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Abstract

The theory of resistive instabilities in magnetized plasmas is presented at
an introductory level, assuming that the reader is already familiar with ideal
MHD modes. The linear and nonlinear behaviour of tearing modes and some
relevant applications are discussed.

1. Imtroduction

‘The most violent instabilities in magnetically confined plasmas are the ideal mag-

netohydrodynamic (MHD) instabilities, which are driven unstable by pressute and
current density gradients in ideally conducting fluids 12, The condition of ideal con-
ductivity, or zero resistivity, imposes a constraint on the allowed perturbed motions
in the plasma. In fact, because the electric field in a frame moving with the fluid has
to vanish, the magnetic flux through any surface moving with the fluid has to remain
constant. This is referred to as the “frozen-in law’, which means that the magnetic
fields is “frozen’ into the plasma, i.e., a fluid perturbation cannot slip with respect
to the associated perturbed magnetic field. The frozen-in law and the ideal MHD
instabilities are discussed in many references at introductory and advanced levels 1-%,
The global ideal MHD instabilities are not only violent, in the sense that they can
destroy the equilibrium configuration, but also have a very large growth rate. For a
typical cylindrical plasma column of minor radius a, the characteristic e-folding time
is the poloidal Alfven time, i.c.,

a

Tap = —— 1
0= - (1)

where Vig = By/./jiop is the poloidal Alfvén speed, By is the poloidal component of
the equilibrium magnetic field, and p is the fluid mass density 8. For tokamaks this
time is of the order of microscconds, too short for effective feedback control of the
instabilities. Therefore, the parameters of actual confinement configurations have to
be chosen such that the system remains stable to global ideal MHD modes.

It might be expected that dissipative mechanisms such as resistivity and heat
conductivity have a beneficial effect on the stability of magnetic confinement config-
urations because they simply reduce the gradients of current density and pressure
that drive the ideal MHD modes. However, it is important to realize that instead
dissipation can produce new instabilities by removing constraints from the ideal fluid
model and, thereby, making states of lower potential energy accessible to the system.
In particular, the frozen-in constraint on the magnetic field is relaxed by taking into
account the finite resistivity of the plasma. This has a profound effect on the MED
fluid model. With resistivity, the magnetic field tends to break up into a number
of thin filaments, called magnetic islands, changing the topology of the equilibrium
configuration. The resistive instability that leads to this break up is called the tear-
ing mode. Usually the magnetic islands grow on a time scale much longer than the
Alfvén time scale; they reach a saturated size when the lincar free energy available
for driving the change in topology vanishes "®. Experimental results indicate that
the size of the saturated islands is not negligible in comparison with the radius of
the plasma column *'%; they can thercfore lead to enhanced transport because in the
island region the heat flow across the field lines is essentially replaced by the much
faster flow along the field lines 1.

In some cases, when the current density profile in a discharge shrinks due to some
external effect, such as impurity influx, the resistive modes may become strongly
unstable leading to large magnetic islands that touch each other or the material limiter
inside the vacuum chamber. This mechanism has been proposed by many authors as
the cause of the disruptive instability, a violent and fast event that disrupts the plasma
column and induces large undesirable mechanical stresses on the vacuum chamber of
tokamaks %, Finally, it has been suggested that the anomalous diffusion observed in
tokamaks is due to the enhanced transport caused by a chain of small size magnetic
islands (island width of the order of the ion gyroradius) that can be self-consistently
sustained in the plasma column when kinetic effects are taken into account 316, From
this short introduction, it is evident that resistive modes and associated magnetic
islands play an important role in the physics of magnetic confinement configurations.
An equally relevant role is also played in astrophysical plasmas, where the mechanism
of field line reconnection is extremely important 7.

The linear theory of resistive modes was originally discussed by Furth, Killeen,
and Rosenbluth ' and further developed by different authors 1°22, A quasilinear
model for the evolution of tearing modes was first proposed by Rutherford 7. Many
other non-linear models followed to explain the so-called sawtooth oscillations, major
disruptions, and saturation of magnetic islands %2*-%, Although the theory of resis-
tive instabilities is already discussed in different textbooks *’~*° and review papers
31=31 many students find the literature in this field quite hard to read. This is partly
because the linear theory of tearing modes involve a singular perturbation problem
for a at least fourth-order system of differential equations - even in the simplest ge-
ometry - and partly because of the apparently heutistic arguments and orderings that
are used to extract the most relevant terms of the complicated equations. Actually,




it is interesting to note that some people find the quasibnear Rutherford theory much
more casy to apprehend than the linear theory of tearing modes. The objective of
these lectures is not to review the entire subject, what has already been quite well
done by other authors '3~% but to present the main ideas and analytical techniques
involved in the theory of resistive modes using a simple and systematic approach.

The characteristic time for the diffusion of the magnetic field caused by the finite
resistivity of the plasma can be readily obtained from a dimensional analysis of the
MHD fluid equations *. Considering the equations for the laws of Faraday, Ampere
{without displacement current), and Ohm, ie.,

. 9B
Vxl=__"
% at’ 2)
V x B = poj, (3)
and
E+4x E:n}, (4)

respectively, a equation for the evolution of the magnetic field can be derived by
taking the curl of Eq.4 and substituting the result and Eq.3 into Eq.2. The evolution
equation for the magnetic field becomes then

~

- B Te2p
o = Vx{ix B)+ VB
5 = VxTx B+ Ly, ®)
where 7 is the plasma resistivity and ¥ is the fluid velocity (rationalized MKS units
are used in these lectures). The first term in Eq.5 is a convective term whereas the
second is a diffusive term. Let L and 7 be respectively a characteristic length scale
and a characteristicﬂtime scale for the physical phenomiena that are being considered.
Then, balancing 0B/8t with the diffusive term, it follows that

B 9B

Z.o1zs (6)
Ty Ho L

and the characteristic time for resistive diffusion becomes

2
_ Rol” (7)
n
It is well-known that the resistivity of fully jonized plasmas decreases with the 3/2
power of the electron temperature . For high temperature plasmas the resistivity
is quite small and one might suspect the dominant term in the right-hand-side of
Eq.5 is the first and not the second one, which is proportional io 5. To estimate the
first term, another relation between 7 and B is necessary. This is provided by the
momentum balance equation *

r

8 P
Alg +7-V)i=-Vp+jxB, (8)

where p and p are respectively the fluid mass density and scalar pressure, Using
Ampere’s law, Eq.3, this equation can be written in the form ’

0 vi Vg = —V( +J—B—2—)+l(§-V)§ {9)
p(at+n v = P 2.”'0 #0 *

Recalling that for magnetically confined plasmes 8 = 2pop/B® < 1 and using the
same dimensional analysis, it follows from Eq.9 that
v B
o~ ~V 10
- pol or v Ay (10}

where the Alfvén speed is given by V4 = B/, /fop. Then the ratio between the second
and first terms in Eq.5 scales as
| (0/eo)V’B| | _Br 74 (11)
|Vx(FxB)| Va(B/L) =
where the Alfvén characteristic time is defined as 74 = L/V. For high temperatures
plasmas this ratio is 2 quite small number, i.e,

e=Taf7T, < 1078 (12)

and it seems that the resistive diffusion term in Eq.5 is not relevant at all.

There is, however, 2 fallacy in the above argument. In the calculation of 74 and
Ty, it has been assumed that the length scale is the same for both ideal (7 = 0) and
resistive phenomena. Actually, if resistivity is neglected, the magnetic field is frozen
into the plasma and the perturbed fluid motions can cause highly distorted field lines;
as a consequence strong gradients of the perturbed magnetic field can appear in very
narrow regions, of size much smaller than the global length scale L. In this case the
resistive term in Eq.5 may become of the order of the convective term because the
magnetic diffusion has to take place only in a very narrow layer, which will be called
the resistive layer in ihe sequel. Let the size of the resistive layer be §L,where § is
a dimensionless quantity, § < 1. Substitnting V2B ~ B/6%L? into Eq.11, it follows
that the resistive term becomes of the order of the convective term if § < &'/2,

These arguments are the motivation for using the boundary layer technique 3 in
the analytical theory of resistive modes. The relevant equations are solved in most of
the plasma region neglecting resistivity; in the neighborhood of the singular points of
the ideal equations, where strong variation of the perturbed quantities are expected,
the effect of finite resistivity is taken into account. The width of this resistive layer
and the mode growth rate are determined by asymptotically matching the solutions _
in the two regions{18]. A brief introduction to boundary layer theory will be presented
in the section 3. However, the effect of resistivity on the gravitational interchange
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mode will be discussed first without using the formalism of boundary layer theory.
This sequence of exposition is adopted in order to somewhat separate the physical
problem from the mathematical technique used to analytically solve it.

2. Resistive Gravitational Mode in a Plasma Slab

The gravitational or Raleigh-Taylor instability is the classical fluid instability that
occurs when a dense, incompressible fluid is supported against gravity by a less dense
fluid %, In magnetically confined plasmas, the roles of the more dense and less dense
fluids are played by the plasma and the confining magnetic field, respectively, and the
role of gravity is played by the centrifugal acceleration felt by the particles flowing
along the curved field lines. Indeed, in a curved field line, the centrifugal force on a
particle guiding center is given by

Fo = —mufi(5- V)i, {13)

where v is the component of the velocity of the guiding center and b is the unit vector
parallel to the field lines . To mock up the average curvature effect in a fluid model
for the plasma, one can therefore assume a gravitational field given by

§=—vi(E- V), (14)

where the average of v2| has been made equal to square of the thermal velocity vr.

The plasma slab is the most simple model for a magnetically confined plasma.
In this model, all fluid quantities such as density, pressure, and current density vary
in only one direction, perpendicular to the plane of the confining magnetic field.
The field-line curvature is mocked up by a constant gravitational field parallel to
the equilibrium gradients, as indicated in Fig.1. Using cartesian coordinates, the
equilibrium magnetic field is given by

-E() = B()éz + By(m)éw (15)

where the dependence of B, on z represents the shear of the field lines. The fluid is
supposed to be 2t rest so that equilibrium is provided by a balance between expansicn
and gravitational forces, i.e.,

i, B
- ¥ B 16
ot 2#0) Py (16)

The stability analysis is carried out by finding out the normal modes of the system
subject to small perturbations. Since the equilibrium quantities do not vary in the y
and z directions, the perturbation can be assumed of the form

F78) = folz) + fi(2) expli(wt — k - 7)), (17)

p(x}; j(x)

a|

X
15,
}
BJ_ Z

Figure 1: The plasma slab model.

where f represents any physical quantity, f, its equilibrium value, and f; the per-
turbation which is assumed small, i.e., | fi/fo | € 1. The wavevector k is given by
k = kyé,+k.é,. If resistivity is neglected and only incompressible fiuid displacements

are considered such that V - 4; = 0, the equation for the perturbed magnetic field is
readily obtained by linearizing Eq.5,

" dB, - =
I'LIJBI = —‘U],,—d;!!'éy hd Z{k . B())T-;‘[. (18)

The component of the perturbed magnetic field perpendicular to the equilibrium field
By is then given by By, = —(I: . ﬁg)?}lm/w. If the direction of B, were constant, the
direction of k could always be chosen such that & - 5y = 0 and no bending of the field
lines would be produced by the perturbation. However, because of the finite shear,
given by the z-dependence of B,, the condition k- By = 0 can be satisfied only at
some point in the plasma. In the neighborhood of this point B,. does not vanish
and the distortion of the field lines gives rise to a restoring force that opposes the
instability driving force. This is the well-known stabilizing effect due-to shear 528,
The magnitude of the restoring force is substantially reduced when the effect of
non-vanishing plasma resistivity is taken into account, decoupling the plasma motion
from the magnetic field. The dependence of the restoring force on plasma resistivity
can be obtained from Ohm’s law. Considering only the component of the equilibrium
field parallel to %, i.e., By = (k,By + k.B,)k/k?, and linearizing Eq.5, it follows that

E] + ‘I_)’l bt B“;l = 7]3:1. (19)
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A sufficient condition to decouple the fluid motion from the magnetic field is that no
electric field is induced, that s, E, ~ 0, which means that the Ohmic dissipation is
balanced by the motional electromotive force. In this case, Eq.19 can be simplified
and the perturbed current density becomes

?J_i x .§”
. 20
. (20)

The restoring force density is given by F; = 71 Etl and its component perpen-
dicular to the equilibrium field is therefore

h =

'Ul:rBﬁ
rt
For g =+ 0, Fi, /v, is extremely large unless at the singular points where B = 0.
In the neighborhood of these points B can be approximated by By = (8a)(dBy/dz),
where a is the width of plasma slab and § is a small number such that g gives the
width of the resistive layer. The value of § can be estimated by requiring that inside
the resistive layer the restoring force be smaller than the perturbed driving force,

—

Fy1 = p1§. The perturbed density p, is obtained from the continuity equation

F]x o~ (21)

Bp
LV (g} = 0. 22
£+ (o) =0 (22)
Linearizing this equation and recalling that V - 7, = 0, it follows that
1 dpo
= == Vip, 23
Pi 5 do Uy (23)
and, therefore,
1 dpo
Fo = ;”mg"d;, (24)
where v = 4w is the mode growth rate. Equating F,; and F), and considering
By = (6a)(dBy/dz), the expression for § becomes
/2
7| g% |
§ = ., . (25)
'7(‘1' e )

The mode growth rate can be estimated from the requirement that the work done
by the perturbed driving force be equal to the increase in kinetic energy (the free
magnetic energy is balanced out by Ohmic dissipation inside the resistive layer). The
former is given by

dW

E- :’Ulngu (26)

whereas the latter is

ax
Pk ¥po(v?, + vy, (27}

where vy is the component of the pertutbed velocity parallel to the wave vector k.
From the incompressibility condition, V - 4, = 0, one has

dv. | - .
;; + ik =0 or '%r. & —ikuy. - (28)
Therefore
dK 1 2 vi,
7R Tpoll + m)vu = VPt (29)

since § < 1. Equating dW/dt and dK/dt and using Eq.25, the expression for ~is
readily obtained

2 _&21/3
THPMQM}_ (30)

B

po(a ')

This expression shows that the mode growth rate is proportional to the 1/3 -
power of the plasma resistivity or, what is equivalent, the characteristic time for the
instability growth is much smaller than the resistive diffusion time across the plasma
slab. This can be better seen if the expression for v is written in a more convenient

form. Let the Alfvén characteristic time be defined in terms of the parallel component
of the magnetic field, i.c.,

a dBj
_ . = {g—I g 31
nE gy 5 Var={e ) Ve (31)
Then, rearranging the terms in Eq.30, the expression for 4 can be written as
dPo/ d= g TA _
~ 2/3 2/3; 29273, TAN173_—1
7 (eI LR i 2 Sy o, (32)

Thus the mode growth rate is proportional to (ra/7 Y3751, that is, the instability
grows slower than the ideal mode, which grows on the 74 time scale %, but much
faster than the global resistive diffusion. This is a property of all resistive modes.

It is interesting to note that if the expression for § given in Eq.14 is used in Eq.32,
one obtains Tig/e =~ v%/V} = 8, i.e., v ~ %3, The resistive interchange mode is
therefore more relevant in high-B plasmas. Finally, it can be seen that this mode
depends upon only the local conditions at the surface where k. B = 0, which is
called the mode rational surface. A more careful analysis of the eigenvalue equation
indeed indicates that the mode eigenfunction is strongly localized at the mode rational
surface *°. For this reason, the resistive interchange mode is considered to be a local
instability. Nevertheless, many continuous resistive interchange modes, each with its
own mode rational surface and nearly equal growth rate, can couple together to form
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elongated convection cells that substantially increase the transport of energy across
the field lines. This mechanism may become particularly relevant in high-8 tokamak
plasmas 3%,

3. Intermezzo Matematico: Boundary Layer Technique

Although the plasma resistivity is usually quite small, it has an interesting property
from a mathematical point of view. The order of the system of differential equations
that results from lincarizing the MHD equations is increased when resistivity is taken
into account. If a solution of the linearized equations is sought as a series in powers of
some small parameter proportional to resistivity, such as ¢ = 74 /7, the lowest-order
solution will come from a system of equations of lower order than otiginal. Therefore,
2 boundary condition may be lost and the effect of non-vanishing resistivity, which
is most important precisely where the solution has strong variations, is not properly
described. This situation can be illustrated by the following simple example. Consider
the differential equation

£

LY 9y

dz?  dz

where € is a small dimensionless parameter, ¢ < 1, and the boundary conditions

+ oy = 01 (33)

y(0} =0 ; y(1) = 1. (34}

If a series solution in powers of € is sought, i.e.,

(@) = yo(2) + en(z) + €'pafz) + ..., (35)
the lowest-order equation becormes
d
Eng + zye = 0, (36)
and its solution is given by
vo(z) = Ce™" 7%, (37)

"The constant C can be found by imposing the right boundary condition, 3,(1) = 1;
it then follows that ¢’ = ezp(0.5) and the lowest-order solution becomes

o) = U=+, (38)
It is clear however, that this solution canrot satisfy the left boundary condition,
¥(0) = 0, i.e., one boundary condition is lost when the limit € — ( is taken in

Eq.33. Nevertheless, a solution of the original equation that satisfies both houndary
conditions is certainly possible. If no approximations are made, Eq.23 can be solved
analytically in terms of Bessel functions, or, what turns out to be simpler, integrated
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Figure 2: Plot of the solution of Eq.33, for different values of e.

numerically. A plot of the numerical solution is shown in Fig.2 for different velues of
£

From this figure it can be seen that the power series solution fails because the function
varies quite strongly within a distance of order € from the left boundary. In this region,
the second derivative becomes quite large, increasing as e decreases, and the first term
in Eq.33 becomes of the order of the others. This type of problem is called a singular
periurbation problem and the region where the solution varies stromgly is called a
boundary layer . The term boundary layer comes from Fluid Mechanics; it is the
sheath that is formed at the stationary boundaries of a viscous fluid flowing inside a
pipe. The effect of the viscous term in the Navier-Stokes equation becomes important
inside the boundary layer because of the large velocity gradients .

The basic idea of the boundary layer technique to solve singular perturbation
problems is to divide the solution domain into two regions. An ‘outside’ region, away
from the point where the singular nature of the solution is manifested, and a region
inside the boundary layer. In the outside region the small term that depends on
is neglected and a solution of the resulting equation satisfying the proper boundary
condition is looked for. Inside the boundary layer the small term is kept and the
independent variable is re-scaled in order to make the small term of the same order of
others in the equation, Because of the re-scaling process, some terms in the original
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equation may become negligible inside the boundary layer. The ‘internal’ solution
is found and matched asymptotically to the ‘outside’ solution. By asymptotically
matching it is meant that the outside solution in the limit = -» 0 has to match the
inside solution in the limit 2; — oc , where = is the external independent variable and
z; is the re-scaled independent variable inside the boundary layer. In this procedure,
the width of the boundary layer does not have to be imposed a priori, but it comes
out naturally from the entire solution of the problem.

As an example, the boundary layer technique will be applied now to find an
approximate solution to Eqs.33 and 34. In the cutside region € =  and the proper
solution is given by Eq.38. Inside the boundary layer the term proportional to € has
to be kept. Since usually the dependence of the width of the boundary layer on € is
not known a priori, the independent variable is re-scaled assuming that

z; = 'e, (39)

where a is a constant to be determined and z; = O{1). Carrying out this change of
variables, Eq.33 becomes
4’y ~(i+a) %Y —(1+3n
H?+E ( )E-FE ( )a:,-y:U. (40)
The constart « is determined by imposing that highest derivative in the equation
be balanced by at least some other term. If the first and third terms in Eq.40 are
balanced, it follows that o = —1/3. In this case, however, the second term becomes
of order €72/* > 1, much larger than the terms that were kept. Balancing the first
and second terms, on the other hand, yields @ = —1 and the third term becomes of
order € < 1 and can be neglected. Therefore this is the proper choice; the resuliing
equation becomes
'y dy
—+-—==0 4]
da:f d;‘ﬂ,' ’ ( )
and the corresponding solution which satisfies the boundary conditions y(0) = 0is
given by

y(z:) = A1 — ™), (42)

The constant A is determined by the asympiotic matching procedure. The limit
w; — oo yields y = A whereas as @ > 0 the outside solution, Eq.38, gives y ~ e?.
Therefore A = ¢%, and the internal solution, written in terms of the original variable,
becomes

u(e) = [ — o). (43)

The approximate solution for ¢ = 0.01, calculated from Eqs.38 and 43, is shown in
Tig.3 together with the exact (numerical} solution. The agreement between the two
curves is quite good and improves as the value of ¢ decreases. For larger values of «

the agreement is not satisfactory. To improve the approximation in this case, terms
of higher order in ¢ have to be kept in the outside and inside solutions . Fortunately,
for resistive modes it is sufficient to keep only the lowest order terms.
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Figure 3: Boundary-layer (upper curve) and numerical (lower curve) solutions of
Eq.33 and 34 for € = 0.01. The insert shows a blow up of the region close to the edge
of the boundary layers.

4. Tearing Mode in a Plasma Slab

The resistive gravitational mode in a plasma slab was discussed in section 2 mainly to
provide an introduction to the physical processes involved in the dynamics of resistive
modes. The mode growth rate was estimated without solving the mode eigenvalue
equation. This was possible because, as already mentioned, the resistive gravitational
mode is very localized and its growth rate depends only on the local values of the
equilibrium gradients at the mode rational surface. There is another resistive mode
that can become unstable in a plasma slab and which is not localized. This mode is
driven by the gradient of the current density, j(z), and tears the opposing field Lines
of the field generated by the plasma current, B 1 = By(z)é,, at # = 0, reconnecting
them to form thin current filaments, called magnetic islands. This is the so-called




tearing mode which plays a fundamental role in the physics of magnetically confined
current-carrying plasmas 41523283340, The analytical theory of lincar tearing modes
is based upon the boundary layer technigue discussed in the last section. Naturally,
it is also possible to study tearing modes without approximations using numerical
techniques !'. However, the analytical approach is not only enlightening but also
very useful because it allows a quick qualitative analysis of experimental results 3340
and a smooth transition to the non-lnear evolution of tearing modes 7.

The curvature of the field lines does not strongly affect the stability of global
modes, such as the tearing mode 8, and therefore the gravitational field introduced
in section 2 will be neglected here. The equilibrium equation is then given by Eq.16
with g = 0 and the equilibrium field is given by Eq.15. The perpendicular field,
B, = By(z)é,, is produced by the plasma current flowing in the z direction and the
longitudinal field, B, = Byé,, is supposed to be produced by external currents. To
mock up the experimental sitration in confinement configurations such as tokamaks,
it is usually assumed that | B, | /By < 1.

4.1. Basic Equations

It is convenient to introduce a flux function Y(z,y;t) to describe the total magnetic
field (equilibrium plus perturbation) through the equation

B =Yy xé, + B, (44)

such that the equation V- B = 0 is automatically satisfied. To simplify the analysis,
a two-dimensional configuration is assumed such that all physical quantities depend
only on the (z,) coordinates. Substituting Eq.44 into Ampere’s law, Eq.3, yields an
equation for v

v:!d; = _"Juﬂj:' (45)

where j is the current density along the z axis. Assuming only incompressible fluid
motions, V -4 = 0, the fluid velocity can also be obtained from a flux function,

Pz, y;t), ie

F=Vexe., (46)

The flux functions 9 and ¢ will be the basic quantities used to describe the linear
and nonlinear dynamics of tearing modes. In the sequel they will be referred to as
the magnetic flux function and the vorticity, respectively.

The equation for the time evolution of the magnetic flux function 3 can be ob-

. tained from the laws of Faraday and Ohm. Calculating the curl of Eq.4, substituting

into £q.2, and using Eq.44 it follows that

V % 9] — T x (V4 x & + Byé.) + %3;@4:0. (47)

Therefore the quantity inside the square brackets has to be equal to the gradient of
a scalar function, which is the electrostatic potential ¢.. Taking the z - component
of this quantity yields

B¢

§+6-V¢:—-nj+Eo, {(48)

where By = —3¢,/8z is the electric field in the direction of By which is necessary to
maintain the resistive equilibrium.

The evolution equation for the vorticity ¢ is obtained from the equation of motion,
Eq.8, but it requires a somewhat more cumbersome algebra. Taking the curl of Eq.8,
one obtains V X Vp = 0 and two more complicated terms remain, V x [p(%- V)] and
V x (; X 153) The first term can be calculated using the vector identity

V x [p(7 - V)5) = pl#- V)V x ) + [Vp(3- V)] x 7. (49)

Then, assuming p =const and using the incompressibility constraint, V - 7 = 0, and
Eq.46, it {ollows that

Vxi=—8V% and [Vo(v- V)l x¥=0. (50)
Therefore

V% lo(gy + - )] = o2 +7-9)e. 7). (51)

The term V x (7 x g) can be readily calculated using Eq.44 and simple vector iden-
tities; the result is

V X (§ x B) = ~|(&, - V§)IV)] x & — [§(é. - VIV x &, = Vj x V. (52)

Equating the z - components of Egs.51 and 52 yields the evolution equation for the
vorticity,

p(;%Jra-V)v%: &, - (Vb x V). (53)

The two basic evolution equations are then Eqs.48 and 53, with the current density
given by Eq.45. They form a system of coupled non-linear equations for % and ¢,
with the non-Hnearities coming from the convective derivative operator, ¥ - V, and
the Lorentz force term, Vi x Vj. :

To solve analytically Eqs.48 and 53, even in their linearized versions to be pre-
sented later, it is necessary to identify a small parameter, From the discussions in
the introduction and in Section 2, it is clear that this small parameter should be the
ratio of the Alfvén characteristic time to the resistive diffusion time, € = 7,/7,. This
parameter can be brought oui in Eqs.48 and 53 by a suitable normalization of the
physical quantities. Defining the perpendicular Alfvén velocity
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where B,y is the constant value of the equilibrium perpendicular field for away from
the current layer (see Fig.1), the Alfven characteristic time is given by 74 = a/Vj.
Time is then normalized to 74, velocity to Vy, magnetic flux function to aB 10, VOI-
ticity to eV, and electric field to B,oV4. Using Eq.45, the normalized equations
become

V= (54)

Bab 2
5 T Ve =V +E (55)
and
(56; T V)V = - [V x V(V), (56)

where the small parameter e appears explicitly (notice the gradient operators are also
normalized to ™' in the above equations). These equations will be used to describe
the equilibrium, linear stability, and non-linear evolution of the tearing modes.

4.2. Linear Analysis

The linear growth rate of the tearing modes is determined from the solution of the
equations that result from the linearization of Eqs.55 and 56, subject to proper bound-
ary conditions. The linearization is carried out by assuming that

Pz, y3t) = do(z) + ¥ (z,y)e" (57)

and

¢(m1y;t) == ¢i(msy)e‘ﬂ: (58)
where  is -the mode growth rate, 9, is the magnetic flux function describing the
equilibrium field, and |, | / | ¥, |« 1. A stationary equilibrium has been assumed
such that ¢, = 0. The equilibrium magnetic field is given by B, = —(dspo/dx)é,
and the equilibrium current is maintained by the electric field, i.e., V%), = —E. To
facilitate the notation in the following, let f{z) = —ddy/de. Neglecting second-order
terms, the linearized equations become

T + B - Vg = eV, (59)

and

YV = —é. - [V x V(Y% ) + Vb, x V(Via)], (60)

where Vipo = —f(z)é; and ¥ - Voby = — f(2)B¢/By. Since the equilibtiumn quantities
depend only on z, the perturbed quantities can be Fourier analysed in the y coor-
dinate. A careful inspection of Eq.60 shows that 3, and ¢; have opposite pantles,
therefore the Fourier decomposition is chosen in the form

P1(2,9) = ¥r(e) cos(ky) (61)

and

$i{z1y) = ¢1(z) sin(ky) (62)
where the wave number k is normalized to e~!. Substituting these expressions into
Egs.59 and 60 and carrying out the vector operations, the perturbed equations become

¢1 = — i ¢! + —[¢;’ —_ k2¢l] (63)

b — kg ——fw»] K]+ ff"zbl, (64)

where prime means derivative with respect to z.

The system of equations above has to be solved with the proper boundary con-
ditions at the edge of the plasma slab {z = %a) or at + — o0, if the equilibrium
quantities are assumed to vanish away monotonically. It will be assumed that v — 0
as € — 0, that is, that the tearing mode exists only in the presence of non-vanishing
resistivity. This is true for the tearing mode but not for the resistive internal kink
mode, which can be unstable alteady in the ideal imit *'. The internal kink mode
occurs only in cylindrical or toroidal geometry and it will not be considered in this
section. If the resistive parameter is made to vanish, € — 0, it results a simple second
order equation for ¢, whereas the original system of equations is of fourth order.
This indicates that e introduces a singular perturbation, as discussed in section 3.

The character of the singular perturbation and the existence of the boundary layer
can be better seen by analysing the equation that results from taking the limit € — 0
in Eqgs.63 and 64. From the former one obtains ¢; = (/kf)y: and the latter becomes

" f" LI Py
Yo = (8 = KU —E7). (65)
Since 7 is expected to become very small in the limit € — 0, t}us ‘equation can be
approximated as

d*4 1d%f
dm; — (K + _fd W = (66)

where the ¢ derivative has heen written out explicitly. The solution of this equation
depends on the function f{z). Since the perpendicular field B, = f(z)é, venishes at




z = 0, so does the function f. Therefore, Eq.66 has a singular point at z = 0 and
in its neighborhood the solution ¥ {x) is expected to vary strongly. This indicates
that a boundary layer has to be considered in the neighborhood of the origin. The
character of the singular perturbation problem in this case is somewhat different
from the prototype example discussed in section 3. In this case it is not a boundary
condition that cannot be satisfied by the lowest-order equation but, because of the
singularity at the origin, the solution of Eq.66 diverges at = 0 and the two pieces for
¢ < 0 and z > 0 are discontinuous. Introducing a boundary layer at the origin allows
the continuity of the solution and the determination of all relevant constants. Then,
following the scheme described in section 3, two regions are considered: a resistive
(or boundary) layer close to the origin and an ideal region away from the origin. In
the ideal region, Eq.66 has to be solved whereas in the resistive layer the original
equations, Eqs.63 and 64, have to be solved using a re-scaled independent variable.

4.2.1. Solution in the ideal region

Unless for very simple equilibrium models, the solution of Eq.66 has to be numerically
obtained. However, the asymptotic behavior of the solution as ¢ — 0 can be readily
fourd wsing the method of Frobenius. At the origin di/de = 0 and the equilibrium
magnetic flux function can be expanded in a Taylor series. Then Eq.66 becomes

dn K
dm; =0 (67)
where
(da’lpg/dma)g
K= —"— 68
(/) )
The solution of Eq.67 is given by 2
bi(e) = AY,(z) + Bi(z), (69)
where ©.(z) is the regular solution,
Lo o, 1 gy
'gbr(m)%K:c—«—iK z +EK zt 4 .. (70)

and ¥,(«) is the irregular solutjon,

Tb,,(z)zlem—Zngg—l—...—E-q,b,(z)ln |z |. (71)
Therefore, as x — 0, the dominant behavior of the solution in given by

Yi(z)=Ci + Coxln | z | (72)

This equation shows that ¢,(z) is actually constant but its first and higher derivatives
diverge at = = 0. This asymptotic behavior is the origin of the so-called ‘constant

- 9 approximation’, which looks artificial to beginners in the subject. Considering
the form of the asymptotic solution in the ideal region, it is clear that there can be
a jump in the logarithmic derivative of 1,(z) across the resistive layer; this jump is
given by

8= 5 G- ). (73)

= oo |
The asymptotic matching to the solution inside the resistive layer can be carried out
by simply requiring the A’ be the same for the inner and outer solutions.

4.2.2. Solution tnside the resistive layer

The asymptotic solution in the ideal region, Eq.72, suggests that the perturbed mag-
netic flux function inside the resistive is, to lowest order, a constant. The scaling of
the non-constant part of #; and of ¢, with € is, however, not known a priori. There-
fore, generalizing the boundary-layer technique discussed in section 3, not only the
independent but also the dependent variables and the growth rate + are re-scaled as
follows.

T = Ebi, (74)
P1(z) = o + fb“j’u(ﬁ)s (75)
$i(e) = 1Eh(3), (76)
and
7 = €A, (78)

where the bar denotes the re-scaled variables, i.e., T ~ P11 ~ ¢ ~ O(1), o and A
are constants also of order one, and a,b, and ¢ are constants to be determined. The
factor (y/k) was included in Eq.76 for later convenience. Since it has been assumed
that the normalized perpendicular field vanishes linearly with z at the origin, inside
the resistive layer the function f(z) is given by f(z) ~ z = ’%, and F(z) can be
neglected. Substituting Egs.74 to 78 into Eqs.63 and 64, results in the two following
equations for the re-scaled variables

] i ) 1-a-b g2.7 - :

o + i = 8y + A E% — K (o + e'i)] (79)
and

d2d _ 2 d2 7 7
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The constants a, b, and ¢ have to be chosen such that the second derivative terms

which are proportional to some power of € become of order one together with the
other relevant terms in Eqs.79 and 80. This is achieved by imposing that b4+ ¢ =0
and I —a—b=0in Eq.79 and 2b — 2¢ — ¢ = 0 in Eq.80: therefore

a:% ; b:% ; c=——§. (81)
Substituting these constants into eqs.79 and 80 and neglecting terms of higher order
in €, one obtains

Py A*1dY,
dz? ~  kz dz?

(82)
and

d° kz ko

d;‘h 0y = —Kﬂ)lof- (83)

The constant A, which determmes the mode growth rate through £q.78, is actually
an eigenvalue which will be determined from the matching with the outside solution,
as discussed in the next sub-section. To solve Eq.83, it is convenient {o introduce the
following variables

(AJEP)'" K i,
_ (AR . — iy 84
X '{b]() ¢'l 1 Z (A ) z ( )
In terms of these variables, Eq.83 becomes
2
‘;?X — 2y ==z (85)
and its solution can be obtained in terms of an integral representation *3
172
2) = —zf (1 — 4t2) Vet gy, (86)
9]

From this expression, it follows that the asymptotic behavior of x(z) for large values
of the argument is

1 2
Xz 2 1 (87)

z FA

4,2.3. Asymptotic matching

To match asymptotically the inner and outer solution to lowest order, it is sufficient to
equate the jump in the logarithmic derivative of the former as & — oo with A given
by Eq.73. The re-scaling of the variables inside the resistive layer was conveniently
chosen such that the derivatives be independent of the scaling, i.e. dv,/de = di,/dE.
Then using Eq.82, it follows that the discontinuity in the derivative of #; across the
layer is given by

d?/h i, + &gy [dz”
- (=5 / =, (88)

where & is the (notmahzed) hali- wulth of the resistive layer. Considering that 4/,(0) =
110 =const, the jump in the logarithmic derivative is given by A,/ = (di/de |,
~dipy /de |_)/¢r0. Equating A’ with A’ obtained from the external solution, Eq.73,

and writing the variables £ and ¢, in terms of z and x, respectively, as defined in
Eq.84, the equation for the eigenvalue A becomes

+5 dz d2 '

i [TEEX

_ -5 z d2? (89)

From the asymptotic behavior of x(z), Eq.87, it follows that the integrand in Eq.89

decreases with 1/z* for large z. Therefore the limits of the integral can be taken to

infinity, i.e.,

+5dd2 +oodd2 +m 1/2 (6t — 42242

—f zd'x / z x_ f {6 4zt)_z,dt, (90)

z d2? w z dz? (1 — 4g2)1/4

where the integral representation for x{z), Eq.Sﬁ, has been used. Carrying out the

integration on z first and making the change of variable = = 4¢2, the integral 7 can be

written in terms of the beta function B(3/4,3/4), which can be expressed in terms of

Gamma functions *; the final result is J = 2xT(3/4)/T(1/4). Substituting this result

into Eq.89 and using Eq.78 to write the growth rate in terms of the actual physical
quantities, the expression for 4 becomes

45 —2/5
[%A’] 5(52a?) /5 [%A’} 77305 (%) / ,  {91)

where A’ is calculated from the solution of the linearized equations in the ideal region
using Iq.73.

From the expression for the growth rate, (Eq.91), it is easy to see that the tearing
mode is unstable, i.e., v > 0, if A" > 0. Actually, it can be shown that the energy
available to drive the tearing mode is proportional to A’ 3, The basic picture of a
tearing mode is then that magnetic energy released from the outer region is dissipated
in the inner region 2729,

The great strength of the approximate analysis using the houndary-layer technique
is that the resistive equations do not have to be solved to determine the stability of
an actual confinement configuration. Only the equation in the ideal region, Eq.66,
has to be solved with proper boundary conditions; A’ is then calcnlated from Eq.73
and substituted into Eq.91 to determine the growth rate. An illustrative example is
given by choosing the normalized current density as j(z) = sech?(z) (Harris model),
which peaks at # = 0 and vanishes away monotonically as =z — co. In this case the
normalized perpendicular field is given by B, = f(z) = tanh(z) and Eq.66 becomes




d*p
dm; — [k — 2sech®(z))4, = 0. (92)
The solution of this equation is given by
i(z) = eI %tanh z}, (93)

where the upper sign is for 2 < 0 and the lower for z > 0. Substituting this solution
into Eq.73, it follows that

A?zz[%uk]. (94)

From this expression it is clear that the current sheath is unstable for long wavelength
tearing modes, i.e., A" > 0 for & < 1. Although this result is strictly valid only
for the particular equilibrium model that was considered, 7 = sech*(z), it remains
qualitative correct for other equilibria, that is, the most unstable tearing modes have
long wavelength in comparison with the width of the current layer.

5. Tearing Mode in a Cylindrical Plasma Column

To study tearing modes in magnetic confinement configurations that are relevant for
fusion rescarch, such as tokamaks, it is necessary to consider at least a cylindrical
equilibrium model. Actually tokamaks are toroidal devices and even a cylindrical
model is only an approximation to the real magnetic configuration. However, the
driving force of tearing modes, which is proportional to the gradient of the equilibrium
current density, is much stronger than the restoring force that results from the toroidal
curvature of the field lines ® and they can be analysed to a good approximation in
cylindrical geometry. The main effect of toroidicity is to introduce a small positive
threshold on the value of A’ for the modes to become unstable 2295,

As in the slab model, the stability of tearing modes is analysed considering two
regions, an ideal region wherein the effect of resistivity is neglected and a resistive
layer around the singular points of the linearized ideal equation for the magnetic
field perturbation. In the slab model, the singular point occurs at = = 0, where the
perpendicular component of the equilibrium magnetic field vanishes. Since the mode
wave vector is considered in the y-direction, this is also the point where k- B = 0, that
is, the point where the restoring force due to the bending of the field lines vanishes,
as discussed in section 2. The same is true in cylindrical geometry; however in this
case the equilibrium quantities depend on » and the ignorable coordinates are 6 and
z. The perturbed quantities are the expressed in the form

1 (0, 2:2) = 91 (r) explyt — i(?& 1 k)], (95)

where the wave vector is given by E= {m/r)és + ké,. The equilibrium magnetic field
is given by B = By(r)ép + B,(r)é. and therefore the positions » = r, of the mode
rational surfaces, where k - B = 0, are given by the zeros of the funcijon

F(r) = 22m — ng(r)] (96)

To write F(r) in this form, the component of the wave vector in the z-direction was
written as k = —n/R, what corresponds to impose periodic boundary conditions that
emulate standing waves in a torus of major radius R 35, The quantity g = rB,/RB,
15 called the safety factor and m and n are called the poloidal and toroidal mode
numbers, respectively.

From the analysis in the plasma slab, it is expected that the most unstable modes
have long wavelengths, which corresponds to low values of n in cylindrical geometry;
typically n = 1,2. The conditions for ideal MAD stability, on the other hand, impose
that the value of g be larger than two at the plasma boundary, r = a, and close
to one at the magnetic axis, 7 = 0 ®. Thus,the condition F(r) = 0 occurs for
mfn = 1/1;3/2;2/1;5/2;3/1, etc. The mode with poloidal mode number m = 1,
which is called the resistive internal kink mode, is a special case because it can be
unstable already in the ideal MHD limit ®. The mode growth rate can be determined
using again the boundary-layer technique but the matching condition is somewhat
different from the one for tearing modes. The theory of this mode will not be discussed
in these lectures; the interested reader can find the necessary material in the original
work on this instability * or in the excellent review of White 32, Considering therefore
only tearing modes with m > 2, the positions of the rational surfaces occur somewhere
away from the axis of the plasma column. Since the width of resistive layer is of the
order of €%/5 « 1, as follows from the scaling given by Eqs.74 and 81, the radius of
a mode ratjonal surface is much larger than the width of the resistive layer. Thus
geometrical effects are not dominant in the resistive layer and the linearized equations
including resistivity can be solved using the slab model approximation. The relevant
equations are again Eqs.82 and 83 and the solution is given by Eqs.84 and 86. The
mode growth rate is also given by the same expression for the slab model, Eq.91. The
Jump in the logarithmic derivative of 4 (r) in the ideal MHD region is, however, not
calculated from the solution of Eq.66. This is because the ideal MHD region runs
from 7 = 0 to r = r, and from r = r, to r = e. In this wide domain the effects of the
cylindrical geometry are certainly relevant and have to be properly taken into account.
The ideal MHD perturbed displacements in cylindrical geometry are solutions of the
Newcomb equation :

d F dt
R S R = 7
drm? + k22 dr 9(r)E =0, o7

subject to the boundary conditions ¢ ~ r™~1,7 — 0, and ¢(a) = 0, for m > 2 13-5,
In this equation ¢ is the radial component of the perturbed fluid displacement, i.e.,
£ = v, /v, and




m? —1 k2 dp {m/r)By — kB
_ rF2 i g8z
9(r) mi ki T + kir 2Ho i B - F m? + kIr? (%8)

In order to use the results derived in the slab model, it 15 necessary to relate ¢ to
the perturbed magnetic flux function 4, and obtain an equation for 1, which will
replace Eq.66 in cylindrical geometry. Naturally, because V - 5 = 0, the magnetic
field can still be written in the form of Bq.44, ie.,

B =V xe, +B.e, (99)

where now v = (r, 8, z;¢). The perpendicular component of the perturbed magnetic
field is therefore given by

Boy=Vyx 6= -y iy, (100)
dr r
Linearizing Eq.5 in cylindrical geometry and considering 7 = 0, the equation for the
perturbed magnetic field B, in terms of the perturbed fluid displacement £ can be
readily obtained, viz.,
d By

Boirf-raDoyg, (g (101)

Comparing the radial components of Eqs.100 and 101, it follows immediately that

% = P, (102)

Substituting this relation into Eq.97, the equation for ¥, becomes

d T dyy, g 1 d r d

R — — —(rF =0.
dr m? + k?r? dr (»F)  (rF)drm?+ k2r2dr ()}

(103)

This equation is the equivalent in cylindrical geometry to Eq.66 in slab geometry
{note, however, that physical quantities are not yet normalized). It is clear that the
points where F(r,) = 0 are singular points of this equation. Although looking some-
- what complicated, Eq.103 can be easily numerically integrated from + = 0 towards
r =7, and from » = @ towards 7 = r,. Close to the singular point, it can be shown
that it assumes the form of Eq.67, where the variable  is replaced by {r—rs)/a
and the constant K becomes somewhat more involved 2%, The asymptotic behavior
close to the singularity is therefore still given by Eqs.69,79, and 71. Normalizing 4,
F, and g as described in sub-section 4.1 and defining 2 = (» — r,)/a, the numerical
solutions in the left (r < r,) and right (r > 7,) intervals can then be approximated as

iz < 0) = 41 (0)¥a{z) + A1 (a)

and

P1(z > 0) = 4 (O)hu(=) + Ao (2), (104)

where 11{0), A;, and A, are constants. Once these constants are determined by fitting
the numerical solutions, A’ can be caleulated using Eq.73 P

N S T
A= ,(0,) — ,/(0.) + N (0,) N (o). (105)

From Eqs.70 and 71 it follows that 7,(04) — ¥,'(0_) and %,'(0.) — K; therefore

o (A2 - Al)
¥1(0)
The mode growth rate is then calculated substituting this value of A’ into Eq.91.
In practical applications for tokamaks, Eq.103 is usually simplified taking into
consideration that (kr/m)* = (nr/mR)? < 1. In this case, the function g becomes
to lowest order g = (m® — 1)rF2/m? and Eq.103 can be simplified to

K. (106)

1d dpp m®>  mpg(dj/dr) .

rdr dr 1200 Bg(m»nq)?)
where j is the component of the current density in the z-direction. From this equation
one can see that close to the singular point, m — ng(r,) = 0, the equation indeed
becomes of the form of Eq.67, with the constant K given by

L =0, (107)

_ pomaldj/dr),,
n(BGdQ/dT)ra )

Thus the linear stability of tearing modes (A’ > 0 or A’ < 0) depends on the gradient
of the current density and on the shear (dg/dr) of the equilibrium configuration at
the mode rational surfaces.

The stability of tearing modes in cylindrical geometry can therefore be investigated
by just solving (usually numerically) the ideal MHD eigenvalue equation, Eqgs.163 or
107. Furth, Rutherford, and Selberg carried out a detailed investigation of stability of
tearing modes as a function of the shape of the current profile 2°. They found that only
the 7 = 2, 3 tearing modes are usually unstable for peaked profiles and that larger m
modes can become progressively unstable as the current profile is broadened. A very
useful stability diagram for cylindrical plasma columns, combining ideal and resistive
modes for different current profiles, was later produced by Wesson 33, To investigate
the stability of toroidal plasma columus taking full account of toroidal effects is much
more involved because of the linear coupling between a mode with mode number m
and its satellites, m — 1 and m + 1 *°. However, most of the experimental results can
be reasonably explained by the cylindrical model 232840, '

(108)




6. A Pedestrian Description of the Non-Linear Evolution of
Tearing Modes

The main effect of tearing modes is o produce current filamentation in the form
of magnetic islands. The width of these islands is proportional to the square root
of the perturbed magnetic flux, as it will be shown below, and therefore it grows
exponentially in the linear regime. Soon the island width becomes larger than the
width of the resistive layer and nonlinear effects start to dominate over inertia ™. The
further growth of the islands proceeds still driven by the available magnetic energy,
which is proportional to the current density, as in the linear regime. However, the
growth is limited primarily by resistive diffusion and not by fluid inertia. In this
section a brief and simplified description of the non-linear evolution of tearing modes
is presented; the interested reader will find the detailed theory described in references
7,8,27, and 47.

6.1. Magnetic Islands

In the two-dimensional geometry considered in sub-section 4.1, the equation for a
field line is given simply by dz/B, = dy/B,. Then, it follows immediately from
Eq.44 that the dy = 0 along a field line, i.e., the field lines lie on 4 = const surfaces.
The total flux function, including the equilibrium and perturbed comtributions, is
given by (Eq.53)

P(=z, ;) = dole) + 9 (2;t) cos by, (108)

where, in the linear phase, ¥1(2;t) = 91(z)e™. For a fixed time, the surfaces P =
const have the form shown in Fig.4. A critical surface, called the separatriz, separates
the field lines that preserve the topology of the equilibrium from those that spiral on
closed nested surfaces. This configuration is called a magnetic island. The width of
a magnetic island can be calculated from the equation for the separatrix.

The stagnation points of the curves 9 = const are given by the solutions of the
equation 8vy/Gz = 0 and G4/8y = 0. Since H¢y/0c = 0 at = = 0 and Pi(z) =
¥10 = const to lowest order, the stagnation points are given by = 0; y = nwfkn =
0,1,2,.... Caleulating D = (8%)/02%)(8%/8y*) — (8% /8z0y)?, it can be seen that
7 even corresponds to elliptical stagnation points (D > 0) and » odd to hyperbolical
stagnation points (2 < 0). The former are thus the magnetic axes of the islands and
the latter are the X-points of the separatrix. The value of ¢ at the separatrix is then
given by (0,7 /k) = v5(0) — 4,(0). Thus, the width of the island is determined from
the points where the curve ¥z, y) = ¥(0) — 9,{0) crosses the y = 0 axis, i.e.,

Ya(x) + ¥1(2) = $u(0) - £,(0). (110)

Expanding vu(2) in a power series and recalling that (dyu/dz)y = 0 and 1;(z) ~
Py = const, it follows from Eq.110 that
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Figure 4: Magnetic island configuration. In this case k = 0.5; 95 = 0.1.

1 d?
Po(0) + 5( d:f;o Yoz + co b apro = Pa(0) — P10; (111)
thus, the island width, w = ¢ — »_ is given by
/2
gl T
w=4 [(d2¢0/d32)0} . (112)

Considering the time variation in the linear regime, 11(2z;t) increases exponentially,
ie., Y¥a(z) = 1h10e™, and therefore the island width also has an exporential increase.
In the nonlinear regime v;(x;t) does not vary exponentially with time, by it can still
be considered approximately constant across the island ™. In this case, the expression
for the width of the magnetic island is given by Eq.112 with 110 replaced by t:(0;£).

6.2, Quasilinear Theory

The simplest theory for the nonlinear evolution of magnetic islands can be derived
by assuming that the physical quantities are given by an average plus a fluctuating
part, i.e.,




P =<9 >+, (113)

where < ¢ > is an ensemble average and ¥ is not necessarily small. Restricting
this derivation to the slab model and to modes propagating in the y-direction, the
fluctuation can be Fourier analysed,

Plz,yit) = Z ;bn(m,t)e‘"ky + comp.conj., (114)
n#EQ

and the ensemble average can be correspondingly defined as

E picik
<Y>= o Pz, y;t)dy, (115)
T 0

such that < 1 >= 0. The correlation between two fluctuating quantities, say ¥ and
¢, is then given by

<$d >= 3 [u(z,)i(e:1) + ¥3(2,)n(e,t)]- (116}
n=0
Substituting Eq.113 into Eq.55 and considering < 7 >= 0 yields
8 L . i
H <Y > 1)+ (T V)< > +9) = eV (< ¥ > +9) + E. (117)
The ensemble average of this equation gives

d<>

5 T <U V= eV <y > 4B (118)
Subtracting Fq.118 from Eq.117 it follows that
81,5 = 27 P 7 = T
a“l"v'v<¢>—EV¢:[U-V’¢'—-<U-V”¢)>]. (119)

The term on the righ-hand-side of this equation is due to the coupling between
different modes. If there are two fluctuations with mode numbers n; and n,, the
quadratic term will give origin to fluctuations with mode numbers 2n1,2n,, and n, &
nz. However, no average term (n = 0) will be induced because the ensemble average is
subtracted from the quadratic term. The effect of the correlation between fluctuations
on the evolution of the average magnetic flux is given by the term < % - V¢ > in
Eq.118. The quasilinear approzimation consists in neglecting the mode coupling term
in Eq.119; it therefore becomes entirely equivalent to Eq.59 for the linear perturbation.
However, the effect of the correlation between fluctuations on the evolution of the
blackground magnetic flux function < 2 > is retained.

The same procedure can be applied to the equation for the evolution of vorticity,
Eq.56. In fact, the quasilinear theory for tearing modes can be seli-consistently carried
out in slab geometry. The main result is that a spectrum of unstable tearing modes
give rise to an anomalous resistivity that is always positive and therefore increases

the rate of flux diffusion *°. The full theory will not be discussed in these lectures;
instead, using Eqs.118 and 119, a crude derivation of the expression for the quasilinear
evolution of magnetic islands will be presented. Neglecting the mode coupling term
in Fq.119, writing ¥ = V¢ x ¢,, and using the scaling relations Eqe.74 to 78, it, follows
that the first and third terms are of order ¢=1/5, Therefore, 1o lowest order the second
term has to vanish, i.e., the variation of < % > across the island has to be much
smoother than that of 4 (this argument is qualitatively valid only if the island width
is not much larger than the width of the resistive layer). To next order the first and
third terms have to balance, i.e.,

i a2

B—T’tb S ea—:f-, (120)
where it has been assumed that the wavelength is much larger than the island width,
(F*w® < 1) such that V2 ~ 8%)/8z% Considering that only the derivatives of
¥ are discontinuous at.the island, the second derivative can be approximated as
8% [0 = [dip/dw |y —dp/dz |_]jw = A'(w)/w, where w is the island width and
A'(w) is defined as in Fq.73 but with the derivatives calculated at the edges of the
island, i.e., (d¢/dc)s = (di)/de)su/n. Then Eq.120 becomes

8 A9

— & e—.,

ot w
Finally, using the expressions for the island width, Eq.112, with 10 replaced by ¢,
the above equation can be written as

(121)

dw 1
% s A w)e (122)
This equation shows that in the quasilinear regime the island grows on the resistive
time scale [the non-normalized form of the equation is dw/df = 0.5(aAYa/7)].
This growth is however not linear because A’ is usually a monotonically decreasing
function of w. The island saturates when A'{w) = 0, i.e., when the outside magnetic
energy that drives the linear tearing mode vanishes. For the Harris slab model, i.e.,
j{z) = sech?(z), A'(w) can be readily calculated from the solution of the ideal MAD
equation (Eq.93); one obtains

A'(w) = e~ */)[A/(0) — 2tanh %(1 + tanh %)}, (123)
where A’(0) = 2(1/k - k). This function is plotted in Fig.5 for k =.0.5 (recall that

k is normalized to a™'). Since tanhz — 1 as ¢ — oo, it follows that for this model
the islands saturate {A’ = 0) only if A'{0) < 4. For & = 0.5, it can be seem from
the Fig.5 that the normalized width of the saturated island is quite large, namely,
w, = 2.33.

The expression for A’ can be roughly approximated by a linear variation of the
type A'(w) = A'(0)(1 — w/w,), where w, is the saturation width. Substituting this
linear expression into Eq.122, the time evolution of the island width becomes
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Figure 5: A'(w) for the Harris slab Model with & = 0.5.
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Tt? calculr:f.te A'{w) in cylindrical geometry, Eq.107 has to be integrated for v,
stoPplng the integration at increasing distances from the singular point. Actually, in
cylindrical geometry the equation for the island evolution is given by

dw ,
T 1.66€[A"(w) — aw], (125)

where the numerical factor comes from a proper consideration of inertial effects and
the curv‘ature of the field lines and « is a constant that depends on ihe resistivity
profile ®*2, Saturation then occurs for A'(w) = aw; however, for usual experimental

profiles, & can be neglected and the saturation width is approximately given by the
solution of A'(w) = 0.

6.3. Erperimental Observations

Experimentally the islands grow quickly and only saturated islands can be normally
observed. The current density is approximately uniform inside the islands; therefore
they show up as helical current filaments at the mode rational surfaces producing a

perturbed magnetic field that can be detected outside the plasma column. Usually
the islands rotate; the rotation is either due to a global rotation of the plasma column,
caused by ambipolar fields 4°, or to kinetic effects thet produce overstable modes with
a real frequency close to the electron diamagnetic frequency 5°. The two processes
cannot be easily distinguished experimentally because they both predict rotation of
the same order of magnitude and in the same direction *. Nevertheless, the rotat-
ing perturbed field produced by the islands is observed in external pick-up coils as
magnetic fluctuations, called Mirnov oscillations !, The amplitude of the Mirnov
oscillations can be reasonably predicted by the theory of saturated islands in cylin-
drical geometry, as shown by Carreras, Waddell, and Hicks %2, The rotation of the
islands can be completely stopped by superposing on the plasma external helical fields
that resonantly interact with current inside the islands 3 or by the perturbed cur-
rent induced in the vacuum vessel end conducting structures surrounding the plasma
column %%, In both cases the experimental observations can also be explained by
the quasilinear theory of island growth. Finally, if two islands in neighboring mode
rational surfaces grow up to the point of touching each other, a strong stochastic field
configuration may result, leading to the disruption of the plasma column **. This

picture is consistent with the experimental observation of high-current disruptions in
JET 85:36,

7. Conclusion

An introduction to the theory of resistive modes in magnetized plasmas has been
presented in these lectures at the graduate student level. Inevitably, many relevant
topics have been omitted; some of them must be included in a standard course on
resistive modes and others are part of the current research in this area. A few examples
of the former are the theory of the resistive internal kink mode, kinetic effects, toroidal
effects, and forced magnetic reconnection. Examples of the latter are the theory of
locked modes, transport induced by self-sustained magnetic islands, and the dynamics
of minor and major disruptions in tokamaks. Obviously, it would be impossible to
cover all this material in four lectures. Instead, the choice has been to discuss only
the basic physics and mathematical techniques that are essential to start in this
subject. The interested student can proceed to more advanced topics beginning with
the references that have been given.
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