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The high temperature limit of the 3-graviton vertex function is studied in thermal
quantum gravity, to one loop order. The leading (T*) contributions arising from internal
gravitons are calculated and shown to be twice the ones associated with internal scalar
particles, in correspondence with the two helicity states of the graviton. The gauge in-
variance of this result follows in consequence of the Ward and Weyl identities obeyed by

the thermal loops, which are verified explicitly.

I. INTRODUCTION

There has been much work on quantum gravity at finite temperatures, which are
high compared with typical frequencies of the gravitational field. If the temperature is
well below the Planck scale, perturbation theory can be used to calculate the n-graviton
functions, with internal lines which correspond to matter in thermal equilibrium. The
functions for » = 1 and n = 2 have been stadied previously {1,2] and show a leading
T* behavior. Subsequently, the work has been extended to the n = 3 case, with a single
loop of internal scalar particles. Furthermore, it has been shown on general grounds,
based on the Ward and Weyl identities, that the partition function in a gravitational
field is determined uniquely in terms of the O(x) contributions [3]. Consequently, the
contributions from internal scalars, gluons and gravitons should be the same, up to simple

numerical factors which just count degrees of freedom.

The main purpose of this paper is to calculate the high-temperature limit of the 3-
graviton vertex function with a single loop of internal gravitons. Besides verifying the
general arguments presented in reference [3], this study of thermal quantum gravity might
offer new insights into the general structure of the metric dependence of the partition
function at high temperature. The calculation of the 3-graviton function is considerably
more complicated than that of the 3-gluon one [4]. The method we use is an extension
of that in reference [5], in which the thermal Yang-Mills n-point functions were related
to the forward-scattering amplitudes for the thermal Yang-Mills particles. This method
simplifies considerably the calculations in the present case, were we consider the forward

scattering amplitudes for the therma] gravitons in a gravitational field.

In order to illustrate the method and to derive several results which will be important
later on, we first consider in Section II the graviton self-energy function. We evaluate the
leading temperature corrections and check the Ward and Wey! identities which relate the

self-energy function to the energy-momentum tensor. In Sectior III, we derive the T
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terms in the 3-gravit6n function, for the self-interacting thermal gravitons. We verify the
Ward and Weyl identities connecting the 3- and 2-point graviton functions. The leading
coniributions have the same form as the one associated with internal scalar particles,
differing only by a factor of 2 in correspondence with the two helicities of a physical
graviton. Some mathematical details which arise during these calculations are given in

the Appendices.

II. THE GRAVITON SELF-ENERGY

We consider here the leading high-temperature corrections to the graviton sell-energy
in a space-time which is asymptotically flat. Hence, we expand the metric tensor g** in

terms of the deviation from the Minkowski metric #** as follows

Vg =G =" + ket (2.1)

where & = V327G and ¢*" denotes the graviton field. This enables us to evaluate per-
turbatively the thermal Green functions by expanding the Einstein’s Lagrangian written

in the form [6]:
L =p0 = = 1~Pcr- ~ app = =ik =hy
Lyrav = ﬁ(g Gannw = 58 G Grs — 267 85 G0 )5 F - (2.2)
It is convenient to fix the gauge by choosing:
1 =i 32
Lz = —5—2(3;:9 e (2.3)
which yields a contribution of the gravitational ghosts given by:

£§hnat = Eu[ﬂu)uaz - ﬁ(qspu,l,u _¢ppnvlapap _¢up,uﬂw\ap + qspw,,u 3)\)]6.\- (24)

The relevant Feynman rules following from the above Lagrangian deasity are summarized

in Appendix A.

The Feynman dia.gra.ms which contribute to the graviton self-energy function afe
shown in Fig. 1. These graphs represent [5] the forward scattering ampliitude of a thermal
graviton with on-shell momenta ¢. = (g,§) as indicated in Fig. 2. This amplitude must
be multiplied by the corresponding Bose distribution function of the thermal graviton and
integrated over its 3-momentum §. In this way, we can express the thermal self-energy

graviton function as:

1 ®  qdg e _,

2 = — D ——— —
Tenwn® = g5/ gr 14 37 tarum (-0)- (25)

The high-temperature limit of the forward scattering amplitude I‘?aﬂ)(py)(k,q) is gov-
erned by those parts of the Feynman integrals which are superficially most divergent. To

obtain these, one needs to expand the Feynman denominator:

11 B 26)
k2 +2¢-k 2¢-k (2¢-k) ’ )
In this case there is a “super-leading” term of the form:
9o G5 Ju G (2.7}

g-k
which cancels between the graphs of Fig. 2 and the corresponding crossed diagrams.
We are then left with the leading contributions which are functions of degree two in g¢.
Rescaling the null vector ¢, by ¢, = ¢Q.,, where @, = (1,{) with Q% = 0, these can be
expressed in terms of the graviton energy density

1 [® ¢dg _ =*T*

il = 2.8
w2Y,  etlT —1 15 (28)

Py =
From the Feynman rules developed in Appendix A, we find that the contributions to the

0 - ‘2
Forward scattering amplitude L as)tun)

(k,Q) associated with the graphs in Fig. 2. are
given respectively by:

LIPS B
= Tlaoun (k:Q) =

IOkv Qa Q.ﬂ Qy + 10k.u Qn Qﬁ Qu + ]-Okﬂ Qcc Qp Qv

k-Q k-Q k-Q
+ 10ku Qﬁ Qp Qy = 10k2 Qr.- Qﬁ Qp Qv (2.9)
k-Q (k-Q)°

- ].OQ,_, Qv Nap — IOer Qﬂ Navs
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Lfdb (k,Q):_SkaaQﬁQ.# _SkuQaQ.ﬁQv _Sk,ﬁQaQuQv

g2 (aB)uv) k- Q k-Q kE-Q i
86050, Q, , 850,050 Q, (2:10)
k@ (k- Q)2 !
1.
;;F?:m(”,,)(k,Q) = 10(%.3@»@» + Tfﬂ”Qﬂ'Qﬂ )' (2'11)

Note that equations (2.9) and (2.11) contain terms involving the Minkowski metric tensor.
However, such terms cancel out in the total sum which gives twice the contribution one

gots from 2 single loop of internal scalar particles:

1 2 kv QarQ Qp k,u QaQ Qv k Qu Q{t Qv
;;r[uﬂ)(pv)(k7Q) =2( k- Q'ﬁ -+ % Qp + ? kO
2.12
+kaQanQuhk”QanQuQu) (2.12)
k-Q (k- Q)

This result is expected from the Ward identity relating the self-energy function to the

cnergy-momentum tensor:
Tﬂ'
@k = PR T2 (i) = P R, + agkl,,)—é—’i, (2.13)

and from the invariance under Weyl transformations which requires:

_ L

af 2
q F(up)(py)(k) I (2.14)

As shown in reference [3], these relations fix uniquely the self-energy function in terms of
the energy-momentum tensor. Since the contributions te T,, from internal scalars and
gravitons are all the same [2] apart from simple numerical factors counting the degrees of

freedom, the result expressed by eq. (2.12) should be expected.

III. THE 3-GRAVITON VERTEX FUNCTION

‘We now turn to the leading temperature corrections of the 3-point graviton function.
The thermal loop diagrams which are relevant to our discussion are shown in Fig. 3.
and the corresponding forward scattering amplitudes are represented in Fig. 4. In the
high temperature limit we require large values of momenta g, = (g, ) associated with the
thermal graviton. Since the thermal particle is on shell, each Feynman denominator in

the diagrams in Fig. 4 has the form:
(2¢ -k 4+ F°)' with k=)_ kK, (3.1)

the sum being over some set of indices i. We may expand each denominator in powers
of (k*/2¢ - k), and also ihe numerators in powers of k;, /g. The first term has a denom-
inator which is quadratic in (g - k)~ !, and a numerator with the single tensor structure
Ga G5 9 Gv 9, 9o . However, these terms cancel when all graphs are added, as a consequence

of the eikonal identity:
(g k) Mg k) (g k) (g k) 4 (g k) g ks) ' =0, (3:2)

since ky + k; + k2 = 0. The next terms are down by a power of k; /g, being individually
“super-leading”. Also these turn out to cancel out by a combination of the eikenal identity

and the requirement of Bose symmetry.

With the super-leading terms out of the way, we now consider the leading contribu-
tions. To this end we take the integrand to one further term in powers of the external
momenta. Then the leading terms will become homogeneous functions of g of degree 2.
We proceed as in the previous section, rescaling g, by a factor of ¢ ¢. = ¢Q., and
integrating over q. Then the leading behavior of the 3-graviton vertex can be expressed
as:

I dil ..
Tanwnenbirkaks) = 5 | 2o lanon (ktokr k@), (3:3)
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where the graviton energy density p, {equation (‘28)) is proportional to T*. Using the
Feynman rules given in Appendix A, we perform the necessary algebra in order to find the
leading contributions to the forward scattering amplitude f‘?np)(“)(”}(kl vE2,ks,Q). The
calculation is considerably involved, requiring the use of vast algebraic manipulations. The
corresponding corrections, associated with the graphs shown in Iig. 4., can be written in
the form given in Appendix B. Here we discuss only the main features of these complex

algebraic structures.

The contributions from diagram (4a), invelving only three-graviton vertices has the
general from (see eq. B1):
B oynsteos ioke k2, @) = 400 Q5 Qu Q0 Q, Qs + BLQsQuQuQ,Q0 + (o & )
+BiQaQsQ.Q,Q, + -
+CQuQ0Q,Q0 + -+ D2QQLQ,Q, + -+

+E;2']',qu.ﬂQonJr""?'Fiz'?ﬁvaQch'i-"' ( )
3.4

+ GlnchﬁQqu +-- 4 HlﬂuﬁQ;:Qvach + oo
+ ImnﬂuQﬂQquQa 4o
+ J(naﬂr]pvaQa + )“I“ Jr(qaﬂnprin + )

+ J"{Uau’?ﬁvaQn +--904+ Jm(’?annﬁvaQa + o).

Here J, J’, J", J' are constants, A, H*, I'/ are scalars functions of ¢ and the external
momenta, B, EJ, F4, GY are vector functions of @ and the external momenta not
proportional to @, and C;ﬂ, D:;jﬁ are tensor functions containing neither @, nor Q.
The ellipses denote the addition of as many terms as are necessary to symmetrize under
{x = 3), (1« v}, (p = o) and under the permutations of (ky, o, 8), (k2. #, v),
(#3, p, ). Note that each term is a function of degree two in ) and of zero degree in the

external momenta.

The contribution from the ghost particles in Fig. (4b) is less complicated algebraically

than the previous one, since the terms proportional to the Minkowski metric n are absent

7

(see eq. B2). On the other hand, the corrections arising from graph (4c¢) give, as shown
in eq. (B3), only terms which contain explicitly the Minkowski metric 7. Finally, the
contributions associated with diagram (4d), which involves the 5-graviton coupling, have

a structure proportional to 5® 7, as can be seen from equation (B4).

However, the terms depending explicitly on the Minkowski metric cancel when all
graphs are added. The final result for the forward scattering amplitude is rather simple
and can be written in the form (cf. eq. (B5)):

Damyunyooy (F1ska 3,Q) = AQuQsQ,Q.Q,Q0 + BLQ3Q,0.0,Q, + (o = )
+B10:QsQuQ,Q0 + +ChpQuQ,Q,Q0 +-- (35)
+ D2 QsQ.Q,Q, + -,
where (J, = (l,c'j), and

o @ _Qk)l?;:z -.lzks X7 + (cyclic permutations), (3.6}

Bro__takhe  Bke Kk, -
b1 Qky - Qk3 - Q  ky -Q(ha - Q)2 (k2 -QVks - Q

Sy

b = kia by kap kas (3.9)

Bi-Qks-Q  ky-Qks-Q
The other terms in (3.5) containing the coefficients B, ¢ and DY can be obtained

respectively from (3.7), (3.8) and (3.9) by symmetry.

The important point about (3.5) is that, under Lorentz transformations in the asymp-
totic Minkowski space, it is a covariant function of the null vector @,. We remark that
equation (3.5) is a homogeneous expression of @ of degree 2 and of zero degree in the
external momenta. It gives precisely twice the contribution arising from a single loop of

internal sealar particles.

In order to understand this result, we now consider the Ward identity which follows as

a consequence of the invariance under general coordinate transformations. This relation,
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which connects the 3-graviton vertex (egs. {3.3) and (3.5)) to the self energy function

{eqs. (2.5), (2.8) and (2.12)), is verified explicitly by:

ai B o & o« o
292k — P i) I aoymoripey (Brokz ks ) =[0° (65 k1, + 6% k1 ) + b5 80 ka"]r(”aﬁ)(w)(ka)

+ (k2, p, v) o (ks, p, o).
(3.10)

Since the thermal corrections from the ghost-ghost-graviton vertex functions are sub-
leading [3], these terms do not contribute to Eq. (3.10). Consequently, the Ward identity
has the same form as in a physical gauge, indicating that the leading T* contributions
are gauge independent. This property can be ascertained by considering also the Weyl
invariance of the theory, which reflects its invariance under scale transformations. From

this, we verify the trace identity:

af 13 - 2 2
7 Tlanyueytoo) Frokasks) = Ty o0y (B2) + Tp0yguny (K3). (3.11)

It has been argued in [3] that the use of the Ward and Weyl identities, together with
the structure indicated by equation (3.5), are sufficient to fix uniquely the 3-point vertex
in terms of the self-energy function. As we have seen, the same identities determine the
2-point function in terms of the energy-momentum tensor T#". Hence, these relations are

sufficient to determine uniquely the 3-point graviton vertex in terms of T#*.

It is well known [7] that in gauge theories, the thermal corrections to the energy-
momentum tensor should be gauge invariant guantities. The contributions to T#* from
internal scalars and gravitons are the same, up Yo a factor of 2 which counts the gravi-
ton degrees of freedom. From the above arguments, it then follows that the leading 7
contributions to the 3-graviton vertex function, from a single loop of internal gravitons,
must be gauge invariant. Furthermore, these corrections should be twice the ones arising
from an internal loop of scalar particles, as expected from the two helicity states of the

graviton.
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APPENDIX A

In this appendix we derive the Feynman rules which are relevant for the perturbative

study of quantum gravity. To this end, we write the total Lagrangian density obtained

- from the sum of (2.2), (2.3) and (2.4) as:

L=3, K7Ly + Lonosts (A.1)

j=2
where the terms in the series are given by increasing powers of the graviton field defined

in eqg. (2.1). Noticing that:
g.uu = My ™ K'ﬂépu + K2¢pa¢nu - Ead’;aa ¢uﬂ¢ﬂy + 0(54 ): (A-2)

and inverting the tensor which multiplies ¢,54,., we find that the graviton propagator

in momentum §pace is giVEI] b}‘
L(aﬁ)(ﬂv] kE o %2 Tap M8y f NavTau Dap Puv - A3

In the same way, the quadratic part in the ghost field leads to the ghost propagator

(2] T?ﬂ!
DEEt (k) = . L (4.4)

The ghosti-ghost-graviton vertex can be easily derived from eq. (2.4). We obtain in

momentum space that:

o K
I‘fzﬂ)zp)(u)(kl ,k2,k3) = 'é"[’?uu(kzaka,e + k3ak2_a) - (napkl_ﬂ + ’?ﬂ#kla)k2v]' (A.5}

The graviton-graviton couplings in momentum space represent an algebraic problem for
which we have used the computer program Mathematica. We find for these couplings the

following expressions:
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The three graviton coupling

4 3
7 X lassuryooy (k1 ks ko) =

[ —4ks, ks, ap M50 — k2 k3 Nap Mso Buw
+ 2k - ko Maw Moo Tup + 2k~ Fa Nau fpp Moo
~ 2Rz Rag up Moo — bz - s Top Mav Moo
+ ky o k3g Muw Moo
+ (symmetrization under (@ «» 3), (g < ), (p = @)} ]

+ (permutations Of (kl’a’ﬁ)a (k‘z)ﬂ'vy)s (k;;,p,tf) )

The four graviton coupling

4 4
= X Tenywnroarnn il ke ka,ky) =

[ —2ks, kay tlao er Mo + kay Kay Tep Maa r
= kg Ea Hap Moy Mar Muo — 4R35 Rag Tap Bow Ther
+ 2k5 - k4 Moo Moy Mg Mar — K3 * K4 Bap Npo T Thor
+ 2ks k4 Moy Moa Nue Mor + Ka, Ray Nos e Moo
—ka k1 Tap Moy Tur Moo — 2K, kay Nap T Dor
+ 2k - k4 Nop Mpo Tap Nor
+ (symmetrization under (a & f), (p o ¥), (p o), (A=71)) |

+ (permutations of (k,a,8), (ka,1,v), (ka,p.0), (s, 2,7) ).

11

(A.6)

(A7)

The five graviton coupling
4 s
7 XLiaaytur ooy anyirsy (k1o Rz s b a B} =
{ —2kg, ko Tou Tr Mo Myx + kap s g Mar Moa Tow Tyu
.+ Kip Rsg oy Nor My Mw — 4Ry K5y Ny Mgy 5e
— 2k, ks e Doy Tor M — 2K4, By Nar Tlos T Do
— ks Bs Rap Bor o Myo Mv + 2Fs - Fs Nap Np, N Thyy Mo
+ 2k - ks Noy Mor Mo Mo Mo + Kap Bs g Tun Noy Tow Tar
~ ks < ks Yap 5o Wso Ty Tar + 2Fa ks Nap Nap Mo Tya or
T+ 28a K Nap Upy Moo Mo Tor — Ka * s Tap Hoy Tsv Mra Tor
— ks - ks Tap Tap Moy Taw Tor
+ (symmetrization under (& & B), (g = v), (p ), (A7), (Y= 8) ]

+ (permutations of (ki e, 0), (ka,p,v), (ka,p,0), (a2, 7), (Rs,7,6) ).
(4.8)

As usual, we have energy-momentum conservation at the vertices, where all momenta are

defined to be inwards.

APPENDIX B

Here we present the complete expressions for the contributions to the forward scatter-
ing amplitude which are associated with the diagrams in Fig. 4. From the Feynman rules
developed in Appendix A we abtain, after a vast algebraic manipulation, the following

results:
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1. '
da —
e Loyt soo) (F1oke ks, Q) =

(= Thighio Qe Q@ Ak, ki, QaQp Qe Thi ko Qa Qs @ Qv

ki -Qky -0 by -QFke-Q ki Qky-Q
N 12k, k2 Qo Qo Q0 Q0 N Bk k2, Qu Qs Qv Qs | 8k, k2 Q5 Qu @0 Qs
ky -Qk: - Q ky -Qky-Q ky -Qky - @
12k k2, Qp Qu Qv Qo 5k, k1 Qo @Qp Qs v Qo +5k? k1,00 Qs QuQ0 Qo
B Qks-Q kl'Q(kz'Q)z (kl‘Q}2k2'Q
Sk'g kZan Qﬂ QF Qv Qv 45'&% kZpQﬂ Q.ﬁ Q.u Q. Qu _ 7"72” kZVQu Q_B Qp Qa
ky - Q (ks - Q) (ky Q)Y k2 -Q k- Qke €
_SklykﬂaQﬂQvaQG+8k1ak2pQ,ﬂQvach 5k by Qa Qs Q0 Q, Qs
ky -Qky-0Q ky - Q ke Q By -Q (ks - Q)
5kiky, Qa Qs @ @oQ0 ThiakipQu@u@oQr 5k, k5 Q50,00 € Qo
T R Q ki QkQ ku-Q (k2 QY
5kfklaQﬁQuQvaQo V5k:QuQﬁQuQquQa +5kfk§QaQﬁQuQquQa
(k1 - Q) ke -0 2k - Q (ks - Q)P 2(k - Q) (k2 - Q)
5k QuQp @u @ @ Qo
2k Q)P k- Q
5k, Qu Qv Qo Nap + 281, Q, Q0 Qo s + 2k, QG Qv Qs Nap
k- @Q ky - Q k- Q
_ 5k, Qu @y Qo Map +3kpovaQa Nap +2k2uQvachna,ﬂ
ky-@Q k@ ky - Q
v5k2uQquQunuﬂ +kauQquQa Nap +5k§QprQan Nup
ky - Q (k.- Q) 2(ky - Q)
_kvaﬂ Qp Qs Tap Mkonﬁ Qan Doy 4 by, Qs Qan Nap
ko-Q k@ ky - Q@
n kg G Qp Qo Tap _ kg Q, @, Qo Tau _kzp Q. Qo Qo Moy
k- Q kz'Q k’z'Q
4k1‘k2Qa & Qon Nap k‘poﬁQon Nav _kz,,Q,erQa Nov
TR Gk Q T RG ko Q
k-':!p Q.B Q.p Qo Mo klp Q,u Qp Qs Naw ~kl,5 Qu Qp Qo Naw
TTTha 7T m-Q B Q
kg Gy @, @o Naw dky -k Qp Q. Qs Qo Mo _kzaQ.ﬁ Qu @y Map
- k2 - Q ki -Qks - Q ke Q
_k2o' Q.B Q.u Q. Nap _ kla Qp Qu Qe Tap " kza Q,u Qv ch Nap
kz'Q kE -qQ kz‘Q
4kf Qﬂ Qn Qv Qo Nap 4k5 'kz Q{J Q;: Qv Qa N p _ kﬂp QI’ Ql‘ QV Moo
T R Q@ k- QR Q k-Q
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k2,05 QuQu e k15 QuQe Qo Mer | Kp Qu G Qp s

k-G R@ | kG
’ 4"‘7? Q,B Q.u Q. Qp Do o 4ky ky QﬁQ Qv Qo Moo
- lesz - kl‘Qgg‘Qp +2Qanno#nﬂv
+ kl 'QQ# Qo Nap Npw + k.l QQH Qd Nap TNop + kl 'QQV Qp Nap Moo
k- Q ke - Q k2 -
— ky 'QQ’;?&WEV fpa +6Q,u Q. Tap Toe 4k Qi:@Qﬂ Top 8o
_5k1an Q_B Qa v + 2k1ch{ Qﬂ Qa Th:v 2k2an Q,B Qo ’?_uu
ky Q kz'Q k-@Q
“5"’2an Qs Qo v _5k1aQﬁ Qs Qo Muw + 2k, Qs Qs Qs v
ky -Q k- Q kz'Q
+ 3k2a Qﬂ Q.P Qc v + 5k¥ Qor Q.ﬂ Q.P Qa Nuv + kg Qu Qﬁ QP Qa’ Nuv
k- Q 2(ky - Q) (k2 -Q)*
£0, 0y - 20O Gt e e 0000
_2k1 'QQ,B Qp Naa Tuw _kz'QQﬁ prfaa Nuy _klaQL‘l Q,BQH Tup
k2 - Q k -Q L
_kluQaQﬁ Qv Mo +k1anQﬂ Qo ke Qs Qx Mo
ke - Q k- Q ks - Q
_ 4I"'l 'kZQn Q,B Qu Qtr ) _ 4;‘:% Qoz Qﬁ Qv Qa Tup _ k1 'QQv Qo Nap Tup
k- Qkr - kb -Qk-Q k- Q
_ 2k2 'QQV Qc Nap Nup + 2k2 'QQﬂ QU Nav Tup + 2k, 'QQﬂ Qv Nao Tup
k- Q k- @Q ko -Q
+2k2'QQﬂQu’7&aﬂpp_kpouQ.BQunﬂu _kpoquQrﬂua
k- @ k-Q ky-Q
+ ki, Qo Qs Qp Muo _ ka, Qa Qs Qp flua 4k k3 Qo Qs Qv Q) Tyea
k- Q k2 - Q) by -Qk: - @
_4k§ Qo @5 Qv Qs Tuo _ k1 -QQu Qs Map Mo __2}'72 -G @ Q) Nap Mo
by -Qk2-Q ko - Q ky -Q
2k, -QQp Qv Nup Mua +2k2'QQﬂQv Nap Muo +2k2'QQﬁ Qo Nap Wre
[ ) k- Q
+6Qa Q5 Mup Mo — 2k QC;::QC; Te e _ 3"‘#@’;’1?3‘2” e
2k2,uQa @ @y Moa _ 5k2p Qo @5 Qv Mo _ 5k, s Qu Qe Mo
k- Q ke - Q k- @Q
+2klo¢ Qs Qu Qv Moo _3k2ch.8 Qs Qv Moo 5kfQa Qs Qu Qs Moo
ky - Q ks - Q 2{k. - Q)
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5ki Qa Qs Qu Qv Moo k1 - QQp Qo Tan Toe

2k Qp o TTTT
_k2'QQﬂ Qu Nap Tpa _kl'QQﬂQ;« Nav Npa _k2'QQﬁQu’7&v"7M
k -Q ky - @ k- Q

+

(B.1)
+2Qa @8 Nuy Mo
+ {symmetrization under (o «+ 3), (g« v), (p + )]
+[(kry o B) o (kay oo N+ [(kay o #) = (kay s 0],
1 3k —_
S ltamuipe bk ks, Q) =
ki ko Qe Qe Qu @ 10k1, b2, Qe @5 Q0 Qv Fo, ka0 Qa Q5 Qu Q)
= emae ki Qkg -G ke QksQ
10k, ks Qo Qp Qv Qo Bz b, Qo Qp Qu Qo 6k b1, Qs Qu Qu Qo
B ki~ Qky - Q ki Qs Q y - Qka e Q
10kio ke, Qo Qu@ Qo 4K,k QuQsQu Qv Qo 4k 51,0405 0. Q. Qs
B ki Qs -Q By Q k- Q) (ki Q) ks - Q
1K k2 Qu Qs Q@ Qy 4k k2, Qe Q@@ Qo _ k2,82, 0200 0, Qe
- ky - Q (ks - Q)2 (ky Q)2 ky - Q ky-Qk2 - Q
6hioke, Qs Qv Qo Qo 4K 5, Qa Q5 Q0 Q, Q0 | 41 £, Q0 Q5 Q. Q, Qs
B by Qks - Q ki Q (k2 Q) (k1 QP k- Q
kia klﬂ Qu Qv Qp Qo 4k1cr k.f, Q.B Qu Q. Qg Qo _ 4k? k1 o Qﬁ Q.ﬂ Q. Qp Qs
k- Qk-Q ki Q (ke -Q) k- Qi ks - Q
258 Qa Q5 Q, Qv Q, Qs 2K KEQu Q0 Q0 @, Qo 2k Q@504 Q. @, Qo
k- Q (ko - Q) (k- QY (k- Q) (k- Q¥ ky - Q
+ (symmetrization under (@ « 2), (p -+ v), (p & o)) ]
+ [{ky, o, 8) = (ks, p, 0‘)] + [(kay py v) & (ks, p, a)l, (5.2)
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1.
Loy (kiska ks, Q) =

4klp Qu Qe Q. Nap + 4kly Q. Qp Qe Nap _ 2k% Qu Q. Qp Qs Tap

‘E’[ kl'Q kl'Q (h'Q)Z
10k, Q. Y My
—8Q, Qo tay T5s —8Qu Qu Nap 50 + ”Qk; ?50 T
10k1a @5 Qo Qo Mav 551 Qa Qs Q, Qo 0y

_3 o fo ¥
b -Q k- Q) Qr Qo Nop T
- Qﬂ Qa Nap Muv — Q,B Qp Nae Npv “-2Qv Qa Nap Tup

+ 2Q,ﬁ Qu Nav Tup + 2Q,B Qu Tae Qup — 2Qu Qp Nap Muo

+ 2Qﬂ Qv no:p Thm- + 2Q,ﬁ Qa na_u Twp — 20Qa Qﬁ ’h‘.ﬂ Mo

+ lokl,u Qa Qﬁ Qv oo lﬁkla Q.ﬂ Qy QV Tpo _ 5k12 Qa Q,ﬁ Q,u Qv Toa
k- @ k- Q (k1 -Q)?
- 3Q_u Qv 77[:,6 Moo — Q,ﬂ Qv ﬂmp Npa — Qﬁ Q_u Rav Moo

—2Qa Qs Ny Moo
+ (symmetrization under (a © B), (# «» »), (p ++ 0)) ]

+ [ciclic permutations of (k1, a, B) (ks, p, v} and (ks, p, o],

1.

S llanuneer Frake, ks, Q) =

+ QQP Qa Naw Mpp + ng (o) Nap Tgv + QQ;.« Q. Nae T8y
+ QQH Qv Hap Npe + 3Qp Qv Nag Tuw + QQa Q_B Mue Tup

+ 9Qa Qﬁ Nup Moo + 3Q;: Qw Hep Toa + 3Qa QB v Moo s

(B.3)

(B-4)

The sum of these contributions gives, with the help of the eikonal identity (3.2), the

following result:

16



1 o-a _
5 Tamrunsoer (1o k2 Ko, Q) =

I .
2[ klkaU Qa Q.B Qp Qu + klp ki!ﬁ Qu Qﬁ QV Qo _ k!kaan Q,G Qv Qo
ky -Qky -G ky - Qky-Q by -Qky-Q
Fiaki,Qp@Qu@ Qo  hiak:, QpQu Qv Qo by, ki Qe Qs @y @y Qo
T ki Qk-Q ko QkrQ 2k; Q (ks - Q)?
ik ,QaQp Gy Qv Qs + B3 ke, Qo Qp @ @ Qo 1k, Q. Qs Qu Q. Qs
20k, Q) k2 Q 2k - Q (ks -Q)? 2k QY k- Q
Floky, Q5 Q. Q,Qc  klk, Qe Qs Q0 Qp Lo _kf ke, Qa Qs @ Q, Qs (B.3)
ky - Gky - Q 2k, - Q (k- Q) 2(k, QP k-0
kla kg Q,ﬁ Q_u Qu Qp Qc + k’? klaQﬁ Q,u Qv Q,o Qa _ k;Qa Q,G Q,u Qv Q,ch
T 2k QR - QP 20k Q)Y ks - Q 1k - Q (k2 - Q)
kf k22 Qor Q.B Qp Qv Qp Qo _ k; Qa Q,ﬂ QH Qu Qp Qa
d(ky - Q)2 (ky - Q) 4(k; QP k- €

+ (symmetrization under (o & 8), (g & »), (pea))]
+ 2[Ry o, B) & (ka, py oY+ 2{(ka, my v) & (s, p, O]
Using this result, together with the eikonal identity, we arrive after a straightforward

calculation at the expression given by equation (3.5).
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FIGURE CAPTIONS

- kz
Fig.1 - Lowest order contributions to the thermal graviton self-energy. Wavy lines denote
Pt
gravitons and dashed lines represent ghost particles. 4 \“
’
B \
Fig.2 — The forward scattering diagrams corresponding to Fig. 1. Crossed graphs with /!’ N
g

k — —k are to be understood.

Fig.3 ~ Feynman diagrams contributing to the thermal 3-graviton vertex function. Graphs
obtained by permutations of external gravitons in (c) are to be understood. Kk
Fig.{ - Examples of forward scattering graphs connected with Fig. 3. Diagrams obtained by

permutations of external gravitons should be understood.
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