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Abstrgct

We analyse the longitadinal asymmetry of epithermal noutron scatiering. We
show, using the Optical Background Representation, that the energy average of
the parity non-conserving matrix element iz the optical model one. We also
derive an expression for the average longitudinal asymmetry which involves the

off-energy-shell PNC matrix element.
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1 Introduction

The recent discovery of sign correlations in parity non-concerving (PNC) epithermal
neutron-induced compound-nuclens reactions involving the heavy nucleus 227h, hes
prompied intensive theoretical discussion of then origin. The great interest in the
TRIPLE data[1] stems from the fact that the statistical theory (ST) of these reactions,
supposedly quite appropriate at these low energies, though predicts large PNC for
individual resonances as the data also show, it rules out any sign correlations in the
longitudinal asymmetry contrary to what the data reveals, In fact, according to the
discussion of Ref.2), the above mentioned longitudinal asymmetry, defined for the M

th resonance to be

o = o)

Pp=Sr "%
EOFC

@

where ag) is the R-th P-resonance total cross-seciion for positive (negative} nentron

helicity, can be represented as

Pa=P+ P {2)

In the Eq.(2), Pf averages to zero over many resonances, whereas P exhibits the

b [ 0

‘The TRIPLE data gives for B the value 0.08.

Several models have been proposed to discuss the large value of B reported by
the TRIPLE collaboration. We mention first the work of Auerbach{3] and Bowman
and Auerbach[4], based on the doorway mechanism. The authors assume that the
n+%2 Th system is modulated by a 0~ colletive state (doorway) that leads 4o the PNC

enhancement of B. However, it was found that such a mechanism leads to a serious

behaviour

descrepancy when compared with the single particle model. Another proposal for the
large value of B was advanced by Lewenkopf and Weidenmiiller[5]. These authors

propose a more detailed reaction mechanism based on conventional concepts. They



give arguments that the external mixing, involving compound - direct - conipound'

processes, may be responsible for the enhanced value of B,

Optical model {OM) analysis of the data has also been performed by Koonin, John-
son and Vogel[6] and Carlson and Hussein[7, 8], In such an analysis quantitative results
can be obtained concerning the value of B. The result obtained by Refs.6),7) which
is based on the use of a strong parity conserving (PC) complex interaction plus a
weak PNC, indicated that the latter inleraction is more than two orders of magnitude
larger than estimates based on standard meson exchange medels. However, as pointed
out by Carlson and Hussein{8], care must be taken when confronting the data on the
longitudinal asymmetry with the optical model. See also Ref 5.

The reason for this is that the optical model describes the quantity

<o) = oD 5

POM = —————
< a'g) + (IE;;) >R

(4)

In contrast the average asymmetry P is defined by
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Therefore iwo potentially important differences between FPoy and £ can be indi-

cated by writing

P= Pour 4+ APepyy. + APE,.Q. (6)

where the term A F,,,,. arises from the numetator- denominator correlations and A Pg, 5
i5 due to the replacement of resonance average by energy average {ergotic theoremy).
From the raw data supplied 1o us by J.D. Bowman we found out that APg,, is in fact
very small. This we obtained by constructing {rom the data the quantity

< 0-,(}?_+) _ 651—) > Resonance

P= 7
< ag) + O’fp;) > Resonance ( )

and by writing
P = Por + APs,, ®

Since Fopy, found by reference to be 6.7z107* (for K, = 1leV and the PNC pa-
rameter e; = 1) and this is about 400 times smaller than P, we reach the conclusion
that

P~AP,.. {2)

Nemely, the optical model supplies the background contribution to P, which is very
small as expected. This is so since if no p-resonances were present the fluctuations in
or desappear and accordingly AP,,., becomes zero.

In this coniribution to the Weidenmiiller Festachrift we analyse the nature of
AF.,,. We do this with the optical background representation of Kawai, Kerman
and McVoy[9]. This method allows writting all quantities in terms of optical of the
different contributions to P less model dependent. Further, the OBR of Ref.9 supplies
a mean through which energy averages can be straight forwardly performed, since the
thrust of this method is the separation of the total open channel (elastic in this case)
wave function into an optical piece, and a fluctuating whose average is zero.

In the following we present the formal decomposition of P into several physically
well defined terms, as done in Ref.5. In contrast to Ref.5, however, these terms are
calcuiable with optical model generated wave and Green functions. We leave the nu-
merical analysis for a future publication,

In Section 2 we give a briel description of the optical background representation of
Kawai, Kerman and McVoy. In the same Section the average longitudinal asymmetry
is analysed. In Section 3 the different contributions to P are discussed and the term
which containg, what Ref.5 calls, the “Barrier Penetration Enhancement” is throughly
analysed. We show that this texm can be written in terms of an off-energy-shell version

of the optical matrix element of Refs.6,7,8.

2 The Optical Background Representation (OBR)
for Epithermal Neutron Scattering

At the very low energies of the TRIPLE experiment, one expects the population of

widely spaced, isolated, resonances in the compounde nucleus 2Tk, To describe the



scattering problem, we use the optical background rebreaenf.a.tion méthod developead
by Kawai, Kerman and MeVoy[8]. We also allow for the existence of a single doorway
to test its influence,

Before we describe the (OBR) we give in the following, the theoretical ingredients
needed to describe P. The interaction between the neutron and the target is described

by the Hamiltonian

H = Hpc + Venc {10}

where Hpc is the strong parity conserving many body Hamiltonian usually empioyed
in reaction theory and Hpyc is the weak parity nonconserving interaction given usually

by (in its one-body version).

PNC

ViR sy = Serl 00,7 7} (11)

where {(r) is a form factor that follows the shape of the nuclear density,
The longitudinal asymmetry can be calculated with first order perturbation theory,

which gives

o 8T Im TPNC(E) _ 8x? ImTPNC(E) 5
A =Y Yol +oo,) ko0 (E) (12)
2\Yp1/2 rl/2 Pl{2

where T#VO(E) is the distorled wave matrix element

B

THNC(E) =< WXNE) | Voye | T(E) > (13)

where WH(E) is the scattering solution for s1 /2 wave neutrons, and $X-)(E) that
of the p_ wave. In the following we perform the optical background decomposition on
192 > and < 97) |, and thus analyse, in details, TT¥C(E).

The many-body Schrodinger equation describing the n + Target system can be

writlen as usual, within the Feshbach formalism

(E - PHP) P¥
(E-QHQ)QV

PHQ QU
QHP PV (14)

wheze P projécts onto the elastic channel (p and s waves}, and Q onio the compound

states, We consider all the subspace Hamilionians to contain a PC and a PNC terms.

* The second equation in {14) can be formally solved for QV¥, and when the solution is

ingerted into Eq. 14a, we obtain

(E—- PHP - PHQG,; QHP) P¥ =0 (15)
1
%~ F-qHg

We now periorm the OBR on Eq.(15). We do this by writing

Gq =G +(Gg ~ Gg) (16)
where Gg is the energy-averaged compound propagator which is given by

~ 1

with [ denoting the energy interval that coniains many compound resonances but still
smaller than the width of the doocrway.
Clearly, Eq.16 can be rewnitten as

Go = Gq + G (iI/2)Go G (18)

and thus we can write formally

(E~PHP - PHQG,QHP)PU
~Lf2 o il 1/2/41(2
= PHQGY (E)WGQ(E) GY*QHP PY¥
= PVQ Gy QVPPY,
PVQ = Pﬂqégz(iz{)m (19)

We then obtain the desired solution

1
E-QHQ-QVPGGIPVQ
P 4 potf! (20)

PY Py + G PYVQ QVPF¥



The energy average of the second term on the RHS of Eq, {7) is identically zero by

construction. The solution P¥ is the optical model wave function and G(c;;l ]

GoH) = (B~ PHP ~ PHQGLQHP +ie)™! (21)
We are now in a position to analyse the PNC matrix element, 7777, of Eq. (13).

We generalize the decomposition of Lewenkopf and Weidenmiller for Teyc to write,
within the OBR,

Tene =Trp +Trg+Tgr + Toq (22)
where T =< WONE) | iV j | ¥ONE) >. Note that Tpp = TS¥ + TL, where
T =< PV | Veno | P > (see Eq. 22). The quantity TSE is the optical model
generated matrix element.

We now show that the energy average of Tpyc is just the optical model matrix

element, 7,77 To do this we write

Tene = Trke + This (23)

Here 7Y%, contains eight terms

WSl
Tene

< FU | Viyo | PO > 4 < PRI | Vo | PEET) >
< YO | Vpye | QU > + < QU | Vipe | P >
< P Voo | PR 5 4P | Voo | QUED >

< Q‘I’;(;_) | Vexe 1 PWEHﬂ >4 < Q‘I’g_) ' Vewao I Q‘I‘S-}') > (24)

1

+ + o+

On the average, the fitst four terms in Eq.(27) vanish by construction. Since |
P¥HI > and | PECM > can be written as a sum over isolated s1/2 and p1/2

resonances, respectively {Eq.20).

1 -
;P‘I’EH‘” = Gg;zszqu’)E—_m(q'iQVPIP\I’E"-})
q q 2
- (= 1
<P\p5,Jﬁl___Z<P\IJ£)QPVQ|q>E_Eq_nﬂ<q1QVPG‘JP¥’ (25)
q 2
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and G | ¥ > as

- )
= VP|P¥

Qe> E—QHQ-—QVPG‘O‘QPVQQ | P>

Z:[q'><q’|(;,JVPUE’“'IJ>
E—Eq’+'lf-'

qf

(26)

we can, to firsk order in Vpyg, write the following compact form for

i
< T >,

1 1 .
{ .
<T;Nc>=§;r-<zﬁ{E_Eq_irq/2<qlVPNc'q>
9'q

1

e 21
E-Eg+iq/24 (21)

1
g :s51/2, g:p1/2

In Eq. () we have introduced the effective PNC interaction, Voye, given by

Vene = Veno+QVP GE)*;):'PVNPG + VNPG%';):"P Ve
+ QVPGSI VenoGSl PVQ (28)

Further,
=< P¥ | PYQ g > VEr =< ¢| QVP | P8 > Vi ;

< fy; > = 1] (29)

In the evaluating < Tiﬁvc > we observe ihat only the non-diagonal terms in
the double sum contribute, and accordingly, using the uwsnal statistical arguments,

< 7% >= Othe energy average vanishes. Accordingly

< Tene >=Tohe {30)

Eq.(33) is an important result as it allows, as we show in the following, to write a

rather compact form for the quantity of interest here namely < %‘i’a‘i‘: >,
»l



From the discussion following Eg. (9), we may thus write (See Eq.(26))

PPy + AP,

8n2 i)
APuyr, = - Im < oS> (31)
p1f2

where we have used < _(35'" >"la (< 0(3}2 >yt

Eq.(34) is the pnncxple result of this section. It expresses AF,,,. as a sum of eight
well defined terms (Eq.27‘), that correspond io different mechanisms for parity non-
congervation in the compound nucleus reaction. We call the first four contributions
in Eq.2%#, the direct-compound (DC) mixing, while the last four contributions. The
compound-compound {CC} mixing. We remind the reader that room is left for doorway
effects to be included. Said differently, one can, if required, take into account the
possible effect of a collective O- state by consindering the projector, P, in Eq.1f, to be
composed of the 81/2 and p1/2 channels plus this doorway state. Clearly, the presence
of this doorway will also be felt by the optical piece of P, Foy, which may become
appreciably larger. '

The first and third terms in (2?) involves 81/2 resonances the second and fourth
ones, p1/2 resonances, while ihe last four texms (the CC mixing) contain both types of

resonances. The sum of these four terms leads to the unaveraged version of the RHS
of Eq.ﬁé‘; written in terms of Vpyc (Eq.2§).

3 General Discussion and Conclusions

In Ref.(5), the term proportional to Ty is said to contain the “dynamical enhance-
ment” of P, whose energy average is purported to be zero. Here we generalize this
statement by suggesting thai the whole CC mixing, contained in the last four terms
in Eq.(24) (which sum to the unaveraged version of Eq.(27). average to zero. Fur-
ther, these authors indicated that the second DC term in Eq. (24) contains what they
called the “barrier penetration enhancement”. We write the contribution of this term

explicitly

APEP — 87* Im < P‘I’ﬂ( ) I Venc E P‘I’(+)

corr — 2 0
3 A

> (32)
And thus

87 1 Im ¥ W arirs <41 QVPCSI(B)Venc | PEY >
- k2 VT 0

rij2

A PBP

(33)

Eq. (33) corresponds to the following process. The population of rescnance q from

the p1/2 channel, followed by the decay back to the pl/2 channels, which then weakly
couples, via Vpye, to the 81/2 channel.

Note, that in contrast to Ref.5 our channel wave and Green functions are optical

ones. This 18 advantageous as these can be easily generated from convenient optical

model codes. The argument given in Ref.(5) to show that APZF, could potentially be

responsable for the sign correlation resides in the observation that the term

< q|QV PGS Vene | PET) >

< q| QVP| PFEUE) > < PEP(B) | Vewe | PEV(E) >
=x/ : dE,  (34)
E—FE e
containg contributions from all B'. In fact, the dominant ones wonld come from E' >>
E (off-shell) since at these energies the P-wave barrier penetration reduction is absent.
We should emphasize again at this point that within our OBR, the matrix element
piven in Eq.(34) is represented with optical model wave functions of the type used in
s
Refs.(6) and (7). The dual wave < P_‘I’g)(E" } | is related to the DWBA wave function

< PUS(EN |, throughfi0]

r~ r~ ~ ~ ()
<Pm)| = X [ar <o) | Py PYE g
4

S;4(E) < Pa§(B) | - (39)

1

Thus, we can write Eq. (37) as

10



s

<q|QVPG Mvm | P >

= < g | QVP| OB = S5 < POOE) | Vone | FEU(E) >
—Z/w FE—E’-I—a'S
(36)

In Eq. (36), the weak matrix element < P‘I' (E") | Vewe | P‘I’(+) > i8 the off-ghell
version of the one calculated in Refs. (8) and (7), with appropriate optical potentials,
We see clearly that enhancement due to absorption of pl/2 neutrons is manifestly
present through the inverse elastic S-matrix element S5*(E' )

We turn now io the evaluation of APPF | Eq.(33). The average can be easily

performed by first recognizing that o{1/2 is just a sum over Breit-Wigner terms

RO %, :

pilz k2 Z (E E )g + r3/4 Q'Pllz (37)
Thus, at a resonance, g, we have the contribution a§°)1/2(lg) =82 /T,

When this ia inserted into Eq.(33) with E = E_, we obtain,

i )
APBP & 2\/27 < Im?& < q| QVPGSIF(E)WVeno | PEY 55, (38)

where we have replaced E-average by resonance average, and, owing to the isolated na-
ture of these p1/2 resonances, have taken the phases of 9% to be those of the OM wave
function. To proceed further, we recognize from. Eq.(34), that the matrix element <
g|QvVEP| F‘Ir‘ff)(E’) > is just —2=%(E’), where the energy variation arises from the p-
wave optical wave function
| P—'I!(H(E’} >. The variation of this latier is smooth, and thus we can write, as
Rel5, ¥ (E")/+E(Eq) = C(E'), which does not depend on q. With this, the g-average
in Eq.(41) 1s done.

The &-function contnibuiion to (36) is expected to be small since
< F‘I’f,_)(Eq) | is very small at F, ~10 eV. Thus we maintain only the principal
part of (E, ~ E' + i¢}~* and ignore E, compared to E. We thus find

11

Py g j 10(15") I S”(E’)|Re<P‘P( NE'} | Vowe | PESYE) > (39)

In Eq.(39), the modulue of 5';1(E’) appears becanse the phase is canceled by that
of ¥(E') and < PU(E') |. In Refs. 6,78, the optical model matrix element,
Im< F\I'g“)(E) | Vewe | P"‘I‘(,"')(E) >, was calculated. We see clearly in Eq.(39) that
AP3F depends on the off-energy-shell real part.

The contributions of the other DC mixing terms sre expected to be small. For the
purpose of completeness we give below the contribution of the CC mixing (“dynami-
cal enhancement”) to AF,,,, . Using the same procedure as above in performing the

average, we can wriie for the contribution of < Q‘I’f,_) | Vene | QESH >, the following

c _ <¢|Vewclg> 1
A‘Pc?m‘. =< 2§ Eq—E; ,Yg >q’ (40)

The average above is zero since, 4, and 47 refer to different compound states
and channels, thus according to our statistical hypothesis, these partial widths are
uncorrelated. From < 4} >,=, we thus obtain APCE = 0. The other CC terms are
also expected io average io zero for the same reasons as above.

Finally the contributions of the DC terms, < P_‘Iff,ﬂ | Vene | PO > and
< P_\I'( ) } Vch | QU > are very small since their contribution to AP, would
involve < ]—-l- 7‘;’ >, the last DC term, < QU | Vewe | P\IJ(+)
the barrier penelration enhancement.

It would be certainly interesting to extend the optical model calculation of Ref.(7)

> does not contain

{0 off-shell energies, in order to assess the over all enhancement in APZY Detailed

investigation of this, as well as the possible role of a doorway staie, will be published

later.
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