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ABSTRACT

The effects of the vacuum electromagnetic fluctuations and the radiation reaction
fields on the time development of a simple microscopic system are identified. This
is done by studying a charged mechanical oscillator (frequency wy) within the realm
of stechastic electrodynamics, where the “vacuum® plays the role of 2 large energy
reservoir. We show how the Liouville equation is transformed into a Schrédinger’s
like stochastic equation with an arbitrary “quantum” of action A’. The role of the
physical Planck’s constant % is introduced through the zero-point vacuum electro-
magnetic fields. The perturbative and the exact solutions of the stochastic Schrédinger
equation are presented. The non-perturbative solutjons appear in the form of sub-
Ileisenberg states for which the initial elassical uncertainly relation takes the form
{{A=)*H{Ap)?*) = (7/2)?, which includes the limit of zero indeterminacy (&' = 0).
We show how the radiation reaction and the vacuum Belds govern the evolution of
these sub-Ileisenberg states in phase space guaranteeing that they decay to the sta-
tionary state with average energy huwg/2. Environmental and therma) effects are
briefly indicated and the connection with similar works within the realm of quantum

clectrodynamics is also presented.

I. INTRODUCTION

Even in its ground state, a microscopic system possesses fluctuations which are
associated to the zero-point (or zero temperature) energy which exists in empty space.
The most striking example are the electric and magnetic vacuum fields which can be
indirectly observed(ls2]. The spectral distribution pp(w) of these electromagnetic
fields is well known and it is related to the correlation function of these fluctuating
fields through the ensemble average[l’ 3],

= (Byr() Bor(0) = [ d po) cos(wt) (11)

Here Eyp(t)} is the r component of the vacuum electric field at time # and at the
origin of the coordinate system.

Within the realm of stochastic electrodynamics (SED) these Evp fields are clas-
sical random fields with zero mean[l’sl. However, within quantum electrodynamics
(QED) these electromagnetic fields are considered quantized, that is, they have a dual
(wave-particle) nature. Nevertheless in both theories (SED and QED) the spectral

distribution is such that{l"'g}
po(w) = B2 | (1.2)

where A 1is the Planck’s constant and ¢ the velocity of light.

In this paper we shall study a charged oscillator by considering the stochastic elec-
trodynamics approach for two reasons. The historical reason, which is inspired in the
attempts of Planck[4], Einstein and Sternl5! and Nernst[®! “to return to continuous
changes in energy”. The philosophical, or unifying reason, which is the SED attempt to
7.

bring classical and quantum theories to a closer (and maybe nonconflicting) relation!

The classical equation of motion of a charged oscillator {charge ¢ and mass m) is

given by



i = ~wke+ = [Bre(t) + Enn()] (1.3)

where e Erp(t) is the radiation reaction force. The total electric field acting on the
particle, that is, E(t) = Fyvr + FErr will be considered only a function of time within
our nonrelativistic approximation.

According to this classical view, the probability distribution in phase space z and
p=mi (kinetical mementum) will be denoted by W(z, p,t), and will evolve in time

according to the Liouville equation, namely:

aw a ., a .

Since pfm = £ is related to the stochastic “vacuum” field Fyvp(t) (see {1.3)), the
above equation (1.4) can be iransformed into a Fokker-Planck equation in a standard
manner[g]. Here, however, we prefer to transform the Liouville equation directly into
a Schrédinger’s ke stochastic equation. The main reasons for this choice will be:

a) to show that the Schrodinger equation for an oscillator is entirely equivalent to
the classical Liouville equation. Therefore the so c_a]led “quantum” calculations using
the Sclzédinger equation are in fact a classical description of the oscillator.

b} We also show that the wave functions and the energy levels obtained using the
Schrédinger equation have no physical meaning being only mathematical tools, useful
for calculation purposes, but not strictly necessary for a physical description of the
system.

We shall present the above results in a new form through the introduction of an

arbilrary constant %' with the dimension of action.

IL. LIOUVILLE EQUATION IN SCHRODINGER’S FORM

The transformation of the classical equation (1.4) into another (equivalent) equation
which looks like the Schrédinger equation is known since the famous work by Wigner[g]
which was published 60 years ago. However, we shall present the derivation in a new
form which will be very convenient for our purpose, that is, to obtain sub-Heisenberg
states and to discuss the effects of Eyr and FEggp on the time evolution of any
physical state in phase space.

Using a procedure similar to that introduced by Wigner[g], we shall define an

auxiliary function ¥(z,t) through the Fourier transform[19];

(o4, t) bz —1,8) = j_: dp W(z,p,¢) exp (— %w) , (2.1)

where %' is an arbifrary constant with dimension of action.

We shall keep &' # & (B is the true Planck’s constant} in order to stress that &'
has no dynamical meaning. In other words, we shall see that % (introduced in (1.2))
has a dynamical meaning and determines the equilibrium state of the system, whereas
' (introduced in (2.1)) will be related to the shape of the sub-Heisenberg states. It
is worthwhile to mention that the ¥ functions are not uniquely determined by (2.1).
Nevertheless it is easy to show that 1 will satisfy a Schrddinger’s like equation as we
shall see in a while.

Having defined (z,%) through the Fourier transform (2.1) one can ask what will
be the equation obeyed by #(z,?) if we impose that W(z,p,t) obeys the Liouville
equation (1.4). The answer is very simple. The substitution of (2.1) into (1.4) leads
tol9 10]
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Therefore, (2.2) may be interpreted as a classical stochastic Schrédinger’s like equation
for the auxiliary function w{z,t). However, one must avoid to interpret (z,t)
as “wave function”. The equivalence between (i.4) and (2.2) is exact only for the
harmonic oscillatort! 1),

Since Eyr is the stochastic vacuum field, the solutions of equation (2.2) will have
properties that depends on the statistical properties of EVF'[12]. Within SED, the
zero-point electromagnetic fields are Gaussian random fields.

If we look for solutions of the Liouville-Schrédinger equation (2.2) we can use the

fact that the Hermite functions, namely:

mwy 1/4 CXp (_ mﬁl‘.:Jﬂ 3;2) T
dnlz) = ( k' ) (2"721)1/2 . (:c T) ’ (2.3)

form an orthogonal and complete set, thus fulfilling the condition

o0

2 #u(z) daly) =8z —y) . (2.4)

n=0

As a matler of fact, the functions % = gn(z) e ¥ are solutions of (2.2) if

e=10. However, the set of “energies” e,
. ! .
en = Bluy (5 + n) , (2.5)

cannot be interpreted as the energy levels of the oscillator because A’ is arbitrary.
The trne Planck’s constant % only appears through the influence of the vacuum fields
Evp(t) whose spectral distribution po(w) was introduced in (1.2). Another reason
which forbids us to give physical interpretation to the “states” (#.(z),en) is that they
do not lead to positive definite probability distribution in phase spa,ce[13], with the
excepiion of the “state” (do(z), €0 = EJ-;Q) However, even in this case, we cannot

identify do{z) with the true ground state of the oscillator because % is arbitrary. It

5

is important to remark that, from the logical point of view, the “states” ¢.(z) and
the “energy levels” ¢, are unphysical quantities even if we choose A’ = 1.0545887 x
10~% erg sec. The reason is that (2.2) is the classical Liouville equation (1.4) no matter
the numerical value of the auxiliary constant #’.

Nevertheless, since the set of functions ¢,(z) is complete, we can write the solution

of the stochastic Schrédinger equation (2.2) in the form

fe

B2ty = 3 an(t) gale) eV (2.6)

n=g

and try to find the coefficients a,{f) by substituting (2.6) into (2.2}. We shall discuss
the solutions of {2.2) in what follows. Let us first consider the usual approximate

method.

III. PERTURBATIVE ANALYSIS

Let us introduce the mathematical hypothesis that for ¢t = 0 the ¢ function is
such that

#(z,0) = $fz) (3.1)
where @,(z) is given by (2.3) and £ is an arbitrary integer. A standard perturbation

calculation will give
. t »
an(l) = bpu + %";xnf f dt [Eve(t)) + Enn(t)] €< 4o (3.2)
4]

where Bw,e = ¢, — € and z, are defined as:

zu= [ desdiie) blo) _Ea (33)

w}



We would like to make a few remarks at this point. Firstly, the Planck’s.constant
h contributes to @, through Eyr only. Note, however, that (Evp} = 0. Secondly,
the approximate equality in the right hand side of (3.3) is valid if the radiative forces
in (1.3) may be considered less important than the harmonic force —mw? 2,

The average rate of exchange of energy between the charge and the tofal radiation

ficld is such that

£()

il

U—O:o “ f:c dpW(z,p,t) e [Enn(t) + Evr(t)] ;%>

SRR -+ gvp . (3.4}

Iere it is understood that W(z,p,t) will be calculated by using (2.1), (2.6), (3.1) and
(3.2). The ensemble average indicated by () has exactly the same meaning as was
indicated in (.1.1). Within this perturbalive analysis we shall calculate £(£) up to the

order e®.

The radiation reaction force will be approximated by

153

2 ewi .
fo g =, (3.5)

[4 Enn(t) ~

| o
nln
o

where we have introduced the notation + = 2e2w2/mc® for the damping constant.

Therelore, up to order e?, E:'RR will be given by
. 26 4 f> 2 2
Ern = = 5 5wl f_mdw 162) = —ver (3.6)

since a, =~ &, (see (3.2}) in first approximation. Such a result, which is extremely
stmple, means that if only the radiation reaction is present, the oscillator states are all
uns(‘.a.blc[l'l}, since the square of = (or #/w?) has a non zero average value in such

states.

A convenient form to write this simple result is

| 2o

. 2 =
Erp = ~ <3 D FnEar (3.7
n={

where we have used (2.4) and (3.3).

In order to obtain a similar expression for Eyp we must take into account the
second term which contribuies to the coefficients a,(t) (formula (3.2)). Considering
that (Evr) = 0 and that the correlation function for the vacuum electromagnetic
fields is given by (1.1) we obtain from (3.4) that, in the limit wol < 1, Er will be
given by

drle? = R
ey Y. polwe) Zenkae (3.8)

n=0

Evr
where po{w) is the zero-point spectral distribution introduced in (1.2). This
approximate result was obtained previcusly within the realm of QED[H] using the
particular value %' = A. The calculation is justiﬁed[15] only if we consider that the
time ¢ is such that 7 €« ¢ & 1/wy where 7 is correlation time associated to
(1.1). This time 7 was assumed to be very short compared to the period of oscillation
27 Jwo . Similar calculations where also performed within the context of sgplt2,

Combining equations (3.7) and (3.8), equation (3.4) can be cast into the interesting
form

£(0) = —%g [(1+%) S g e+ (1'_ g) > mi,,,} . (3.9

n{<t) w(>£)

which is the main new result of this section and deserves a few comments.
The first term in {3.9) represents downward transitions (to lower energy states
€s < ¢;) while the second term represents upward transitions. Therefore, since the

constant %' is arbitrary, both type of transitions are allowed. We also conclude that

8




£(€) is always non-zero. If, however, we take the less general situation in which &' =&

we obtain

ewd

me®

: 4 . .
£ = =35 3 Embae = - (e —eo) (3.10)

n(<£)

UYL

which is the more familiar result from QED calculations{14]. In other words, if &' =%
we are not able to see the upward transitions which are present in a more general
situation which we shall present in the next section. We can also conclude that the
slalionary state (average eﬁcrgy € =k %q) cannotl be stable in the absence of the
vacuum energy fluctuations which exactly balance the energy loss due to self reaction.
Therefore, a striking conclusion of the above analysis is that it is the “vacuum” energy
that prevents the oscillator collapse and gives us the criterium to identify the equilib-
rium state. Tt is a matter of taste if we decide to make the mathematical analysis of
our syslem using the Liouville equation (1.4) or the Schrodinger like equation (2.2).

Both descriptions will be conceptually classical,

IV. NONPERTURBATIVE ANALYSIS AND SUB-HEISENBERG STATES

Let us see how one can easily find a set exact solutions of the classical stochastic
Schrodinger equation {2.2). We shall also show once more that the arbitrary constant
k' has no dynamical role,

Using a well known procedure (see the paper by Schrﬁdinger[m]) one should look

for solutions of (2.2) with the form of “coherent”[17] states

Belt) = dolz — ) exp [hi (ape — g(t))] . (w.1)

Ilere we are using A’ # & and ¢o(z) is given by (2.3) with n = 0. We shall call

these states as classical sub-Heisenberg states.

9

Tt is straightforward to show that p.(t) = ma.(t) and that z{t) must obey the
classical equation of motion (1.3). It is also not difficult to obtain a closed expression

for g{t) which will be given by[l7:

Bugt 0 TR muwdgd(d)
t I= e dt’ < - Ll - 4'2
9() 5t .[0 [ Im 2 (4.2)

The classical trajectories z. can be easily found if we consider the approximation

(3.5) for the radiation reaction force. It can be put in the form

we(t) = za(t) + 25() (4.3)
where z4(t) is the deterministic part which depends on zp (initial position) and pg
(initial momentum) and =z,(t) is the fluctuating part. More explicitly:

2 :
Ty = [a:g coswnt + (w) sinwlt] e F R (4.4)

2muwy

where w? = wl — y2/4.

The fluctuating part, z;, depends on the vacuum field Eyp(f) and has the simple
form

t I3
zy(t) = — mi,lfgdt'E"F“') sin [wy (£ — 1)) e7 @) (4.5)

With the knowledge of these nonperturbative sclutions #.(z,t), one can chtain
exact expressions for the coefficients a,(t) used in the earlier expansion formula (2.6).
We shall not present it here since they have been explicitly written previously[127 17}
(the only difference is that here #i’ is arbitrary). It is also interesting to recall that for
each zo and pg (see (4.4)) we have a different sub-Heisenberg statell2 17], Therefore,
one can obtain various sets of phase space distributions W{z,p,t} through different

e with different zo, po and &'.

10
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The Wigner function associated to these states #.(z,t) also have a simple form.

If we substitute (4.1} in (2.1) we get[17]

m iy
ﬁ’

(e - - EoPS ] (4.6)

LV(.."‘,,p., t) = (—'Tﬁ”)ﬁl exp | — hlmwo

which has very interesting properties.

Since A’ is arbitrary we can consider, for instance, the particular case
,1.5”}] W{z,p,i=0)=68(x— zo}8(p—p0) , (4.7)
which ts a typical delerministic inilial phase space distribution.

If for instance, 7o = pg = 0 but A’ # 0, we get an initial phase space distribution

Mg &’ I

i
“V(.T,]),t-: 0) = o7 oxp (— ) = Winlz,p) {4.8)

B A'mwg

which corresponds to an initial classical uncertainty relation of the form

{(Aaxy){(ap)y?y = (W/2) . (£.9)

Therefore, we can analyse the phase space evolution[18:19] of our system by using
ihe sub-Heisenberg states (4.1). Our conclusions are not restricied to the perturbative
domain (see (3.9) and (3.10)), it also include arbitrary initial shape because &' is also

arbitrary. This freedom is possible within SED but is, up to now, avoided within QED.

V. EVOLUTION IN PHASE SPACE

The classical trajectory, z.(¢), and momentum, p.(f) = mdi.(t}), which appear
in the Wigner function W{z,p,1), obtained above (see (4.6)) are correlaled. The

various moments can be obtained from the definitions (4.4), (4.5) and also with the

11

use of the statistical properties of the vacuum electsric field (see (1.1}). In this section
we shall obtain the ensemble averaged phase space distribution, namely (W(z,p,t)},
by using the transition probability[zg] in phase space @{zpt|z'p"). In other words, if

Win(z',p"} is the initial (¢ = 0) phase space distzibution, then, at later times, we get

(W) = [ do [~ dif Qaptle’s) Wa(a',p) - (5.1)

The transition probability Q satisfies a Fokker-Planck{20] equation which is the
generalization of the Liouville equation {1.4}. Within SED, this equation is well known

8]

and can be written a.s{

o (59 g [ bremadeogase e

where D is the diffusion coefficient.

At zero temperature, the diffusion coeflicient is given by

D = [lim wen] =32 :3)

where pg(t) =md,(t), z,(t) given by {£.5).

The solution of (5.2) is also well-known and can be written in the form[20:21]

27 oy agf1l — €2 Q(zptle’p’) =

=exp{— [(p””“)zﬂx_f“)Z— % (m—ma)(pﬁm}]/%l—fz)} :

al af a0

(5.4)

where z4 (ps = my) is the deterministic trajectory (see (4.4) and replace zp — 2
and pp — p).

12




The function e(t) is given by[21]

D ? |
od(t) = p {1 - [1 + %}—? sin?(wt) — EwII sin(?wlt)] e"'t} ) (5.5

whereas ay(1) is such that

2 . D 72 ] v . v
ot = —— <1 - |1+ 5% sin (wit) + o sin(2wyt}| € . (5.6)

2,.,2
ymPuwd H

The correlation £ is given by

sin®(wif)e™™ (5.1)

Eayog = 3
muw;

and, since @Q(xpt|z't’) is a classical transition probability within SED we also have
lim Qept|2'p’) = élz — ") é(p—p") . (5.8)

Let us assume that W;,(z'|p’) is given by (4.8), which characterizes a simple initial
sub-lcisenberg state in phase space. We now want to calculate the average energy

E£(#) as a function of time. The explicit definition is

£(t)

2
o [ de (2t Lz Wi pt) =
[ [ (2m+2mwox)( (2,5:1)) =

=) .
% + %mwg zz (5.9)

Using (5.1) and also (5.4) we obtain for 2? the following result

— K 7N v -
T = 52 = YHwgt) + —— sin(2uw)| e
T T [cos (o) + (1 + 4w127) sin®{wyt) + o sin( 2w, )] e 4
oLl 2 e+ sin(2w1t)] e_'ﬂ} , (5.10)
2 wn 2w 2un
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nd a similar expression for pf.

It is interesting to observe that for vt > I we get 22 = h/2mw,. Note that
iere h is the Planck’s constant whose origin is the vacuum field which appears in the
tochastic Schrédinger equation (2.2).

The final result to the average energy is

hug (W - B

t) =3 2

2
-t T ein
1+ 52 sin (wlt)] ) (5.11)

there we have neglected +%/wl as compared to 1. It is easy to see that E£(t)
aries from £(0) = ﬁ—l;-t’?_ to E(o0) = % which is the average energy of the
zechanical oscillator in the stationary regime. The above result (5.11) is more general
han our previous formula for £(£), presented in Section III (see (3.9) and (3.10)), in
wo respects. Firstly, (5.11) is valid for times in the wide interval from ¢ < < oo

‘hereas (3.9) is valid only for small t (wof < 1}. Secondly, the initial state . isa

ub-Heisenberg state with contributions from all states ¢,{z).

’T. CONCLUSION AND DISCUSSION

Let us briefly discuss the effects of non-zero temperatures and also other interesting
nvironmmental effects on the evolution of the sub-Heisenberg states analyzed in this
aper.

If the oscillator is inside a cavity with temperature T, then the spectral distribution

f the “vacuum” electromagnetic fluctuations is given by[1’3]

IR ] 1
)=z |55 TR | (6-1)
exp kT




instead of {1.2). Thercfore, a simple rule, to generalize our previous results to finite
temperatures, is to replace A by & coth(fiws/2kT) in every place in which Planck’s
constant appears (for instance in the diffusion coefficient D given in (5.3)). If we
want, for instance, to describe finite temperature effects (and dissipation by radiation
reaction) on the oscillator, within the usual QED formalism, we should use (2.2) with
K= #. The thermal radiation effects will appear through FEyg, which now has
the spectral distribution (6.1). However, the equilibrium distribution, that is, the
“ground” state distribution at finite temperature, can be obtained directly from (2.2)
by taking ¢ =0 but choosing A" = h coth(fiwg/2kT). The detailed justification of
this procedure (within quantum mechanics) is not triviall22].

Another inleresting environmental effect on the charged oscillator occurs when it is

23]

inside resonant cavities! 23! or between two perfect plane mirrors2425]. In the latter
case, the emission and the absorption of the oscillator depend on the position and the
orientation which the oscillator has with respect to the mirror plates. If the oscillator

is oriented parallel to the plates, the damping constant v (see (3.5)), is modified to

another one ('yu(wo)) which is a more complicated function of wy, namely[25]:

me Bealmd Tes\ 2t T
Tylwo) =y 2 3 [1+ (—) ] sin? (E) . (6.2)

Zwga wya a

Here, @ is the distance between the mirror plates and b (b < «a) is the distance
from the oscillator and one of the plates. An interesting remark is that 7"(w0) =0
if we < 1;3. In this case the oscillator cannot loose energy and all states are stable.
In other words, the charged oscillator behaves as an uncharged Newtonian oscillator.
Even the true Planck’s constant % has no role in this particular case. The reason is
that the spectral distribution is also modified by the perfect mirrors, that is, po{w) is

replaced by p”(w) such that/2]

15

(6.3)

Therefore, pll(w) = ¢ for frequencies 0 < w < wcfa. If the oscillator frequency is

_in this interval then the “vacuum” field Eyr is unable to excite the oscillator which

is oriented parallel to the perfect mirror plates (the situation is completely different if
the oscillator is oriented perpendicularly to the plates). It is interesting to see what
happens, from the QED point of view, with the “Newtonian” oscillator i we remove
the perfect mirrors, allowing radiation of all frequencies to excite the oscillator. Within
the QED approach the electromagnetic fields Eyp and Enp are operators. Therefore,
we can use equation (1.3) as the Heisenberg equation for the position operator z. The
solution of the Heisenberg equation can be written as before (see (4.3) to (4.5)) if we
approximate the damping foree as proportional to the momentum (see (3.5)). Due to
the effect of the perfect mirror plates, the oscillator is initially Newtonian and we can
consider xg and pp {see (4.4)) as commuting variables. Therefore, after removing the
perfect mirror plates at =0 it is possible to show that the commutation relation at

later times will be[29’3U]

[z.p] = ik (1~ ™) (6.4)

This shows that, in principle, sub-Heisenberg states are also possible within the realm
of QED because [z,p] # ik for small times (4t < 1). However, when the plates
conductivity is finite, the discontinuities of (6.2) become smooth because there is always
some residual noise at all frequencies[gﬁ], that is, p”{w) #0 for 0 <w < co. This
forbids practical observations of sub-Heisenberg states by this method. However, other
related interesting phenomena (as the suppression of spontaneous emission) have been
observed experirnent.ally[27] and explained theoretically within the realm of sepl’l. m

this case, the corresponding QED calculation, based on the Lamb-Bethe theory, also

16




agrees with the experiment bul, as far as we know, these quantum calculation ilave not
been 1)t1|JEishcd[27].

Finally we would like to recall that Born, Heisenberg and Jordan (1926) and
Dirac (1927), showed how to systematically quantize the free electromagnetic field by
exploiting the represeniation of each field mode as a harmonic oscillator(28). However,
it is now well known that the harmonic oscillator must be considered an essentially clas-
sical systcm[g"lg]. We have shown this fact, once more, by discussing, in section II,
the equivalence between the classical Liouville equation and the Schrédinger equation
for the oscillator. Therefore, we think that the famous Einstein question (“What are

light quanta?”) must be reconsidered within the realm of QED and SED[3L],
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