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Abstract

The relation hetween these two types of energy-momentum temsor is ex-
plained in a way that is easily appended to most text-book treatments.

Resumo : demonstra-se a equivalencia entre esses dois tipos de tensor de
momento-energia procurando-se seguir ¢ estilo dos tratamentos usuais nos
textos.



1 INTRODUCTION

It is well known that the canonical energy-momentum tensor [1] of a classical
field theory is not symmetric in its indices, except for zera-spin fields, and
that this spoils the elegance of the formallsm by requiring an ugly expression
for the angular momentum density of the field. This is clearly exposed in
many places, like, for instance, [2], and the solution is given in the classical
works of Belinfante (5] and of Rosenfeld [6]. All the matter is scholarly
settled there, albeit in a research report style, not appropriate for inclusion
in a set of lectures based on standard texts, like Landau, Lifshitz [1] or
Jackson [4].The rules for replacing the canonical energy-momentum tensor
by a symmetrical, equivalent one, the so-called Belinfante-Rosenfeld tensor,
however, are quite simple, and deservedly well-known. A possible alternative
is the use of the metrical energy-momentum tensor, introduced by Hilbert
in his classical paper [7]. In this note we intend to elucidate in a simple
way when these two kinds of energy-momentum tensor are equivalent and
when they are not. We will introduce our treatment in the very simple
case of a scalar field ¢. Then we will consider the case of a vector meson,
witich already exhibits the most general features, and outline the extension
le other spins, The paper purports to be a pedagogical one.

2 QUESTIONS OF EQUIVALENCE

In order to properly introduce the metrical energy-momentum tensor we
must work in curvilinear coordinates. Let £{g", %{- ¢,0;¢) be a Lagrangian
density.

The action is given by

§= [dsy(-o) m

The metrical tensor is obtained [1] by exploiting the fact that § must be
invariant under infinitesimal coordinate transformations z* — 2%, with

e = 2 4+ £(z). {(2)

Fields and the metric respond to this transformation in the following way

(1) - ,
bp(z) = () - #(z) = —£'(2)di¢ )]

bg™(x) = €5 4 gh, (4)

This induces in the action § the variation
85 = [ deb(/(-0)0) + [ do\(-g)L %)

where the second integral is essential, as a general coordinate transformation
doesn’t have to vanish at the boundaries of the integration domain. For a
nice derivation of this term see [3] . It is his equation (170). Actually, this
surface term is the key to the proof, as will be shortly seen. More explicitly,

/ w-g){ggw + _(%a,w}
a(«( )5 5, A/(=9)E) 0
+fd“ 90 g% ) 3519971

+f dafs’\/(—g)c. (6)
The usual partial integrations lead to
[ =055 - (V=D ~a)zg516 +

3(\/( 9 L) o 0G/-9)L) o i

+jd01[~/(—9)m]6¢
HV(=9)L) ;. i j :
i d —g)L. 7
+ [ anZor B 6% + [ doie!(=g) (7)
Tor ¢(x) satisfying the equations of motion the first integral vanishes. Defin-
ing [1] the metrical energy-momentum tensor Ij; by

M(=9)L) _ 5 H/(=0)C)
FTavi-g) = SLgE) 52 ay (8)

one has
! 3 [ dsv(-a)Tstg + / d"fv’("g)_aéf@w
+j 3(\/( 9)5) g'J-[-/dO’;fI\/( gL )

Assume for a moment that £ does not depend on the derivatives of
g*. This means that the connection coefficients I‘_;-kare not present, either
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explicitly or inside curvature tensors.(Of course this is always the case in
Minkowski spacetime described by “cartesian” coordinates).Inserting into
{8} the values of §¢ and é¢% one has

Imd + 88 L),
(10)

= %/d"fv’(—y)T;j(E“f +£ji‘J+dez\/(—y)£”‘{*a(?’)‘f¢)

that is,
§ =3 [ e/-o)Ti(€¥ + 69 - [dnv(-gmet, (1)

where we recognize

ac
0, = ———<8nd— &L
m 8(61¢’) mQS m

as the canonical energy-momentum tensor. Now, as shown in detail by [1],

5 [ FVDTHE + 69 = — [ def(-ghe 4 [ dor(=gyrien

(12)
Taking (12) into (11),

85 = - [day(-o)The' + [dn/-gem(al - €,).  (13)
As 65 should vanish for arbitrary £, one has
T, =0 (14)

and .
[ dor/(=o)Th - 04y =0

=0, (15)

showing the equivalence of the two tensors.

3 ELECTRODYNAMICS

Scalar mesons are a bit too simple, however. We now treat Electrodynamics,
where the main features of the general case are already apparent. Besides,
the method applies to vector mesons as well.

Consider Eq.(3). It exhibits the form variation of 2 scalar field, an es-
sential ingredient in the previous discussion. The form variation of a vector
field A, is given by [8]

§A, = —EBp Ay ~ Am(D,E™). (16)

This induces on the action § the variation

/ d"x\/(—g){a—aAé—EA, + a(gi 2164}

1 a(w/( y)ﬁ) (-g)L) @
+/d zf 6(—9—?—) B dg" ]

+f dcrzf'\/(—g)ﬁ- (17)

IJ+

Proceeding as before,

5 =
[ # o/ 9 G U= o—orz e ssA +

o« DS=9)E) Hy/(-g)L)

fd z[ ags O g boa® +

N f da,w(_g)a(g—i)]m, .

J et fucaoe o

Suppose the Lagrangian does not depend on 8;g”/ . Then, using the equa-
tions of motion for A, and the definition of the metrical energy-momentum
tensor,

55 = L[ aeycomiet + [ an/-srg s
P o

We now study the second term in some detail. It is better to write it in the
form '



] d“xar{v/(—g)%ms} =

-/ d“maf{\/(-ﬂg)-a(g%)(ams)f"‘} -

jddxar{\/(—g)g(";af:—As)Amaafm} (20

where use was made of the form variation of A,. Taking this inte Eq.(),
85 = [dla(-)Ts9 -

/ d’*maa{\/(—g)a—(‘g;ﬁ—a)(amm)am} -

ar

fd"maz{\/(—g)m Amdol™} +

[ g vi-o)c. (21)
Transforming the second integral into a surface one and using Eq.{),
88 =
[ dtov-ome s+

[dons(-o1iem - [ dor(-a)0nt™ -

[ /-9 gy An0E™) (22)
where we used or
ol = Ma'“A’ —8.c (23)
So,
65 =

J RN
] dor/(-g){Th, — BLYE™ —
4 af’ m
/d x@;{\/(—g)m Am&s& } (24)

Using the fact that ﬁ(g}%:j is antisymmetric in (v,8) , we have

/ d“za,{\/(_'g)% AndE™) =
[ #2004/ -5 Ané™)

-/ d4zaf{ama,(¢(—g)a%Am)} =

= [ dmem oV -9 gy An)

Together with Eq.(24) this gives
b5 = [ devicataes
[ dor/(=aHTh = 0l = S0/ 5y A ™ (29)
V(-9) 0 As)
This must vanish for arbitrary £ and integration domain. Therefore,
Tik;k =0

d 1 oL
l _of = —— ) —
Tm em \/(_g) aa(\/( g)a(aan) Am) (26)

In cartesian coordinates this tells us that the difference between the two
tensors is a tensor

aaglms

which is antisymmetric in the indices (I,s). The two energy-momentum
tensors are, therefore, equivalent (See [1] , §32 ).

4 CONCLUSION

In the vector meson case the proof of the equivalence made use of two facts
: the Lagrangian did not depend on &g, and ﬂng.,j was antisymmetric
in ({,s). The latter property is common to all Lagrangians which describe
particles of integral spin, in the Fierz-Pauli formalism [10]. For a brief and
lucid review of this theory, see [9]. As for the dependence on dig | we shall
see that it poses no problem in the case of Minkowski spacetime.



Consider a field which is a tensor of rank s, symmetrical in all its indices,
vanishing on contraction with respect to any pair of indices, satisfying the
condition of 4-transversality,

i =0,
and let its dynamics be described by the Lagrangian density
L= = (it WOW ) + (85, ¥, (OB T0) + mPepy, 3o, (27)
It represents a particle of spin s [9] and has the form variation

§;, s = =" b Wi s — (31'1 fm)iflmjg...j, e (ajs‘fm)'f)jl---m (28)

Notice that E@h' is antisymmetrical in (4, 7;) for all k.

We can now reproduce every step of the previous demonstration.The
term —£™ 8,1y, ..;, of the form variation will participate in the expression
of ©! . The remaining terms of Eq.() will, as in Eq.(25),compose the terms
G'™J.¢, which will be the sum of s terms, all of them with the same sym-
metries in the indices. Eventually we will reach the following expression:

55 = [ dlo/-g) Tk 8+
f dar/(—g){Th - O, —GL 7 jem +

+ f do 6(5(6 i))ﬁ gy (29

But Minkowski spacetime has maximum symmetry, meaning that we can
choose the £™ so that

Sg = Ei;j + Ei;i
is vanishing, and still have a family of 10 para:ﬁeters of vectors. The van-
ishing of §§ for every such £ therefore secures the result

m_ @i = g,Gm, (30)

(where the G/ will, in general, be a new tensor with the same symme-
tries as hefore)} even when the Lagrangian depends on 8i¢% (provided the
spacetime is Minkowskian).

We could treat also the half integral spin case, but won’t. We send the
reader to {11].

We have shown, by a slight modification of the standard formalism which
consists in conserving all the surface terms, that, in Minkowski spacetime,
the metrical energy-momentum tensor is equivalent to the canonical one, in
the sense of Belinfante-Rosenfeld, for all fields which describe particles of
integral spin. As this depends on the high degree of symmetry of Minkowski
spacetime, the result is not extensible to all spaces. The method can, how-
ever, be conveniently used to analyse each single case,

It is my pleasure to thank Professor J. Frenkel for suggestions , and
encouragement.Criticism from the referee has considerably improved the
whole argument.
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