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Abstract

Analysis of isospin symmetry breaking in the case of pure speciral
observables is made within the recently developed Deformed (Gaussian
Orthogonal Ensemble (DGOE). The low energy spectram of Z5Al re-
cently studied by Mitchell et al is used io perform the analysis. Both
the spacing and eigenvector distributions are considered. 'The valne
of the Counlomb matrix elements that causes the isospin breaking is
extracted and found to be consistent with other measurement.

Recently, the influence of isospin mixing on the spectral observables in the
low energy spectrum of 2°Al has been experimentally studied by Mitchell et aj
{1]. The data has been subsequenily analysed by Guhr and Weidenmuller [2]
using a random matrix model through which the root mean square Coulomb
matrix element was deduced and found consistent with other data. - The

*Superted in part by the CNPQ

mode] used by Ref.2 involves two conpled (Gaussian Orthogonal Ensemble
(GOE), one for the T=0 state (all together 75 of them) and the cther for the
T=1 states (25 states).

In the present paper we develop a different model to study isospin mixing
and apply it o the data of Ref.1. Our model is based on the recently devel-
oped Deformed Gaussian Orthogonal Ensemble (DGQE) [3, 4]. The DGOE
is constructed using the maximum entropy principle applied to generic ran-
dom matrices subjecied io appropriate constraints, We show that our theory
can easily account for the data of Ref.1 in so far the level spacing distxibution
and A; statistic are concerned. We also suggest thai a more stringent test of -
the nature of the physics contained in the data can be supplied through the
concomitant study of the transition amplitude distribution, which is not nec-
essarily of the Porter-Thomas form. The DGOE supplies a means to study
all statistical features in a straight forward way.

The starting point of our discussion is the maximum entropy principle
stated below

S —Ao<1>—<TrH* > ] =0 (1)

where

5= f dHP(H)énP(H)

<1>=deP(E)=1

)
<Trm>=fd%2=po

The distribution P(H) of the Hamiltonian ensemble H is the obtained
from (1)

P(H)gog = exp[—do — 1 — agTrH?, (2)
oy = Nﬁ:l and ezp{—py — 1) = 2=,-‘—V-(2-+°)—-(,—'Ll'" T

Eq. (2) is the Gaussian Orthogonal Ensemble GOE which describes very well
nuclear spectra when all symmetries are obeyed. The dimension of H above
is taken to be N, '



To discuss isospin mixing we introduce the Deformed Gaussian Orthogo-
nal Ensemnble DGOE which is discussed in Ref. 3-4. The idea is to divide H
into 4 block matrices vis

H=PHP+QHQ+ PHQ + QHP (3)

M
P=3"|i><i|,@g=1-P
=1

P=PQ'=QPQ=QP=0

The matrix PHP represents, .g, the T = 0 states while QHQ, the T=1
states. The non-diagonal block matrix PHQ accounts for the isospin mixing.
A constraint is now imposed on the quantity Tr PHQHP, namely.

<TrPHQHP >= vy 4

Calling the Lagrange multiplier associated with (4 btai
Eatiry {4), 8, we obtain for P(H)

Foaos(H) = Foos(H)ecpl~ATrPHQHFI(1 + Ly*5% ()

where M and N-M are the dimensions of the symmetric block matrices PEP
and QHQ, respectively. It is easy to show that the above procedure is equiv-

Elent to the one followed by Guhr and Weidenmuller (GW) [2], who write for

H=Hy+ ) (6)

where Hy is just PHP + QHQ, and AHy, represents the symmetry-breaking
Coulomb interaction (and thus AH: = PHQ + QHP). Guhr and Weiden-
muiler treat H in the following way. For a fixed value of A they create an
ensemble of interacting spectra with the help of random number generator.
They then calculate the spacing distribution P(s) and the spectral rigidity
i&3(L} of the ensemble. The equivalence of our treatment with that of GW
15 made firm by the observation that A is just [3]

r=(1 +5%)"T‘ (")

We note here that o measures the second moments of PHP and QHQ
whereas # measures the second moment of QHP via

1
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We further note that 1+ -2%- measures the information content, I, of the
DGOE relative to the GOE vis
M(N - M)
NN +1)
and thus, for large N and M/N=n |

< Hijl >= (8irbie + 65

I =2n{1— n)én(1/)) (10)

Note that ) of Eq.(6) haa the range of values 6 < A < 1 ; A = 0 representing
iwo decouped GOE'S , A = 1 representing one GOE.

From onr DGOE one can calculate the spacing distribution P(s} as well as
the amplitnde distribution P(c), both of which are affecied by the constraint
(4). It is easy to show that for § = 0, (A = 1), our ensemble reduces to
GOE , P(s) becomes the Wigner distribntion and P{c?) the Porter-Thomas
distribution. For larger values of # (weaker coupling), the DGOE supplies
distributions that deviates appreciably from the GOE, The data of Ref.1,
geem to indicate the need for such disiributions. We turn now to a detailed
analysis of the data reported in Ref. 1.

The spacing distribution P(gs) is plotted in fig.1 (histogram). Also shown
are the data of Ref.1. In the calculation of P(s}, we coneidered N = 100, M =
25. The experimental spacing distribution, shown as the dotted histogram,
describes 75 levels with T = 0 and 25 levels with T = 1 in %Al in the
excitation energy range between 0 and 8 MeV. The dotied curve is ihe Wigner
distribution which obtaine when § = 0 . The value of § we used in our
calculation is 636c which gives A = 0.056, similar to Guhr and Weidenmuller.
Another quantity that is calculated is As{L) shown in Fig.2. The value of
B = 636 accounts very well for the experimental As(L). Also shown in Fig.3
is the GOE Ay(L) and the Poissonian As(L). The case of two uncoupled
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GOE (§ = co0 , A = 0), which represents no isospin mixing, is not shown and
can be found in GW[2)].

From the above we conclude that the data of Ref. 1, is very well accounted
for with the DGOE with 5 = 636. This corresponds io the same value of
the Coulomb mixing matrix element exiracied by Guhr and Weidenmuller,
namely < H, >= 20KeV. Futher, from Eq.(10) we can state that the
information content of the spectrum studied by Mitchell et al {1] relative to
the GOE is I = 1.28.

To complete the analysis, we present in fig.3 the theoretical infensity dis-
tribution P(y) {histogram) which, should be compared to the Poster-Thomas
{GOE), shown as the dashed curve. P(y) above while was calculated within
the DGOE described above the full curve was obtained with a x? - distribu-
tion (see below). It is thus clear that the deviation from the PT distribution
is quite large indicating a rather strong semsitivity to the strength of the
mixing situation. In cases of weak miving (§ very large) we have indicated
in Ref.3) that the intensity distribution is better described by a sum of two
x? distributions,

Ply) = aF.(y) + bPu(y) _ {11)

. n eyt Tlezpl-ny/2 <y >]

a+b=1

where the values of v and u are determined using ihe surprisal analysis
of Alhassid and Levine [5]. A typical case is shown in Fig.3b with § =
10000c. Weak mixing is thus characterized by large devition of Pis) from the
Wigner surmise and an amplitude distribution of the type given in Eq.(11).
The spectral rigidity As(L) would ke between the lower GOE As(L) and
the higher two uncoupled GOE’s A3(L). We have also verified a sirong
dependence of P(y) on the dimension of PHP relative to that of H. It would
be interesting to verify the above experimentally. We also encourage the
experimentalists of Ref.1 to verify our P(y), fig.3a, using their data.

In conclusion, we have analysed in this paper the problem of isospin
symmetry breaking in the case of pure speciral observables. The Deformed
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Gaussian Orthogonal Ensemble of Ref. 3-4 is used for the purpose. The
experimental data was taken from Ref. 1. We find that the DGOE accounts
very well for the data, and the resulting Coulomb matrix element in 2°Al was
found 1o be 26 KeV consistent with that extracted by Ref. 2. We also dis-
cussed the intensity distribution and discovered that it deviates considerably
from the Porter-Thomas one. This should be easily verified experimentally.



References

1] G.E. Mitchell, E.G. Bilbuch, P.M, Endt and J.F. Shriner, Phys. Res.
Lett. 61, 1473 (1988).

[2] T. Guhr and H.A. Weidenmuller, Ann. Phys. (N.Y), 199, 412 (1990).
[3] M.S. Hussein and M.P. Pato, submitted for publication.

[4] C.E. Carneiro, M.S. Hussein and M.P. Pato, Proceedings of the Trieste
Workshop on "quantum chaos”, ed. G, Casati el al. (World Scientific),
(1991).

[6] Y. Alhassid and R.D. Levine, Phys. Rev. Lett. 57, 2879 {1986).

Figure Captions

Fig.1 Experimental spacing disiribution P(s) for 75 levels with T=0 and 25
levels with T=1 in Al in ihe exciiation emergy range 0 < E* < 8MeV,
ploited as dashed histogram 1. The DGOE histogram with § = 636w is
shown as full histogram. The spacing distributions of a single GOE and the
Poisson disiribuiion are also shown as the dotted and dashed-doited curves,
respectively.

Fig.2 The spectral rigidity As;(L) calculated with ihe DGOE (full curve)

" GOE (lower full) and Poisson {(upper dashed-dotted). The experimental val-

ues are taken from Ref. 1.

Fig.3 The intensity distribution P(y), a) # = 636, b) § = 10*a. See text
for details. '
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