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Abstract

The Deformed Gaussian Orthogonal Ensemble introduced earlier is here develéped for
large dimensional matrices. Both the spacing and eigenvector distributions are studied and
compared to other ones suggested for the chaos-order transition problem. The concept of
a universal lower entropy with respect to the Gaussian Orthogonal Ensemble entropy is

proved very useful.
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1t is expected that for systems whose classical motion is neither regular nor fully chaotic,
the statistical behaviour is intermediate between the Poisson and the Gaussian Orthogonal
Ensemble {GOE) limits}—16)_ Several authors have suggested empirical functional forms
for the level spacing distributions. We cite here the Brody distributionll), the Berry-
Robnik distribution®) and the Robnik distribution 6). What one is usually seeking are
intermediate distributions that exhibit a degree of universality close to that of their Poisson
and Wigner (GOE) limits17). Further, the distribution of eigenvectors of a system that is
fully chaotic (GOE) is known to be of the Porter-Thomas form 18) 1t is therefore hope&
that in the intermediate case the spacing distribution alluded to above dictates to some
extent the form of the eigenvector distribution. This way one would have a fully universal
description of systems intermediate between Chaos and order.

Several of the above questions have been discussed in the past. In particular we cite
the work of Alhassid and Collaborators 19_22), Lenz and Ha,a.keT"'S), and Guhr and
Weidenmiilier 23). Our aim in the present work is to develop a general framework through
which all of the above questions can be addressed. We shall shown that it is possible
to derive a joint distribution for the spacings and eigenvectors valid in the intermediate
regime. From this distribution, the spacing distribution is obtained by interating out the
eigenvectors and similarly for the eigenvector distribution. The cases of 2 x 2 and 3 x 3
matrices have already been worked out analytically 24-25) Here we present a thorough
numerical study for large dimentional matrices.

Qur theory is based on the maximum entropy principle, which we briefly outline in the
following,.

We define the entropy associated with the distribution P(H) of the Hamitonian en-
semble H

$= _f dH P(H) In P(H) (1)



g We now maximize § subject to the usual constraints of the GOE.

(TrHY) = f dH P(H)Tr H? = 4 ()
(=1, (3

and obtain
Poon(H) = expl—o — 1 — ap Tr B (4)
aFLJZ:}—) . exp(-de—1)=2F (2%0)_“:“ ()

Denoting the eigenvalues by E,, By, ... Ey and amplitudes Ci, Cy, - .., Cy, one can easily

obtain the joint distribution function
P(Ey, Ea .. EniCh Cyy...Cn) = P (B, Ew) P (G, Cn) (6)
from which the spacing distribution P(s) and amplitude (etgenvector) distribution P(c)

can be derived. When N — oo, we obtain the Wigner distribution

2

R(o) = 5550 |5 3] ™

and the Porter-Thomas distribution
N2 N _,
_(N _y 8
Fer(e) (2n) exp( 2 C) &)

We should emphasize that the joint distribution function Eq.(8), implies no correlations
between the E - and ¢ - distributions. This is a consequence of the GOE, namely P{H) is
invariant under arbitrary rotation of the basis.

Before turning our attention to the intermediate case, it is helpful to mention that

constraint (2) gives rise to the Gaussian distribution (4) with the second moment
1
{Hi Hu) = (6 850+ G5 50) 71— (9
o

3

with eap independent of the label. Further, the GOE entropy can be straightforwardly

derived from (1), (4) and (5). We find for the entropy per degree of freedom (there are

N(N +1)/2 degrees of freedom for our symmetric real matrices)

_1 s -1
seon = 5 (1+ln2ao) +(N+ 1) In2 (10)

Thus simple universal features of the intermediate distribution we are seeking are 1) a
second moment that depends on the label, and 2) an entropy per degree of freedom that
is smaller than sgop, Eq.(10). .
Within the maximum entropy principle, an intermediate distribution can be defined
through the addition of more constraints. Here we use the simplest possible one that
allows @y to depend on the label. If we devide the random matrix H into four blocks and

introduce the following notation (see Fig. 1)

H=PHP+QHQ+PHQ+QHP
(11)

P=M li><i]

withP+Q=1,P’=P,Q% =@, PQ = QP =0 then the desired constraint reads

(Tt PHQHP) =v (12)

We now maximize § subject to the GOE constraints (2) and (3) and the new one (12},
to obtain the intermediate distribution. By fixing the value of {Tr (PHQHF)), we are

deforming the GOE. Of course the system still maintains full axial symmetry about the

P-“direction” the new ensemble, which we called the Deformed Gaussian Orthogonal En-

semble (DGOE) in Ref.20) is invariant under transformation that leaves vectors in P

unchanged. Further understanding of the ensemble can be gained by spelling out the

second moment

1

(Hij Hie} = (8 50 + bie 852) praney T

(13)



clearly showing the label dependence mentioned above.
The DCOE distributions we obtain has the general form24)

M(N—M

PDGOE(H) = PGOE(H) exp[—ﬁ T!‘(PHQHP)] [1 -+ Eﬁ‘;] ’ (14)

The entropy per degree of freedom of the DGOE is easily obtained (more precisely one

speaks of the information content, I, of DGOE relative to the GOE26—27)

-M
SPGOE = SGOE — y]\r((—ljv“m)' In (1 + E’B_a_) (15)

ar
M(N = M)

B
I = sgog — SpaoE = m (1 + e (15")

Eq.(15) clearly shows that a system described by the DGOE is less chaotic, since the
difference spgor—sgoE < 0. Said differently, the information content I is positive. Further,
the degree of order in the DGOE is measured by both M, the dimention of the symmetric
non-diagonal block matrix, and 8. For very large matrices (N — oc), the DGOE is not
much different from the GOE if M is taken to be small. For M comparable to N, namely

N voo= M = n < 1 finite, we obtain a saturation limit for I,

I'=n{n—-1)n (1 + *2"%) (16)

Our detailed numerical caleulation described below corroborates our discussion above,
namely that for fixed value of 8/a, the amplitude and the spacing distributions saturate
with respect to the dimension of the matrix. This is the universal feature we are seeking.

Before presenting the numerical results we mention that in Ref.24) we have worked out

fully analyticatly the cases of 2 x 2 and 3 % 3 matrices, The 2 X 2 case coincides with the

results of Ref.12b) and with Alhassid and Levine20). 1t differs, however, from that of Lenz
and HaakeB) as these authors devise an interpolating formula; it is guaranteed that the
spacing distribution is Poissonian when 8 = co and Wigner when 3 = 0. There is no way,
however, to trace this transition to special characteristes of the ensemble of matrices. The
3x3case M =11I= % In(1+ %)) involves a complicated double integral (see Ref.24)

for details). However two limiting cases are worth citing here. The § — oo limit

P(s) = 2\/::78[_ {1 + ‘/?s e /o ety [\/ﬁ} exp (—2?‘”32) {17)

Ple) = %[35(c)+5(c—1)+6(c+1)} (18) -

and the small spacing limit s — 0
g1
P(s) = [0.86 [1 + ﬂ} + 0.64} s (19)

The B — oo limit corresponds to the fully regular case, and Eq.(17) teaches us that
for small dimension matrices, the regular case, though obviously with no level repulsion,
is far from being Poissonian (exponential). The amplitude distribution, Eq.(18) contains
three delta functions (¥ = 3), and is clearly not a Porter-Thomas (Gaussian). All of
the above is expected for small matrices. The interesting conclusion from this exercise
rests on Eq.(19), which clearly shows that for increasing 8, P(s) goes as 0.86 %lﬁ and
so there is always level repulsion (see, however Berry and Robnik 5) and in accordance
with us, Robnikﬁ)). The level repulsion goes away when £ is rigorously set equal to co.
This, when generalized to larger matrices indicates that the § — co limit must correspond
to two decoupled GOES and 8 — 0 to the case of two fully mixed GOE’s (and thus a
single doubly larger GOE). In fact it can be shown that our DGOE can be reformulated in

such a way that the quantity iz = A acts as a coupling constant in a description

2o



invelving the following Hamiltonian

H(N) (PHgP + QHoP) + MPHgQ + QHGP) {(20)

Ho+ AV (21)

i

) teking the values from 0(§ = co), which is the regular case, to 1 (8 = 0), which is the
fully chaotic case {H{} = 1) = Hg). Note that PHgP, QHg(Q, PHgQ and QHgP are all
random matrices.

Several authors have addressed the problem of chaos-order transition using the decom-
position (21) for H. In particular we mention Guhr and Weidenm{iller%), who {reat the
problem of isospin mixing in compound nuclear reactions. There is also the work of Lenz
and Haake? —8) who consider a more general case of Hy and V belonging to different en-
sembles (e.g. Ho: GOE, V: GUE). Alhassid and Levine!®) considered the same problem
using Dyson’s random wotk formulation and they obtained the s- and e-distributions for
the 2 x 2 matrices case. The way we formulate the chaocs-order transition, through the
DGOE, Eq. (14), allows a realistic large dimensional numerical study of both the spacing
and the eigenvector distributions. Before proceeding we mention that for large matrix

Hamiltonians Hy and V, the DGOE information content, I, is given by (see Eq. (15))
I=sy, —sp=2n(1-n}In(1/h) . (22)

For A = 0, I is infinitely positive. Eq. {22) is an interesting way to quantitatively measure
ho::'rl more information is contained in H(A) with respect to Hg.

We have considered ensemble of matrices of varying dimensions pertaining to the DGOE
as described before. The spacing distributions for 8 = 10% is shown in figure 2 for
N = 100,400 and 800. We toock % = % We see clearly that as N increases the

distribution becomes independent on N as our entropy argument based on Eq. (16) tell

us. We next turn to the variation of the distribution for large encugh N (IV = 800) with

T

#. This is shown in Fig. 3. Also shown in the figure are the corresponding Dyson-
Mehta Ag distributions28). The gradual shift of the maximum from the Wigner one
towards small s is gradual. At very large values of # (small X}, the distribution is not
exactly Poissonian simply because though repulsion is gone, there is still level repulsion in
the diagonal PHP, @HQ block matrix distributions. rIn this respect, we are in complete '
agreement with Guhr and Weidenmuller 23). Note that the Az behaviour saturates at
large 3 below the Poisson value.

We next turn to the eigenvector distribution eigenvector distribution. We plot in fig. 3¢
P(y) vs. In(y/{y));y = c*. We show the histogram of our numerical dizgonalization, the
Porter-Thomas distribution (dashed curve) and the xz—d.istribut.;ion suggested by Alhassid
and Levine 19),

Puly)

[L]m Vi explovy/2)
2(y} I(v/2) (23)

¥ =
where v is a parameter that measures the number of degrees of freedom. When v = 1,
one recovers the PT distribution. From the figure, we see clearly, that when constraining
both the spacing and the amplitude distribution through the DGOE, the resulting P(y) |
deviates appreciably from Eq. (23), for large values of 3 (small A). |

The value of v that best fits the “data” is determined by inverting the equa.tionlg)

{ln y/(¥)) = ¥ (#/2) —In(v/2) , (24)

AWhere 1(z) is the digamma function. The quantity (Iny) which is constructed from the
“data” is plotted in Fig. (4) for several values of N(M = -’g—) vs n/N where n denotes
the label of the eigenvector coefficient |E) = T, C%|n). We see a great of amount of
fluctuation that is smoothed out when averaging over an ensemble of matrices (the curve
for N = 400). We verified that the ensemble average is close to the n-average. The larger

dimentional cases (N = 600 and 800) are seen to fluctuate a lot and their average, needed

8 .



to obtain v above, was found by the simple n-average mentioned above. We notice from
the figure a certain degree of saturation attained for N = 600. The average for N = 600
is close to that for N = 800.

We should mention that the amplitude distribution for very large 3 shown in figure 3¢
which deviates appreciably from the x*-distribution, Eq. (23}, corresponds to a situation
of two almost completely decoupled GOE'S (PHP and QHQ), since A ~ 0.0, For such a
case one would expect to better account for the “data” (histogram) by using a sum of two

x-distributions, one for PH P and the other for @HQ, namely

Py =aP, (1) +bF.(y)
(25)

a+b=1
The surprisal procedure used by Alhassid and Levine can be applied for this more gen-
eral case to find a,b,v and g The result of our calculation is shown in Fig. 5. For
8 = 10" o (Fig. 52), we find o = 0.25, b = 0.75, v = 0.96 and p = 0.72, whereas for
§ = 5% 10"« (Fig. 5b), we find a = 0.23, b=0.77, » = 0.98 and p = 0.54. The values of
these  parameter  satisfy  the  gemeral  surprisal consistancy - condition
o 5/t = (#(5) -1 2) +3 (v5) -1 ).

In conclusion, we have presented a detailed numerical study of the Deformed Gaussian
Orthogonal Ensemble?4) for large matrices. Our guiding principle has been the dimension-
independence of the reduction in the entropy with respect to that of the GOE. The general
conclusions drawn from our study is that it is possible to discuss both the spacing distri-
bution and amplitude distribution using the same ensemble appropriates for intermediate
situation between chaos and order. Our theory should be useful for the study of nuclear
statistics, symmetry breaking, as well as the general question of chaos-order transition.

We are presently applying our theory to the isospin mixing problem considered in Ref. 23.
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FIGURE CAPTIONS

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. &.

The block structure of the Hamiltonian. See text for details.

The spacing distribution of the DGOE with 8 = 10% for different dimensions

of PHP is %N.

The spacing distribution P(s), Fig. 3a, spectral rigidity As(L), Fig. 3b, and the
intensity distribution P(y), Fig. 3¢ for several values of 3. The dimension of the

Hamiltonian matrix is 700 and that of PHP is 350.

The surprisal, {lny/{y)) v.s. n/N, where n represents the label of the eigenvector
coefficient (see text for details). The dashed curve, N = 100, the full curve,
N = 400 and the dotted curve N = 800. The dashed-dotted curve represents

the Porter-Thomas result.

The intensity distribution for N = 700 and § = 10%« (5a) and 5 x 10%a (5b).

The full curve is obtained from Eq. 25, see text for details.
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