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Gauge {ields are described on an Einstein-Cartan space-time by means of tensor-
valued differential forms and exterior caleulus. It is shown that minimal coupling
procedure leads to a gauge invariant theory where gauge fields interact with tor-
sion, and thal consistency conditions for the gauge fields impoese restrictions in the
non-Riemannian structure of space-time. These results contradict the well known

staternent that gauge fields do not couple minimally to torsion. The sources of these

differences are pointed out and discussed.

I. INTRODUCTION

" The Einstein-Cartan theory is the natural theory of gravity that emerges from
the local gauge theory for the Poincaré group, and it is in accordance with the present
day experimental data[l,2]. This theory has been discussed in recent years, and in
patticular the problem of coupling gauge fields to Finstein-Cartan space-time U, has
been studied (see for example [3] and references therein). The wide spread conclusion
that gauge fields don’t couple minimally to the non-Riemannian structure of space-
time arises from an analysis using minimal coupling procedure (MCP) at the Action
level. |

In this work it is shown that actually gauge fields couple to torsien without
breaking gauge invariance, and, of course, this contradicts the above mentic.med wide
spread conclusiox;.

The equations of motion are written by means of tensor-valued differential forms
and exterior calculus in Minkowski space-time and by using MCP one gets the Uy
equations of motion, which will allow the interaction between gauge fields and the
torsion. In order to have comsistent equations we are lead to the restriction that
ithe trace of the torsion tensor must be derived from a scalar poteniial. With this
condition it is possible to get the Uy equations of motion by using MCP at the Action
level, provided that we introduce the invariant and covariantly constant U, volume
element [4].

The work is organized in 5 sections, where the first is this introduction. In section
2, basic facts on Einstein-Cartan geometry are briefly presented. Maxwell fields are
described on an U, manifold in Section 3. In Section 4, the results of Section 3 are
generalized to the non-abelian case. In the last section, it is shown that all problems
with gauge fields on Uy are connected with the Hodge star operator (7), which in U,

space-time must be different from the usual one of V space-time. Yet in the last
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- section, further developments are discussed.

II. THE U7y MANIFOLD
The Einstein-Cartan space-time Uy is characterized by its metric gop{z) and by
its metric-compatible connection '} 5, which is used to define the covariant derivative

of a vector as
D A" = §,A" 4 FﬁpA". 8}

The U, connection is non-symmetric in its lower indices, and from its anti-symmetric

part can be defined the torsion tensor

S =

(17, - T) - (2)

D2 | -

One can write the connection as a function of the torsion tensor
75 = {na) + 508~ S5'a + Saps (3)

where {ZH} are the usual Christoffel symbols from Riemannian space-time Vi. A
quantity that will be particulaly useful is the trace of the connection (3), and using

properties of Christoffel symbols we get the following expression for it

1
o = 285/ "g +25a, 4
8 \/:35 g <] ()

where g is the determinant of the metric tensor, and Sp is the trace of the torsion
tensor 53 = 5,4

The case where the trace S5 can be obtained from a scalar potential

S5(z) = 8:9(=}, (8}

will be crucial in our discussion. Under the condition (3) we have the following

expression for (4)

10 J
oy = —==0 %/ 3. . 6
Fe] ﬁ A g | ( )

It is important to note that the often used Vi relation between the exterior deriva-

tive of an 1-form and the covariant derivative
dA = 8, Apda™ A dz® = D, Agda™ A da’, (7)
is not valid in Us, where instead of (7) we have([5]
Dy Agds® A da® # dA = (DGA;; + %S,,;A,,) de® A da’. (8)

We will see that this difference between Vy and Uy exterior derivatives is the origin

of the problems with the naive use of MCP in Us.

1L ABELIAN FIELDS

It is well known that Maxwell’s equations can be expressed by means of differential
forms and exterior calcutus. This description is the most “gconomical”, in the sense
that it Tequires the minimal from the geometry of the manifold. Differential forms and
their exterior derivatives are covariant objects in any differentiable manifold, in spite
of the manifold is endowed with a connection or not. We will see that this description
can be considered as the most fundamental one, not due to aesthetic arguments, but
by physical reasons.

In order to study Maxwell’s equations in a metric differentiable manifold, we

introduce a fundamental quantity, the clectromagnetic potential 1-form
A= Aad:ﬂa, (9)
and from the potential 1-form we can define the Faraday’s 2-form

F=dA= %Faﬁ dz® A dz”, (10)




where Fp = 8,A5 — Oy A, is the usual electromagnetic tensor.

1t should be noted that {9) plays the role of a connection in the principal bundle
P(M,U{1)), where the base space M is the space-time and the electromagnetic
gauge group U(1) is the fiber. If the bundle P{M, U(1)) is trivial, as for example for
M = R we can assure thai the gauge connection (9) is defined globally. However,
for a non-trivial bundle we can define only locally the gauge connection. This is
similar to the Dirac menopole case where, due to the P(S%,U(1)) non-triviality, we
~ need at least two gauge potentials to describe it [6]. We will ignore by now these

problems.

The homogenous Maxwell’s equations arise naturally due to the definition (10)

as a consequence of Poincaré’s lemma (5]
dF = d(dA) = %BTF,,B dz” A dz® A d2” =0, (11)
and in terms of components we have
O Fogy =, (12)

where | ) means antisymmetrization.

The non-lkomogenous equations in Minkowski space-time are given by
&I = 47°J, (13)

whete *J = Leag.s] de” Adz® Adz” is the current 3-form constructed from the current

vector J* and
= 1 I a il
7= EEQMF dz A dz”, (14)

is the dual of Faraday’s 2-form, constructed from it by using £4p.6, the totally anti-

symmetric symbol, and the metric tensor.

By an accurate analysis of (13) one can see that it is not covaria.nt.in a curved
sbace-time, becanse of *F is not a scalar 2-form, but it is a relative scalar 2-form with
weight —1, due to the anti-symmetrical symbol. Now we assume that the manifold is
endowed with 2 connection to use it in order to cast (13) in a covariant way. This is

done by substituting the exterior derivative by the covariant one
+* - 1 * * o 1 v w
&F - DF = (Ba"Fpy + T4 Fp,) 6257 da¥ A dz” A da”. (15)

where ngg is the generalized Kronecker delta. The covariant exterior derivative in
(15) takes into account that "Fap = L eapys FY° is a relative (0,2) tensor with weight
—1. One can check that D*F is a relative scalar 3-form with weight —1. We have

then the following covariant generalization of (13)
DF = 4n"J. (16)

Equations (11) are already in a covariant form in any differentiable manifold.

The informations about the geometry of the manifold are contained in the metric
tensor gos(z) used in the construction of F (14), and in the trace of the connection
used to define the covariant exterior derivative (15). Therefore we can think that
equations (16) and (11} were obtained from Minkowskian ones by means of MCP

used at differential forms level. The components expression for (16) in an Einstein-

Cartan space is

One can see that equation (17) allows the interaction of electromagnetism with torsion

of space-time without destroying gauge invariance and using MCP at differential forms

level.

Taking the covariant exterior derivative in both sides of {16) we get




1
@DV = (am’

i

) Fus8les do® A daP A da” A da’, (18)
and to have a generalized conservation condition for the current we need that

T2, — 8,I% =0, ' (19)

s

which has, at least locally, as general solution [5]

Fﬁu = 0, f(=). (20)

- Using that {fm} = J,In+/—g, equation (20) will have general solution only if the
trace of the torsion tensor obeys (5). In this case f(z) =1In (ezeﬁ/—g) . When J = 0,
the condition (20) is a consistency condition for equation (16). Under the condition

(5) we have the following components expression for (16)
L -
/-9 8”0/ mgF** = 4 J", (21)

and for the generalized conservation condition we have

£-20
ﬁapezo\/ —gJ'“ = 0, (22)
It must be stressed that if the trace of the torsion tensor does not obey (5) we cannot
obtain a generalized conservation condition.

One can ask now if it is possible to obtain the non-homogeneous equations

(21) from an Action principle. We know that in Minkowski space-time, the non-

homogeneous equations are gotten from the following action
Szf(fl:vr‘JAAwF/\*F). (23)

Besides the metrical tensor, the unique nom-covariant term in (23) is the implicit

measure

1
dv = Esug.,gdm“ A dz® A de A deb (24)

In order to get a covariant measure we need to introduce a scalar density. In this case

- the choice

1
dv = e"v/=geagsda” A do’® A do A de (25)

leads to a covariantly constant measure [4]. With this new measure one gefs the

following coordinate expression for (23)
§ = / d'z e*®/—g (—%FaﬁF"ﬁ + 47rJ“AG) . - (26)

It is casy to check that we can obtain equations (21) from the action (26). We can
check also that equations (12) and (21) are invariant under the usual U(1l) gauge

transformation
Ay — Ap+ Oyip- . (27

We would like to stress the importance of the generalized conservation condition (22)
to guarantee the gauge invariance of the action (26).

Now we can convince ourselves that the usual way of coupling Maxwell fields to
torsion is fallacious, not only because we loose gauge invariance, but because we also
loose the homogenous equation (12). In the usual way, one applies MCP at the level

of tensorial equations. Applying usual MCP to the equation (12) we get
Bia kg + 251, 58510 = 0, (28)

where Fig = Fap — 25,4 A, One can check that (28) has no general solution. The
origin of the problem is the difference between exterior derivatives and covariant ones
pointed out in section 2. Iﬁ V, there exist an “equivalence” between exterior deriva-
tives and covariant ones, and due to-this in V, it makes no difference if one applies
MCP at differential forms or at tensorial levels. In Uy we have another situation, and

due to the “inequivalence” between exterior and covariant derivatives we don’t get
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the same result applying MCP at different levels. Based in these facts one claims that
the differential forms representation for Maxwell equations are the most fundamental

one.

IV. NON-ABELIAN FIELDS
In order to generalize the results of section 3 for the non-abelian case one needs

to introduce the non-abelian potential 1-form

A= 43Nz, (29)
where A® are the generators of the gauge Lie group G satis{ying

[Aa,Ab] — fnbcAc. (30)

Latin indices are reserved to the group manifold, and the summation convention for
repeated indices is adopted. Let us restrict ourselves to compact semisimple Lie
groups, so that the structure constants are anti-symmetrical under the change of any

couple of indices. Any element g € G can be written as
g(z) = expif™{z)A?, {31)

where #°{z) are the group continuous parameters.

Here it’s important the same comment already made in Section 2. The gauge
potential 1-form (29) plays the role of a connection in the principal bundle P(M,G),
and we can assure the global validity of a single gauge potential only for trivial
bundles. [6]

From (29) we can define the 2-form equivalent to (10),

i
F=DA=dA+ANA= S dz" Nds, (32)

where F3, = 8,A] — 0,4 + f“b“AzAf, is the usual non-abelian strength tensor. The

derivative D is the covariant derivative that has the appropriated transformation law
under gauge transformations.
As in the abelian case, the homogeneous non-zbelian equations are a consequence

of Bianchi identity

DF =dF + ANF — FA A= (8,F5, + ALFS F) Xedat A de A da” = 0.

B owi

S

(33)

The non-homogenous equation for non-abelian gauge fields are written as the Maxwell
ones (13). For simplicity and without generality loss, we will treat the case ﬁithout
sources:

DF=dF+AANF-TFAA= % (GM*F:,, -+ Af‘*Fjuf“"c) Adz® A de” Ade¥ =0,

(34)

where the dual of the non-abelian strength tensor is defined as in (14). In the same
way of abelian case, equation (33) is already in 2 covariant form, but due to the
term *F', equation (34) must be generalized in a curved space-time. To cast (34) in
a covariant way, one needs to substitute &*'F — D°F in (34) as we did in (15). The

derivative T is defined as
DF =d'F+wA'F, (35)

where w = I', da™. We can check that (35) is equivalent to (15). Using the derivative

D we get the following generalization for {34)

DF=dF+wAF+ANF-"FAA=

1 *rc al (43 (41} 17
=5 (8uF5, -+ Do Fo, + AVFLS b) xeda" A da® A dz” = 0, (36)
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Tn order to equations (33) and (36) have non trivial solutions one needs that D(DF) =
D(D*F) = 0. Using the fact that DF and D"F are respectively an 3-form and a

relative 3-form with weight —1, we can obtain
D(DF) = d(DF)+ AN(DF)+(DF)AA=0, (37)

for the homogenous equation {33). For the case of the non-homogeneous equation

(36) we have
D(D'F) = dDF)+wADF+ANDF)+(DF)ANA=dwNF, (38)

and to get the desired condition D(D'F) = 0, we are enforced to have dw = 0. Since
w is an 1-form and it is closed, by the converse of Poincaré lemma, we have at least
in a star-shaped region that w is exact, w = df, what is the same result that we got
in the abelian case.

Under the hypothesis (5) we have the usual coordinate expression for (33)
e (85F2% + AGFSf) =0, (39)

and the following expression for the generalized non-homogeneous equation {34)

V=g

One can check that the equations (39) and (40) are invariant under the usual non-

aﬂe2@\/:"§Fuvp + Achunfabc = 0. (40)

abelian gauge transformation
Ay = gA,,g“] + QBHQ'_]: (41)

where A, = A3X%. ltis clear from {40) that non-abelian gauge fields are sensitive to
the non-Riemannian structure of space-time.

As in the abelian case, one can try to get equation (40) from an Action prinéiple.
We know that in Minkowski space-time the non-homogeneous equations are gotten

form the action

11

5= [trace(F AF), - (42)

which has the following coordinate expressibn
= 1 g trace (Fo, powxen) = = [ dioFg Fom 3y
_Zf ::;ace(w )—Zf zF,, ) (43)

where the normalization condition: trace(A®A') = §°°, was assumed for the group
generators.

In order to cast (42) in a covariant way, one needs to substitute the metric tensor
ased in the definition of the dual and to modify the measure of integration. We pick

the same measure used in the abelian case (25}, and get

8= feze\/—gtrace(F ATF), (44)
which has the following coordinate expression
1 13 a3 jir
= Zfdda: 829\/—9FWF ", (45)
Equations (40) follow from minimization of (45). It’s easy to realize that the action

(45) is invariant under non-abelian gauge transformation (41).

V. FINAL CONSIDERATIONS
Let us summarize the results of previous sections. The Action for gauge fields in

{J, space time is given by
1
S= fem\/w_qtra.ce(F/\ = Z‘fd":cem\/—gFﬁyF“"”.
The U, equations of motion are

EaB'yS (aﬂF-;s n A!,é _;:sfubc) =0,

€

V=3

a“e‘ZO .v‘__gFauu + A:)‘Fcupfnbc — 0,
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where the last equations follow from the Action principle. It’s easy to check that the
abelian limit of these results corresponds to the Maxwell model of Section 3. These
results are valid in an Einstein-Cartan space-time where the trace of the torsion tensor
can be derived from a scalar potential, S, = 8,0. On the other hand, we cannot get
consistent equations if the trace cannot be obtained from a scalar potential.

It should be noted.that the existence of the scalar ©, such that S, = 0.0, was
assured by the converse of the Poincaré lemma, and then, one cannot assure that
only one scalar © is enough to define globally the trace S. This will depend on the
. topology of the space-time manifold M. As an example, for M = R* we can define
the trace S, globally from an unique scalar ©.

In our discussion, the space-time manifold is considered as independent from
the gauge fields. Gauge fields impose some restrictions on the geometry, but its
dynamics are not affected by the gauge fields, as an external field, But we know, from
Cleneral Relativity, that the dynamics of the space-time geometry must be governed
by the non-gravitational fields, in this case the gauge fields. An interesting point is
to introduce the geometry of the space-time in the discussion, by adding an Action
for it in the Action principle. These topics are now under investigation.

The problems of covariance of the equations of motion always was connected with
the duals of the strength tensors, and we would like to dedicate the last subsection

to this topic.

A. Hodge star operator
The mathematical essence of the problems with the covariance presented in the
last two sections, is the duality transformations, i.e. Hodge star (*) operation[6]. The
problems with covariance could be avoided if one changes appropriately the Hodge

*

star operator for an U, manifold. For this purpose, we introduce the * operator

13

following [6).

Be M a n-dimensional differentiable maﬂifold endowed with a metric g, and with

'a metric-compatible connection I'y;, and 0™ (M) the space of differential m-forms on

it. The Hodge * operator is a linear operator
(M) - QM) (46)
which for 2 Riemannian manifold has the following action on a basis vector of Q™M)

i o (23] m \/E x] ... Byt Bn
(dz™ Adz®* A ... Ade®) = me L BT Y A ... nde™,  (47)

where €4, _a, is the totally anti-symmetrical symbol. The action of (47) on the basis
vector for QO(M} gives

- g o ap
1= %aal_,_aﬂdm LA A det = fgdie, (48)

that is the invariant and covariantly constant volume element for a Riemannian man-
ifold.

In an Einstein-Cartan space-time, the volume element (48) is not covariantly
constant, in contrast to the Riemannian case, as one can check using the fact that

/g is a scalar density

D,+/9 = Bu/3 — Tau/a = —25,+/9. (49)

To get an invariant and covariantly constant volume element for an Einstein-Cartan

space-time that obeys (5) one needs to modify the Hodge * operator by

h
“(dz™ A dz®™ A ... Ad2™) = —(—n—#(_%ﬁe“"““"‘ﬁmﬁuﬁﬂdmﬂm“ Ao Adz,  (50)

where the scalar density h{z) is such that d,h = I} k. We already know that
h(z) = €2®,/g. Using (50) to define the duals used in the equations of motion and in

the Lagrangian we will get automatically the Uy covariant equations.

14



It is not clear if one can define a Hodge * operator in order to obtain a invariant

and covariantly constant volume element for the case of Einstein-Cartan space-times

not obeying (5).
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