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Abstract
The usual minimal coupling procedure is investigated in Einstein-Cartan space-

times, and motivated by some problems with scalar fields a new procedure is
proposed. By this procedure new effects are predicted.

[t is a statement in the literature that scalar fields should neither feel nor
produce torsion as a consequence of minimal coupling procedure (MCP) used
at the action level [1]. This procedure consists in, starting with a Lorentz
invariant action in Minkowski space-time, substituting the metric tensor T
by its generalization g,.{(z), partial derivatives 8, by covarianite ones and
the measure of integration, the “volume element™ d*z, by its covariant form
v-~gd*z. The purpose of this note is to argue that the usual MCI' cannot
be used in a general Einstein-Cartan space-time at the action level, and to
propose & new procedure. By tHs procedure, new effects are possible, and
in particular, scalar fields are sensitive to the non-Riemannian structure of
space-limne,

The Einstein-Cartan space-time U, is characterized by ils metric o)
und by its meiric-compatible connection I g, which is nsed Lo deline Lhe
covariant derivative

DA% =8,A" + TU A", (1)
The Uy connection is non-symmetric in its lower indices, and from its anti-
symmetric part can be defined the torsion tensor

(213, ()

and one can write the connection as a function of the torsion tensor

20 = {28} + Sug = S5 + 57,5 (3)

SG'G‘T =

where {ZG} are the usual Christoffel symbols from Rienannian space-time

.
Using MCP, we get the following action for the case of a massless scalar
field on Uy {(the presence of mass makes no difference for our purposes)

8§ = j’ ddm——";f’aﬂ‘pa‘,tp, (1)
und from (4) we obtain for the equation of motion

Chd = 7%-3,, —g0"$ =0, (5)

From (5) it is clear that the scalar field doesn’t feel the nou-Ricmannian
structure of Uy. In order to have a plausible physical behaviour for the field
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i, vne must be able {o define a scalar product for the space of solutions of
(5}, and this can be altained if the operator [, is hermilean in the scnse
(hat{2]

#5000 o2 = [ day=geitne. (6)

Ry manipulations of (5) we get

f'fl"i'vf"dg {Uhed) w2 — @D ea} = fd"ma”v =9 {(8%¢1)" vz — 9] 0"ps),

(7)
and Lo verify (6) one needs that the right-hand side of {7) to vanish. This is
guatanteed by invoking the generalized Gauss’ formula

1 et T "
fMdv == 0n/=a) —LMdapJ (8)

and by the assumption that the current vector J# = (0"¢1) ps — p10"py
vanishes on the boundary of the integration. In (8) dv and da, are respec-
tively the covariant volume element, and the covariant surface clement. The
geveralized (Qauss’ formula is a corc;llary of Stokes’ theorem

fM duo = o (9)

s onv ean see choosing, for example [3] w = m,J%, where ,, is the 3-form

Ty = é —GEapysdz® A dz A dz?, . (10}
whese £,aq5 is the totaly anti-symmetric symbol. Althongh Slokes’ theorem
is delined in 8 general differentiable manifold X,,, with the choice (10} we get
only the Riemannian terms of Uy in (8).

The question that can be introduced now is that if we use MCUP at the
equations of motion level, instead of (5) we get for the equations of molion
lhe Uy d'Alambertian, wich is given by

Op = D,0"¢ = Oy + 25,8 = 0, (11)

where 5, is the trace of the torsion tensor (2), Sy = 5, Diflerently frow
(5} the equation (11) takes into account non-Riemannians terms. One may
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ask: Why does the use of MCP at equations of motion and action tevel lead
to different results? Is it possible to obtain (11) from an Aclien? If yes,
is it possible from (11) to define a scelar product? The answer Lo the last
two question is yes, provide that the trace S, can be define from a scalar
polential

Su(z) = 3,0(z). (12)

To the first question we will see that the problem is the use of MCP at action
level.

In an U, space-time where the trace of the torsion tensor 5, doesn’t
vanish, the generalization of the measure used in the action is not covariantly
constant, as one can check using the fact that /=g is a scalar density {weight
1). Using properties of Christoffel symbols we get

Dyv/—g = 8uv/~9 - Pﬁpv —g=~25,\/~g. {13)

Under the hypothesis (12) one can check that the scalar density " /g s
covariantly constant, and then it can be used to define a new measure. Using
this new measure as the generalization of the usual measure of Minkowski
space-time and the MCP we get the following action for a massless scalar
field minimaly coupled to the I/, space-time

20 /= '
S= _[ d4mi-§—~ V9 5,000, (14)
From (14) we get the following equation of motion
e )
= Oy, + 25,0 = ey —g'e = 0. 15
Op =D -+ 25,8"p W A (15)

We can check that (15) is hermitean in the sense of (6), provide that we
generalize the volume and surface element also in the Gauss® formula {(8),
and this can be obtained from Stokes’ theorem if we change the 3-form (10)

by
1
To = ¢/~ geap,dz” A dz? A da. (16)

t is well known that the equations of motion for scalar fields ohtained via
MCP are not conformaly invariant, and to restore the conformal invariance
onc necds to add a term proportional to the scalar of curvature Ji. T'his new
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term will allow the interaction of the scalar field with the torsion even in the
casc of traceless torsion [4]. The conformaly invariant gencralization of (14)
is given by {using the conventions of ref. [5})

26
S = fd‘ze—2—— V-9 {5,.993‘"30 - %WZ} , (n

ani the correspondent equation of motion is

(El+£) = e+ B g (18)
6 ‘P_\/:"E#e goty 6‘?“ *

The action (17) and the equations of motion (18) are invariant under the
conformal transformation

galz) - 0 (3)gu(z)

o(z) - 07'(z)g(z) (19)
Sag (2) — 8,4(x)

() — 0Ofz)

The generalization to other space-time dimensions is straightforward. The
coellicient of the term Ry? and the conformal weight of the ficld w0 for the
n dimensional case are the same of the Riemann space-time V,,, and can be
found for example in the ref. [5]. However, it is important to note that
the torsion tensor S,;/(z) and the potential ©(z) ere conformal invariant
yuannlities in any space-time dimension. .

As the conclusion, it must be stressed that the new measure e*? /=g d'z

must be used whenever we wish to describe a field on an U4 space-time that
obeys (12), using MCP at the action level. In the same way that this new
meusure allows the interaction of scalar fields with torsion, it can allow also
the interaction of others fields, like for example Maxwell field. Even the
dynamical equations for the non-Riemannian geometrical quantilics of Uy,
that are obtained from an action principle [1], can be modified. These topics
are now under investigation.
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