:

B = m [213(\/53)[:’ i (% _ :—3) Ka( VD) — \/g} (15)

Then, since K, decresses exponentially at large z, it is not difficult to show
that f(z) is & decreasing function of = in this domain. Because large values of =
correspond to small values of the momenta [see eq.(10)], this behavior leads to 2
convergent integral in (3) as A — 0. Thus, the pressure calculated in the ladder
approximation remains finite in the infrared domain. This also happens in the case

of the Yang-Mills theoty\éo which we now turn.

III. THE YANG-MILLS THEORY

We now consider the leading infrared behavior of the pressure in thermal Yang:
Mills theory. Since the ffga(p — 0,p0 = 0) component of the polarization tensor it
non-zero, the lon.gitudina.l gluons are screened at large distances. As a result, the
infrared problem is related in this case only to the behevior of the transverse part o
the gluon propagator. Using the fact that at finite temperatures, the leading infrarec
contributions arise from terms with zero frequencies, we can reduce our problem to ¢
study in 3-dimensional Euclidian Yang-Mills theory.

Although the analysis is now mote complicated due to the presence of the 4-
gluon couplings and ghosts, it proceeds in parallel with that described previously ir
the Section II. In particular, in order to derive the expression for the pressure in the

ladder approximation, we start from a basic relation which is the analogue of eq. (1)




By a reasoning similar to that used in deriving eq. (3), we find that the expression

giving the leading infrared contributions to the pressure has the form:

— T ({JP 1 l'aa l'ua 1 7 beeTya
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This relation is represented graphically in Fig. {3). Here Ii and £ denote respec-
tively the gluon and ghost self-energy functions, which must be calculated consistently
in the ladder approximation. The veriex V stands for the bare gluon four-point func-
tion and dots indicate infrared convergent contributions associated with two-loop
diagrams. Note that expression (16) is much simpler than the exact formula giving
the pressure in the Yang-Mills theory[10].

We now proceed to investigate, in the Feynman gauge, the infrared behavior of
the gluon polarization tensor and the ghost self-energy function. The corresponding
Schwinger-Dyson (8-D} equations in the ladder approximation are shown in Fig. (4).

It is well known that any approximation of the §-D equations may impose severe
constraints in the case of a gauge theory. The reason is that the Ward identities, which
reflect its underlying gauge invariance, are satisfied only when we take into account
all the relevant contributions, order by order in perturbation theory. In particular,
the {ransversality property of the polarization tensor is guaranteed only by the full
set of 3-D equations. Since it is impossible to implement this program in practice,
we follow the procedure adopted by Mandelstam[5], neglecting the longitudinal terms
which might arise in connection with the approximate set of 5-D equations. This
is obviously correct to lowest order in perturbation theory, where our polarization
tensor is manifestly transverse. In higher orders, some of the contributions associated
with the exact 3-point and {-potni gluon vertices will cancel these longitudinal terms.

Since in the ladder approximation the vertex corrections are also neglected, the above

g

procedure is justified and, as we shall see, a consistent solution of the approximate
set of 5-D equations does existi.
Thus, using the transversality property of the gluon polarization temsor

1?0 = §°*[1,;,we can write it in the form:
- Pibi
IL; = ( - ";2—") (Hr +p%) ' (17}
In this way, we arrive at the following set of coupled integral equations which

relate the gluon polarization tensor to the ghost self-energy £ = % + p*):
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Z(p)=-p 83 K (p + k)? B3 ki (p+k)'zE(k)
2 L2 _(p.k)2
g*NT _d_a_liP k (P k) Hr(k) (19

T kB (p+k)?
The first iteration of this system yields, as required, the lowest order perturbative
coniributions io the gluon and ghost self-energy functions. In higher orders the per-
turbative series of these self-energy functions lead, via equation (18), to the presence
of power infrared divergences in the perturbalive expansion of the pressure. These
features are rather similar to the ones exhibited in Section II by the thermal scalar
field [see eq. (8) and {9)].
Analogously to the scalar case, we wil now show that & well behaved non-
perturbative solution for the above set of integral equations does exist. In order
to be able to solve it analytically, we will use consistently in the numerators and

denominators of equations (18) and (19), the maximization procedure described in

10



the previous case. As we have seen, in the high temperature domain this procedure
simplifies the equations, without modifying the qualitative features of their solutions.

Then, it is convenient to define the dimensionless quantities:

2
N oT
= '—;2— H T = 7 . (20)
_ iy _ &
F(z) = p_z H G(t) = l;ﬁ (21)

In this way, after performing the angular integrations, we find the following set

of Volterra integral equations:

. _E _ 2 2 :éli 1 gitdy
Fz)=~1- 2 - He +=Ly2G(y}+z/: et (22)
aT
R PO A U i L W
G(z) = (1+2)+z j;dyp(y) :f, SE) (23)
where
1 11 ¢ofd
H=—+ * Y e (24)

2o _5- a y2
Perturbation theory corresponds to solving (22) aad {23} by 2 power series in
x. On the other hand, the relevant momenta in the infrared domain are such that

p < aT, which correspond to large values of x.

We now consider the differential equations which follow from {22) and (23):

2 F"(z) - 52 F'(z) + 8F{z) + 22G(z) = -8 — 22 (25)

zG"(z) - Gz} — 2F(z)= -1 {26)

To obtain the solution of this set of coupled equations, we use (25) to express
G(z) in function of F(z} and its derivatives. Substituting this into {26), we get the

following fourth order differential equation:

et ‘; i 12 1" 24 ! 24 4
F™(z) - —F"(z) + S F'(@) - 5F(e) + (;_—ﬁ;) Flz)==-= (27)
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which describes the infrared behavior of cur system.

The complementary solution of the homogeneous part of equation (27) can be
expressed in terms of the modified Bessel functions with complex argument. Using
the functional relations satisfied by these functions[d] it is straightforward io show

that:
Fz)= :'32[0112(_\/ 8iz} + C2K2(V8iz)] + complex conjugate (28)

where ¢ and C; are complex constants to be determined,
In order to obtain a particular solution of (27), we employ the method of variation
of the parameters, which is described in Appendix A. The general solution, consisting

of the sum of F.(c) and F(z) [equation {AT7)] is given by:

F(z) = iz? {{cl + j:‘t at (l - 1—3) K,(\/EE)] I,(V8iz)

t?
+ [cz + [ a (lz - 1—42) (&) Ko(VBiD)} + cc. (207

Since I, grows exponentially for lazge values of its argument, this result woulc
produce a divergence as A — 0 in the integral equations (22) and (23), unless C
vanishes. In Appendix B, we discuss the consistency conditions which follow fron
these equations in the limit A — 0. We find that, indeed, these conditions requir
the vanishing of the constant C,. Fulhermore, they fix the constant C, in terms o
a, but the explicit expression has a rather complicated form involving the modifie
Bessel functions [see eq. (B2))].

From the behavior of F(z) and G(z) for large values of =, given by (B5) an:
(B6), and using egs. (20,21), we see that Tir(p) and Z(p) wi}!ui)e proportional to p

for small values of the momenta:

1 39
Iy(p) = 51?2 ;o (= “2—4132 [p << aT] (3¢
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This behavior will ensure the convergence of the integral in eq. (16) as A — 0.
Hence we find that the leading contributions to the pressure, when calculated in
the ladder approximation of the SU(N) Yang-Milis tﬁeory, are finite in the infrared
domain.

In conclusion, we stress that our analysis was restricted to the ladder approxima-
tion, in which case the set of Schwinger-Dyson equations remains linear, allowing for
an analytic soluiion. However, there are many other important contributions which
must be taken into account when studying the infrared behavior of the pressure.
These include the set of diagrams with crossed ghost and gluon lines, which can be
reduced in the large N-limit to the class of planar diagrams . Furthermore, one must
also consider additional self-energy and vertex corrections, which are relevant for the
appearance of the effective coupling constant g{T). It is conceivable that the inclusion
of these contributions, may indicate the presence of new collective phenomena asso-
ciated with the infrared behavior of the pressure. Nevertheless, in view of the above
results, we believe ihat the cancellation of the infrared divergences is a possibility

which deserves further investigation.
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APPENDIX A
Here we derive a particular solution of eq. {27}, using the method of variation of
the parameters. The complementary solution was given in eg. (28), so we assume &

particular one of the form:
F(2) = Z)(2)2*L(V8iz) + Z;(z)2* K,(V8iz) + c.c. (A1)

where Z,(z) and Z;(z} are two complex functions to be determined consistently. We
have to our disposal four real functions, but only one condition, so that we are free

to impose three more conditions. We choose these additional conditions as follows:

Z!(z)z* I(VBiz) + Zi(z)z?K2(V8iz) + cc.= 0 (A2)
2)(z) [22L(VBiz)] + Zi(=) [ Ko VBiz)] + cc. =0 (A3)
Zi{z) [ L VBiz)]" + Zy(2) [P Ko(VEiz)] + cc.= 0 (A4)

Then, the expressions giving F'(z), F"(z), F"(z) and F™{z) simplify consid-
erably, We now impose the basic condition that (A1) be a solution of (27}. Thus
we substitute these expressions into (27) and obtain sn identity. Since z*I(v/8iz),
z?K,{+/8iz) and their complex conjugates are solutions of the homogeneous equation.

this identity reduces to:

s " 22t — 24 R

Zife) [o"L(VBiz)] " + Zi(e) [P Ka(VBi)] o= Top= (A8

Together with the auxiliary conditions {A2}, (A3) and (A4}, we have a system o
equations which determinate the complex functions Zi(z} and Z;{z}. To this end we
use the functional relations satisfied by K,(z) and Iy(z), together with the fact that

their Wronskian is 1. Then, after a straightforward calculation we obtain:

14




Zi(e) =-i (55 - 23 ) Kol VBR)

Zi(e) =i (3 - =) h{vEw) (A6)

Integrating these relations and substituting the result into (A1), we find that the

particular solution F(z) can be expressed in the form:

F(z)=iz* {12(\/&5)/:‘?: dt (-1; - 12) Ko(V8it)+

tT

+Ko(VETz) [ ae (%5 - 12) IV + e (A7)

t
With the help of this relation, the expression {29) for the general solution F(z)
can now be easily deduced. Using the series representation of the modified Bessel

functions(9], it can be verified F(z) satisfies the perturbative boundary condition

P(0) = ~1.

APPENDIX B

We discuss here the determination of the constants C),C; in the infrared Lim:
A — 0, and obtain the asymptotic forms of F(x) and G(z) for large values of z.

To this end we substitute (25) and (26) back into the original integral equations
{22} and (23). When the expression (29) for F(z) is used in these equations, we obtain
iwo relations which must be satisfied identically for all values of z. The constants C;
and C, are fixed by the consistency conditions which arise from these relations at the
points z = % and z = «a, respectively. Using the properties of the modified Bessel
functions(9], it is straightforward to show in the Limit A — 0, that these conditions

demand () to vanish. Then C; is determined by the system:

24 (6| _,

2dz \ 2t [J|__,

23 d [ F(z) 1 2

bt il S = — 4+ — Bl
2da:(z‘)r=a H+8a o? (B1)
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This set of equations fixes the complex ﬁonstant C, uniquely, since the discrimi
nant D of the system formed by C; and C; is non-vanishing. To evaluate it, we us:
the expression (28) which gives the general solution F{z) in terms of the modifies
Bessel functions, together with the fact that ) = 0. Futhermore, we express G(z
{eq.(25)] in terms of F(z) and its derivatives, as well as H [eq. (24)] in terms of &
integral over F(z). These factors make the explicit expression of the discriminan
have a rather complicated form involv‘ing_ the modified Bessel functions. Using th

relations satisfied by these functions, we find afier a straightforward calculation that
11 . -
D= —ia (20; + 5 ) KaB)Ka() i (2 — 11) KHB)KI(B") +

+ [% (34_3 — e+ %OH- dia’ - 11“2) K (B)K2AB") + cc. (B2

where # = +/8ia and Kj(z) = iKg(z).
Since C) vanishes, We see from equation {28) that the complementary solutio:
decreases exponentially for large values of #. Then, the asymptotic form of F{z) i

determined by F(c), which in the infrared limit A — 0, becomes:
) 2 \/— = di \/— ‘/— o di \/"-'"
Fz) = iz? | Ko(v/Biz) jﬂ S L(VEit) + L(vBiz) /, SRV +cc.
' (B:

In order to evaluate F(z) for large values of z, we use the asymptotic expansion

of the modified Bessel functions[d]:

Kefo) = [Ze [lal>> 1 (e

Then, the leading contributions arising from the integrations in {B3) can be ca
culated explicitly. In this way, we find that the asymptotic behavior of F(z), for larg

values of z, is given by:

16




F(z)%

B =

[z >>1] (B5)

With the help of this result, we obtain from (25) the asymptotic form of G(z) for

large velues of z:
Glz) 2 ——  [z>>1)] (B6)

Since z = 2L these expressions describe equivalently the behavior of our solutions

for small values of the momenta.

APPENDIX C

Here we present a very simple model which illustrates a possible mechanism for
the cancellation of the infrared divergences, outside the ladder approximation. The
model has some similarities with the magnetic sector of the thermal Yang-Mills theory.

We consider the {ollowing expression for the pressure:

P= P0+cTZj

2+p (P, po) (Cij

The perturbative series of II(p — 0,pg = 0) is given by:

[i(p) = ~ag’pT +b(g*T)’ o (C2)

where a, b and ¢ are positive constanis. We see that a thermal mass of order ¢°T is
generated, a possibility which might occur also in the case of the magnetic mass. Our
model assumes, for definiteness, that the contributions to I:I(p) exponentiate. Then,

(C2) can be writien as follows:

li(p) = 57 (% - 1) (C3)

17

where a = 22,

Proceeding in paralle]l with previous cases, we obtain that the expression descril

ing the dominant infrared behavior of the pressure has the form:

"’27r—Tj pe er (C4

Using this form, we find that the perfurbative expansion of the pressure contain

power infrared divergences given by:

T a'T o fTN\?
Pa il ] @ ( ) _..___(_)
daiv ¥ 2m {3!’ e Tmix) (cs
Note that this behavior is similar to the one shown by the perturbative therme

Yang-Mills theory.

However, the full expression (C4} is well behaved in the infrared limit A — ¢

Indeed, introducing the variable = = %, we find in this limit that P becomes:
o BC 4 o fodT _,
P ZWTT o ‘/‘; ;e (Cﬁ
This can be evaluated in terms of the exponential-integral function(9):
2T [Bi(—a) + 2 a 4 a?)e?] (cr
3 :

Therefore, in our model the complete expression giving the pressure in the infrarec

domain 1s a well behaved function of a.
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FIGURES

FIG.1. The Schwinger-Dyson equation for the scalar self-energy function in the ladder

approximation.

FIG. 2. (s} A general contribution of the thesmal scalar field to the pressure in the

ladder approximation and {b} its graphical representation as given by equalion (2).

FIG. 3. Graphical representation of equation (16). Wavy lines denote bare gluons and
dashed lines represent bare ghost particles. Combinatorial factors are shown explicitly in

the diagrams. <

FIG. 4. (a) The Schwinger-Dyson equation for the gluon polarization teasor in the

ladder appl:oxjmation and (b) the corresponding equation for the ghost two-point function.
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