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Gamma-ray calibration energies: a review of the Ir data

0. Helene and Vito R. Vanin.
Instituto de Fisica da Universidade de Saoc Paulo, C.P. 20516,
01498 Sao Paulo, BRAZIL.

In order to perform calibrations by the least squares method, the
complete covariance matrix for the gamma-ray energy standards is
needed. Some errors due to excluding the covariances Iin the

statistical analysis are pointed out. The gamma-ray energies of G

i98
and

Au measured with curved crystals spectrometers were re-analyzed
and the covariance between results found. The gamma-ray energies were
updated to include the latest values of the fundamental constants.
The covariance matrix between gamma-ray energy data and the
fundamental constants 1is deduced. The covariance matrices are
indispensable to update the energy values if new measurements are

performed or if the fundamental constants are reevaluated.

A brief version of this work was submited to Nucl. Instr. and Methods

I. Introduction

Covariances between experimental results are as significant as
variances in the evaluation of experimental uncertainties.
Furthermore, covariances are indispensable for updating experimental
results. If two quantities are correlated and one of them has been
re-evaluated, the other must be updated, which can be done only if
their covariance is known.

The covariance, or correlation, between two results originates in
the experimental procedure. If an error source affects both results
then they are correlated. When the covariance between two results is
positive (negative) and one of them is overestimated then the other
one is probably overestimated (underestimated).

When dealing with correlated data, a full account of covariances
calls for a matrix treatment of the data (see Appendix), with a
Variance Matrix where the diagonal elements represent the variances,
and the off diagonal elements represent the covariances.

Among the effects due to the omission of covariances are
unreliable confidence intervals and chi-square values.

Energies for ?1r and '®au have been updated by the recent
reevaluation of fundamental constants [1]. It will be supposed that
the covariance of functions of randem variables can be approximated by
the usual linear formula, since uncertainties are small when compared
with mean values. When a probability is assigned to a confidence
interval or to the result of a statistical test, the density functions
for the data will be assumed to be Gaussian.

II. Basic concepts.

This section shows some basic results and some examples about the
use of covariances.

(1) Consider two quantities y, and ¥, with variances af and 0:,
respectively, and covariance cov(yl,y2)=p@102, where p iz the




.gorrelation coefficient. The variance of a = y +v, is

2 2 2
= . 1
T, A + 2po'1cr2 (1)

The omission of the covariance in this edquation 1leads to an

erroneous value of the standard deviation of a.

(ii) Assume now that Y, and y, are the results of two
observations of the same gquantity with true value a, which is
unknown. The least squares estimate of the measured guantity is (see
item(a) of Appendix)
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- y,{ o, ~poo, ) +y, (0o - poo,)
3 = (2}
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with variance

o % (1-p)

2 ¥ 2

o-a = 2 2 : ) (3)
o +0,” - 2000,

The omission of the covariance leads to wrong estimates of both the
quantity and its wvariance. When o, <po, or o<po, equation (2)
gives a negative weight for y, or y,. This 1is an inevitable
consequence of the correct use of covariances and should not be

considered an anomaly[2,3].

(iii) If two guantities are correlated and only one of them is
measured in a further experiment, the estimate of the other must also
be reviewed. This can be accomplished only if the whole covariance
matrix is known.

Suppose that two guantities a, and a, were measured, being their
estimates (and standard deviations) yl(un and yé(oa), respectively,
and covariance cov(y:,yz) = po.o, . Suppose that another measurement
of a gives the result y;(alﬂ which is correlated neither with Y,
nor with Y,- This second measurement affects both estimates and we
will show that the effect on the estimate of a, is comparable to that

on a . The least-squares estimates of a and a, are
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y1/01 L /61
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where v, and v,, are the variances of é1 and éa, respectively, and
the off-diagonal element is the covariance.

Equation (4) is the usual weighted average of two uncorrelated
observations yl.and y;. If p=0, eguation (5) shows that the estimate
of a, depends only on the result of the first measurement, which is
almost obvious. The non intuitive result brought by eguation (5) is
that, if ¥, and y, are correlated then the estimate of a, depends on
the new measurement of a . In order to see the importance of this
modification, let us assume that o=0=0' and p=0.5, In this case we
have

113

= y1 + &8/2 and (7)

(AR

= Y, t 8/4 ' (8)

where 6=yf—y . That is, both the estimates of a and a, are changed

1
by terms of the same magnitude.

(iv} Consider the fitting of a straight line y=a +ax to
experimental data ((xi,yl), i=1,2...n} , where the variances of y, are




v

all egqual to o° and cov(yl,yj)=pa2 for every i#j, and the independent
variable x is measured without error. The adjusted value Yy,  of y at
the mean value X, of the %, has variance

S PO - (9)

o2 = o2 p(n-1) , 1 ]
c n n

This equation shows that the improved precision in the interpolation
is limited by the covariance between the data. If the off-diagonal
terms of the covariance matrix were omitted the (wrong) variance of

yc=y(xc) would be written as

oo = 5 S —— 0 . (10}
The omission of the covariances leads to an unrealistic high precision
of the measurement.

v) There are some cases where an earlier result is substituted by
a new one, changing the adopted values of every correlated data.
Consider, for example, two results y, (o) and Yg(dﬁ with covariance
po,o,. Suppose that v, (o) is substituted by yé(a;) not correlated
neither with y, nor with Y,- Then Y, must ke substituted by (see
Appendix)

’ po-l
y; =y + _Ez(yz Y, (11)

!
The variance of Y, becomes

T 2
2 2 2 2 .2
o) = 0}(1—p } +p [———] o) (12)

and

a
’ ] _ 1 2 -
coviy, «¥y )= P o, %2 . {13)

If p=0 the new value y; does not change the older result: y;=y1 and

a;=01.
Such case occurs in gamma-ray spectroscopy since every gamma-ray

energy is correlated with fundamental constants.

vi) In gamma-ray spectroscopy with curved crystals spectrometers
it is usual te add uncertainties due to calibration, scale, lattice
spacing, and divergence, to statistical wuncertainties, without
specification of the covariances. The present procedure aims to obtain
both self-consistent results and consistency between different
experiments. This concerns cases 1) to v} above and will be developed

in more detail in the next secticn
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ITI. Revisiting Ir and sAu gamma-ray energies

Lorenz [4] presents the estimates and standard deviations of the

192y decay. Among

energies of eleven gamma-ray transitions following
them there are four cascade/cross-over relations (table 1). However,
the standard deviations of the differences between the cross-over
energy and the sum of the cascade energles are between 70 and 10000
times larger than the energy differences. This shows that the standard
deviations are overestimated or that the covariances are not
negligible. As we will shall see below, both causes exist.

The values of the gamma-ray energies of 'Ir used in this paper
are taken from the experiments of Kessler et. al. [5] and Borchert et.
al. [6]. Other measurements will not be considered here because they
do not give sufficient details on the estimation of the uncertainties.

Data from Kessler et. al. [5] are reproduced in table (2). The
standard deviations are those identified as "total uncertainties" in

ref. [5)]. The covariances for E*E; are given by
F — 2 ’
cov (E ,E_ )—Gd EE. {14}

where Ty corresponds to the guadratic addition of the relative

standard deviations due to 1lattice spacing (0.2x104=0.2 ppm) ,




calibration (0.1 ppm) and vertical divergence (0.2 ppm) quoted by
Kessler et. al. [5], giving

=7
=3. . 15
o, ~3.10 (15)

Table 3 presents the data from Borchert et, al. (&].
Uncertainties in table 3 correspond to dE in ref. [6]. Although the
uncertainties included in dE were not explicitly given in ref. [6],
the experimental procedure adopted [7] suggests that pB~0.5 . Three
cascade/cross-over relations among the gamma-rays from ref. [6] give
reduced chi-sguare 1 only if p,=0.58, which is used in this paper.
However, any value in the range 0.4 through 0.7 would give practically

the same final results.

1V, Updating energy data.

Kessler et. al. determined energies using the energy-wavelength
conversion coefficient fﬂ=hc/e=1.2392‘:‘»520-10“ﬁ ev-m, assumed exact [5].
Thus, those data must be updated using the more recent values of the
fundamental constants [1], f=1.23‘£¢84~24~4(37}-10'6 eV-m, and propagating
its uncertainty. Enerygy data from ref. {5], then, must be multiplied
by

r= f/f, . (16)
The variance of data from ref. [5] is

o

o™(E) = o }(E) + [ ff ] E * , (17)

where E is the transition energy ang o, (E) is the original standard
deviation from ref. [53), reproduced in table (2}. For EK==EK ; the

covariances between the updated data are

P
T
£

cov(E,’,E,) = cov (E’,E) + [ ] E’ Ex_ : (18)

with covo(EK’,EK) calculated by formula (14) above.

Energies from ref. [6], reproduced in table 3, were measured

using the 412keV gamma transition of to8

Au as reference, assumed as
411.794 keV exactly. In order to update results from ref. [6] with
respect to the value £ and make them compatible with data from ref [5]
they must be multiplied by

_— 411.80441 £ , (19)

411.794 fD
where the value 411.80441 XeV is the '**Au transition energy given by

Kessler et. al.. The variances of the gamma-ray energies then become

2 2 GO(EA) : O‘f ? 2

where E, is the energy of the 412 keV transition of !

"Au and UO(EA)
its standard deviation shown in table (2). o-o(EB) are the standard
deviations of gamma-ray energies, given in table (3). Covariances

between the updated energies from Borchert et, al. are given by

7, (E,) T :
cov(EB',EB) = chro(EB‘)crO(EE) + {[ ——E— ] + [ " ] } EB'EB .{21)
A

The covariances between the original data from refs. [5] and [6],
null before the updating, became non-zero after the updating due to
the common dependence on f and the compatibility correction expressed
by formula (19) above. They are given by
E

B
] EE + —E—covo(EK,EA) , (22)
A

O
£

cov(EB,EK) = [

where E and E, represent data from Kessler et. al. and Borchert et,
al. and E, is the energy of the 412 keV transition from '°*Au measured
by ref. [5]. When Ex=E.\' covo(Ex,EA) must be interpreted as aoz(EA)
for expression (22) to remain valid,

The covariance betwaén every transition from ®Ir and the factor
f is




o
cov(E, f)= E-f-[ £ ] . (23)

f

Although these covariances are not needed for this adjustment of the
gamma-ray transition energies, they are necessary for a further
updating of data due, for instance, to new measurements of the
fundamental constants.

Data from refs. [5] and [6] must be multiplied by the ratio of
the Si spacing used by Kessler et. al. [5] to that determined by the
1986 evaluation of physical constants [1],

o = 1.00000138 ' (24}

Since the statistical uncertainty of the lattice spacing of Si was not
changed in the 1986 review and it was already included in the standard
deviations of tables (2) and (3), the estimated variances do not have
te be changed. The covariances between “Ir gamma-rays and the
lattice parameter of Si are given by

o, y2
cov(E,a )= E-ao-[ - ° J , (25}
0

where Ga//, a = 0.2-10'6[1]. As eq. (23) above, egq. (25) may be
=)
needed in further updating of gamma-ray energies.

Figure (1) shows, in a schematic form, the variance matrix of the
analyzed data.
There are 14 parameters to be Ffitted: 13 gamma-ray transitions

"PIr and the energy of the 412 keV transition of '*fau.

energies from
Tahle (4) shows the energy data and the design matrix used in the fit
by the least-squares method (see Appendix).

Table (5) shows the obtained results and table (6) shows the
covariances and correlation coefficients of the fitted gamma-ray
energies of '"*Ir and the 412 keV of '"*Au. The covariances between
gamma-ray energies and f and a  are given by eguations (23) and (25)
above. The chi-sqguare value of the fit is 3°=12.8 with 9 degrees of

freedom, with a probability of being exceeded eguals to about 20% .

ic

V. Discussion.

It iz interesting to study here the consequences of the fit of
correlated data in a real case. The results are not exactly given by
the formulas from examples i1 to iv of section II since here we are
selecting only two or three data from a larger correlated set. Anyway,
they will prove their usefulness in displaying the main
characteristics.

The standard deviations of the 136 keV, 468 kevV and 604 keV
gamma-rays shown in table (5) are respectively 0.48 eV, 0.28 eV and
0.49 eV. If covariances are neglected, the standard deviation of the
cascade/cross-over relation 136kevV+468keV-604keV would be 0.74 eV.
Considering the covariance that standard deviation is 0.66 eV, shown
in table (7). The overestimation of the standard deviation by
neglectingtha covariance was discussed in item ii, Section II.

The example of item iii can be seen in the case of some
gamma-rays measured Jjust in one of the two experiments considered:
136 , 416 , 201 and the 412 keV gamma-ray energies. In the first
three cases the standard deviations are significantly reduced in the
fit. In all cases the fitted values, Table 5, are different from the
input values, Table 4, since the measurement of a guantity changes all
correlated quantities.

In order to verify the discussion of item jiv of section II we can
observe that the standard deviations of the 412 keV and of the 205 keV
are not reduced in the fit. This is due to the fact that the relative
standard deviation of £, 0.3-104, imposes a lewer limit in the
uncertainties.

Table (7) shows the energy differences of three
cascade/cross-over relations among the fitted data. These differences
are of magnitude comparable with their standard deviations. The
footnote b of table (7} shows the standard deviations calculated
without the covariance terms, giving an example of the discussion of
item i. Although the cascade/cross-over energies differences in table
(7) are larger than the same differences in table (1), those results
are statistically acceptable while the ones of +table (1) are




unacceptably low.

In the following, we will discuss some consequences of another
choice of the parameter p,- For every p=0.7 , the probability of
exceeding the x° obtained in the final fit is higher than 5% and only
for p>0.8 it is unacceptably low (smaller than 1%) . The fitted
energies are weakly dependent on Py except for the 316 keV gamma ray,
which varies slowly from 316.50600 keV for pB=0.l to 316.50622 keV for
p,=0.9 . The dependence of the standard deviations of the fitted
energies is noticeable only for the energies which were measured only
by Borchert et al.[6] . For instance, the standard deviation of the
136 keV gamma-ray varies smoothly from 0.69 eV for pB=0.1 to 0.25 eV
for p=0.9 . Since the differences in the results for Py in the range
0.4 to 0.7 are small, the uncertainty of Py pointed out in section III
is of no consequence.

VI. Conclusion.

The fitted energy of the gamma-ray of Pau is 411801.75 (19) ev.
This value agrees with that proposed by Wapstra (8],
411801.85(15) eV’

Covariance matrices allow updating whenever new data become
available.

With semi-conductor detectors, it is possible to measure
gamma-ray energies within less than 1 eV precision if an ensemble of
precise energy standards with their covariance matrices are known.
121y and *%Au.

The authors would 1like to thank to Dr. P. Gouffon for the

Table 5 presents such a set of enerqgy data for
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APPENDIX

Leagst-squares method: use of the design matrix and the covariance

matrix

This appendix shows the principal equations of the least-sguares
method applied to a linear model and used in this paper. References
[9] and [10] also illustrate some cases where the same physical
gquantity was measured in different experiments and then adjusted to a
common value. Proofs and examples can be found in {11} and [12].

Suppose a function f(x;a) where x stands for a m components
independent variables vector and a for a n parameters vector to be
fitted. Suppose that the functicn f has been measured for N values of
the independent variables cbtaining experimental data
y, = £(x ;a) +te, where a_ is the true, wunknown value of the
parameters vector, and €, is the experimental error of the measurement
of ¥, The experimental data and the parameters are related by

Y o= oz + e , (A1)

where Y is the (column) vector whose elements are the experimental
data y , A, is the vector whose elements are the true values of the
parameters, & iz the unknown vector of errors, and X is the design
matrix. ¥ is independent of A, and contains all the dependence on X.
Two assumptions are needed in order to calculate the

least-squares estimate: the measurements are unbiased,

<81>=0 r

and the variance matrix, given by

v,=<ee >, (a2}

iz  known, where < > stands for the expectation value, The
least-squares estimate of A is given by

K= ' svily , (a3)

with covariance matrix given by




13
v o= v . ' (n4)
The statistics calculated by
x¥° = (¥-xA)" vl (Y-xA) (A5)

has a chi-square probability density function (pdf)} corresponding to
N-n degrees of freedom when the pdf of the errors is a N dimensional
gaussian.

It can be shown that the estimate (A3) is unbiased, is the linear
estimate of minimum variance, and that (A4) gives the exact variance
matrix independent of the error pdf, as long as V is known exactly.
Alsoc, the expectation of »° given by (A5) equals N-n, independent of
the error pdf, but its pdf is not the usual chi-square unless the
errors are gaussian distributed. Finally, the pdf of the estimates AJ
are gaussian only when the errors are gaussian or the number of data
points, N, is enough to fulfill the Central Limit theorem conditions
in the statistics given by (a3).

This method is applied in two particular cases of interest (a, b
below). Item ¢ discusses how to update data when a result is
substituted by a new one.

a) Two correlated measurements of the same physical quantity.

Suppose that a physical quantity has been measured twice, with
the results Y, and Y, and covariance matrix V¥. In this case
f{x,)=f(x )=a, giving

1
x = . {26)
1
From equation (A3) we obtain the value & given by equation (2) of the
text. Equation (A4) gives the result of eq. (3) of the text.

14

b) Two measurements of the same physical quantity, one of them

covariant with another quantity.

Suppose two quantities, a and a,, whose experimental values are -
Y, and Yo respectively, being V the covariance matrix. Suppose that a
new measurement of a, gives the result yl' with wvariance a;z,
statistically independent of Y, and Y,. The three experimental results
may be written as the vector

Y= (v, ¥, ¥, : (A7)
The variance matrix of ¥ is
2
y : o T, po.o, 0
i 2
v = i = po. T o o] . (AB)
¥ o | 01,2 t 2 2 ,
o 0 [+
1
In this case we have f(x1)= a , f(x2)= a, and f(x3)=a1 , giving a
design matrix X
1 0
R = 0 1 . (A9)
1 0
Substituting equatiens (A7) - (A9) in equation (A3) we obtain the

results indicated in formulas (4} and {(5) of the text. Equation (A4)
gives the covariance matrix of formula (6) of the text.

c)} Substitution of standards

Consider three estimates Yo Y, ¥, whose variance matrix is V.

2
Suppose that a new experiment measures one of those quantities and
the old result is substituted by the new one that is not correlated
with Y,r ¥, and Y, Assume that Y, is substituted by y; with variance

o; + In this case ' and Y, must be updated by
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cov(y,,y,)
Yy =yt ——— (v; - v), J=1,2, (a10)

T
3

1 is the covariance between yJ anad Yy, and U;=V“

is the wvariance of Y,- Ed (Al0) corresponds to new estimates of the
first two quantities obtained from the conditional probability density

where cov(yj,y3)= v

function of Y, ¥, and y, for y3=y;

The covariance matrix of y{, y; and y; is obtained from the
following procedure:

i) the covariance matrix v, of Yo Y, is obtained by removing
the 3™ row and column of V' and inverting the resultant 2x2
sub-matrix;

ii) the variance watrix v’ of y; R y; . y; is given by

Vo= + AV, (A11)
where
2 p129230102 o,
c, -3
Pis - 2 13 -
a o, 3
2
p._p. o o a
AV = 12212 [paa 0_2 ] Paa 2. o’? . (Al2)
3
O‘3 3 0'3
o) 7, o
13 F p23 2 1
3 o

This procedure is an uncertainty propagation formula and can be
generalized to any number of data. .

[1]
(213

[3]
[4]

(5]

[6]

£7]

(el
(el
(10]

[11]

(12]
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Table 1 - Four cascade/cross-~over relations between gamma-rays

from '1r decay. E: and Ez are the energies of two consecutive Table 2~ Data from Kessler et. al. [5] before the corrections

gamma-rays and E the energy of the corresponding cross-over. SE given in the text.
co

stands for the cascade/cross-over energy difference, 8E=E;+Eé-E;o,

EK (keV) ob(eV)
where the primes are energies corrected for recoil. o, 1is the standard 411.80441 0.15
deviation of 8E. Data from {4]. 205.79549 0.07
295.485825 0.13
308.45689 0.15
316.50789 0.18
Ej(keV) Ez(keV) E (keV) SE{eV) crE(eVJa 468.07147 0.27
i 484.57797 0.41
588.58446 0.72
136.3434 468.0715 604.41455 -0.006 604.41415 0.47
295.95821 308.45685 604.41455 0.000 2.0 612.46504 0.78
295.95821 316.50800 612.46569 -0.004 '
295.95821 588.5851 884.5423 0.036 2.7

a) Sdguare root of the sum of the variances of the three gamma~rays
energies involved in &E.




Table 3

Data from Borchert et.

given in the text.

E, (keV)

136.2403
201.3061
205.7909
295.9510
308.4473
316.5005
374.4757
416.4601
468.0602
484 .564¢6
588.5730
604.3981
612.4513

g

o

P
ANORMNOC VWG O]~

MN&EFPFODWODONOOOO

—
(1)
<

19

al.

{6] before the corrections

20

Table 4 - Corrected input energies in keV and standard deviations

between parentheses,
the design matrix X for the fit, identified by their row numbers.

Y, (o)

136.34288(70)
201.30991(71)
205.79480(61)
295.95661(52)
308.4531(22)
316.50650(33)
374.48279(82)
416.4680(30)
468.06907 (64)
484.5738(18)
588.5842(40)
604.4096(22)
612.4629(26)
411.80180(19)
205.79419(9)
295,95638 (16)
308.45494 (18)
316.50589(20)
468.06851(30)
484.,57490(43)
588.58073({74)
604.41032(50)
612.46116(80)

CO0OQCOO000OVULOCLOoLDOOoOR K

in units of the last figure (first column),

CO0OCCO0O0O00Q0O0O00ODOOCORO N

D000 OCOOHFOOQOCOO0OCOOOOKHFOO W

COO0OQ0OQOCOROOCOTOOOOOOROODO WHh

OO0 0QOOQOFOCOoOCOoOCO0OO0O0O0OO0OHOODO =

CO0Q0OQOFOOLLLOCLOOOROAOOQ T

COQ0O0OOCCO0O0O0O0000O0O0oOHROO0Oo00OC =

CO0COQCOOOLOLOLOLOFPOOCOOCOOQ °

10 11 12 13 14

COOQPFRPROO0OOO0OO0O0O0CO0OORrRPOCOOOQCO0OO W
QOQFRFOQOCOCACORPROOCOOOO0OO0
OOoOHCOODOOQOQOOOHFOQLOODOODOOOO
QFRPOCOQOoOCOoOOFROCOCDO0OCODOO0OO0O
FPFOOQOOOOOOQQOMOOLOCILODOO0OOO0O
OQOOCOO0OOCOOHFOOQOOOOO0O0O00

and
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. 6 - Covariance upper triangle includin the main
Table 5. Estimated gamma-ray energies of 21r ana ¥au and fable ° (upp s o ; 7 3
PR . diagonal) and correlation (lower triangle) matrix for the f£fitted
standard deviations obtained by the procedure outlined in this paper . : =

gamma-ray energies. Covariances are in eV®. The rows are labeled by

the gamma-ray energies, rounded for the nearest integer, in keV. Lines

E?(keV) o{eV)

are in the same order than rows.
136.34265 0.48 136 201 206 296 308 317 374 416 468 485 589 604 612 412
201.30967 0.49 .234 .029 .005 .009 .008 .01l .036 .116 .016 .018 .024 .021 .030 .008
205.79419 0.09 124 .237 .008 ,012 .012 .015 .041 .119 .022 .024 .031 .028 .037 .014
295.95638 0.16 .115 ,167 .009 .011 .011 .012 .014 .016 .017 .018 .022 .022 .023 .015

.114 ,159 ,756 .,024 .016 .017 .021 .028 ,025 .026 .032 .032 .033 .022-
308.45492 0.18 .0925 .136 .695 .,601 .031 .018 .021 .025 .026 .027 .033 .034 .034 .023
316.50607 0.18 128 .171 .688 .602 .547 .033 .026 ,038 .028 .0628 .035% .035 .037 .025

" . 131 .147 .263 ,242 .212 .250 .326 .143 .038 ,039 .050 .048 .058 .029
374.48250 0.57 .116 119 .083 .086 .070 .102 .121 4.27 .056 .062 .085 ,073 .111 .020
416.46700 2.07 .12 .160 .657 .573 .522 .535 .234 .096 .080 .042 .051 .052 ,(55 .036

) : .088 .115 ,458 ,399 ,365 ,371 ,164 .072 .353 .176 .053 .054 .057 .035
468.06859 0.28 .069 ,087 .324 .283 .258 .264 .121 .057 .251 .177 .520 ,066 .070 .042
.080 .118 .490 ,427 .390 .395 ,171 072 .376 .263 .188 .239 .070 .044

484.57473 )

0.42 .084 .103 .327 .288 .261 .272 .137 ,072 .259 .182 .131 .193 .555 .044
588.58088 0.72 .088 .149 .846 .735 .670 .701 .264 .050 .653 .439 . 306 .470 .309 .037
604.41019 0.49 |
612.46131 0.74

411.80175 0.19
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Table 7 - Cascade/cross-over energies

gamma-rays f£rom 1r decay. Same as table 1,

tables 5 and 6. The total xz eguals 2.6.°

E (keV) E, (keV) E_, (keV)

136.342865 168.06859 604.41019
295.95638 308.45492 604.41019
295.95638 316.50607 612.46131

a) Energy differences corrected for reccil energies
b} Covariance matrix taken into account.Forgetting the covariances,
this column would be, in the order of appearance on the table:

0.54, and 0.78, respectively.

SE (eV)?

0.69
0.60
0.62

differences
with the data from

GE(EV)b

0.66
0.44
0.71
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(22)

cov(E ,E/) S

Figure 1 - Diagrammatic representation of the fit covariance matrix.
The upper-left square contains the covariances between data from [6],
the lower-right square contains the covariances between data from (5],
and the upper-right and lower-left rectangles contain the covariances
between data from [6] and [5]. Enclosed in parentheses are the numbers
of the corresponding covariance formulas in the text. The matrix is

symmetric and the main diagonal, which contains the variances, is
explicitly shown.



