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Abstract: We derive the equation of state of the QHD-I lagrangian in a classical
approach. The obtained equation of state is then used as input in a relativistic hy-
drodynamical numerical routine. Rapidity and transverse momentum distributions are

calculated and compared with experimental data on heavy ion collisions obtained at

BNL-AGS and CERN-SPS.

1. INTRODUCTION

The interpretation of future data from heavy-ion experiments with the advent of ul-

trarelativistic heavy-ion colliders, such as the proposed Relativistic Heavy Ion Collider,

presents a great challenge. An exciting possibility is that a quark-gluon plasma can
be created in the laboratory, so that the transition between hadrenic and subhadronic
degrees of freedom can be studied. While the physics of the quark-gluon plasma is
being studied in the framework of finite temperature QCD, techniques to study the
hadronic phase using QCD directly are very limited at present and theoretical progress
has been slow. Therefore, the knowledge of the hadronic matter equation of state
(EOS) at temperatures and densities far from those encountered in ordinary nuclei is
an important theoretical problem.

The description of the hadronic matter equation of state based on hadronic degrees
of freedom is very atiractive. First of all because hadrons are the particles observed
experimentally and are also the most efficient variables at low densities and tempera-
tures. Second because extreme conditions can be extrapolated from calibrations made
between hadronic calculations and observed hadron-hadron scattering and empirical
nuclear properties. Finally because an accurate hadronic description is required to
isolate and identify true signatures of the QCD behavior in nuclear matter.

Information about the equation of state can be extracted from experimental data.
At high energies the main observables are the final particles rapidity and transverse
momentum distributions. The most frequently used equations of state are those of the
pionic ideal gas, mesonic resonances ideal gas, quark-glion ideal gas and combinations
of these three including a first or second order phase transition between hadronic and
quark-gluon phases. As expected those EOS containing quarks and gluons involve more

degrees of freedom and therefore have more entropy than the others and they lead to
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higher rapidity aistributions and consequently a larger number of produced particles
with less kinetic energy. A systematic study of the effects of the equation of state on
the observables can be found in ref. [1]. A problem with all these equations of state
is that they do not include baryons. Their applicability relies on the assumption that
the thermal system which generates the final particles has approximately zero baryon
number. This is however strongly contradicted by experimental data.

In this work we use a relativistic quantum field theory of mesons and baryons,
which is known as quantum hadrodynamics (QHD-T) [2], to study heavy-ion collisions
using hydrodynamic models. Calculations can then be compared to data to see if the
framework is related to real world, and to decide where QID-1 succeeds and where
it fails. We perform a calculation of finite-temperature nuclear matter properties in
the mean-field approximation to the Walecka model. This mode] contains some basic
elements of hadronic theories of nuclei, namely, baryons coupled strongly to neutral
scalar and vector fields, and is known to describe quite well the saturation of nuclear
matter and static properties of nuclei [2]. Recently it was extended [3] to finite temper-
atures and its equation of state {(EQS) was derived. This EOQS correctly incorporates
baryon-meson interactions and thus is adequate to describe the properties of hot a,ﬁd
dense baryon-rich matter formed in relativistic heavy-ion collisions. The inclusion of
baryons in the EOS in a dynamically consistent way as done in ref, [3] is not only more
realistic but a necessary step before claiming, as it was already done, that only an EOS
with a QCD phase is able to correctly describe experimental data.

The only way to test an EOQS is to hydrodynamically Vstudy its temporal evolution
and compare the final state particle distributions with experimental data. In this paper
we use the QHD-I EOS as input for the HYLANDER! hydrodynamical numerical

code [4]. We calculate proton, pion and negatively charged particles rapidity and

!Hydrodynamical LANDau Expansion Routine.
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transverse momenturm distributions and compare them with data obtained by the BNL-
AGS EB02 and CERN-SPS NA35 collaborations.

In the next section we derive the EOS. Section 3 contains information about hy-
drodynamics such as initial conditions and freeze-out. Section 4 is devoted to results

and comparison with data, and finally in section 5 are the conclusions.

2. THE EQUATION OF STATE

Our starting point is the standard QID-I lagrangian density

_ 1 . 1 1
£ = Vru(id” — g V*) — (M — g.8)]¥ + 5(8.98"¢ — m¢") - F ™ + 5miV Ve,

2.1)
where F,, = 8,V, — 3, V,.

In what follows we derive the equation of state for this lagrangian in the nuclear mat-
ter rest frame. The resulting equations are the same as obtained in ref. [3] (egs. {3.44)
to (3.47) of ref. [3]) except for small differences due to a different choice of frame.
We present here the derivation of the EQOS because the method used is different and,

in some aspects, simpler. Introducing the canonically conjugated fields we write the

hamiltonian of the model as
: .
H = [ foal(p~g,V)+8(M —g9)+9.V°10 ++ 5 [ Fa(T3+V4.V6+mis?) +

+ % fd%[n%,_. — 2.8 V° + VVo.VV; — B;VidV; + m2(VE — V)] (2:2)

In a classical approximation the energy of such system (in the nuclear case) with
particles at the position r, instant ¢ with momentum p described by the distribution

function fi(r,p,t} and anti-particles at the position r, instant { with momentum —p

described by the distribution function f_(r,p,t), is



&rd® s
- 4[ TP (e, pyt)he — F_(r,p,1)A) fdar(l'[ + VOV + m2d?)

(2x)®
1 o o
+35 j Fr(ild: — ALy:BV° + V.YV - 3,Va Vi + m2(V2 - V)], (23)

where hi{h_) is the one-body hamiltonian for particles (anti-particles):

ha(r,pt) = £/(p — g V)? + (M — 0, @)+ ,V°. (2.4)

The parameters of the model are given in ref. [3], i.e,, C? = gX{(M?/m?) = 3574,
C? = g3(M?*/m?) = 273.8, and produce a zero-lemperature equilibrium at kp =
1.30fm™!, with a binding energy of 15.75 MeV and a compressibility of I{ = 545 MeV.
This compressibility is quite large and smaller values could be obtained with the intro-
duction of scalar meson selfl interactions [5].

The equations describing the time evolution of the fields @ and V* are derived from

Hamilton’s equations and are

i 2 2
a7~ V0 + mid = g.p,(r,t), (2.5a)
&*ve 21,0 3V°
51 -V miV® = go(r, )+ at —+V-V], {2.5b)
oV e ri a {ov°
512 — VIV 4+ mEV = g,5i(r,1) + (W +V- V) {2.5¢)

- where the baryonic density is given by
patr,8) =4 [ ZE (fu(rip) = -0 (2.60)

while the nuclear scalar and current density are expressed by

) =4 [ S5 Um0+ 0P8, (260)
and
30 =4 [ 22 B rulep )+ £-(5,p.1) (260
5

respeétively. Inegs. (26bandc) M* =M —g,8, p* =p—g,V and ¢ = /pT F M*.
In the mean field approximation the meson field operators are replaced by their

expectation values which are constant fields. The equations of motion become simply

mad = gypy ' (2.7a)
miVo = gupp (2.78)
miV = ¢,J. (2.7¢)

From eq. (2.6a) we can see that the number of particles and the number of anti-

particles is not separately conserved. However, their difference, the baryonic number

—Wj@P e = £

1s conserved.

The classical entropy of a gas of fermions and anti-fermions is {6]

S f-
jz)AﬁMQ ) +iot = )+ 20 () et - £
(2.8)
where V is the volume of the system.
The thermodynamic potential is defined as
Q=E-TS§—pugNg = ~PV, (2.9)

where pg is the chemical potential, 1" is the temperature and P is the pressure.
For a system in equilibrium, the distribution functions should be chosen to make
the thermodynamic potential §2 stationary. We get

1

1 +expller F)/T]° (2.10)

f«(p) =

with » = pp — g,V® being the effective chemical potential. We notice that fy is a

function of €*, therefore eq. (2.7¢) gives F =0 and V = 0.
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The equation of state in its final form can be written as

E &p . ; . Y
v:&:zzjw(fwf_)e +%§(M—M)2+2fn§p§, (2.11a)

_ 1 &p o4 dy P, o

§=5 (41@;)—3ff++f—)6 t3 W(h'l'f—);: + ngp% - .‘*BPB).,
(2.115)
4 d:} 2 2 2
P = gf—(%“)’a AL %(M— MY 4 2‘:’;;3;)’3, (2.11¢)
&
Py = 4/6#(1& ~ £, (2.11d)
4g? [ B M

M= M- mis;fﬁ(ﬁ, )0 (2.11¢)

Note that {fy + f_) enters in eq. (2.11e) and (f; — f_) enters in eq. (2.11d). The
different signs in these expressions imply that there can be a finite, self-consistent shift
in mass M — M* at zero baryon density (v = 0) as the temperature 7' is increased,
due to the baryon anti-baryon pairs formation.

To compute the thermodynamic functions, one first chooses T' and » and solves the
self-consistency condition (2.11e} to determine M*. At low temperature, there may be
several solutions for M* for fixed T' and » [2,3]. These values of M*,v and T specify
f+ and f_ through eq. (2.10) and can then be used to compute the remaining integrals

"inegs. (2.11).

3. THE HYDRODYNAMIC EVOLUTION

In the hydrodynamical picture of a heavy-ion reaction one can divide the evolution
of the system into three stages: first there is a compression and thermalization of
nuclear matter, then this highly excited fireball begins to expand according to the
‘laws of relativistic hydrodynamics and finally the system decouples and particles are

emitted. Here we use Landau-type initial conditions. The system is assumed to be
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partially stopped and its energy is deposited homogeneously in a cylindrical initia)

volume, the longitudinal size of which is Lorentz-contracted by the factor

— EP
7= K2, (3.1)

where E’, is the projectile energy in the equal-velocity-frame and m its mass. K is the
inelasticity factor, varying between zero and ome and being the fraction of the total
teaction energy which is effectively thermalized and available for particle production.
It is defined as

K= Mp/ /s, (3.2)

where Mr is the invariant mass of the thermalized system and /3 is the total invariant
reaction energy.

Because only a fraction of all nucleons is really participating in the reaction, we
multiply the total baryon number of the system by a factor X, which is about 0.85 in
the CERN NA35 experiment and 0.9 in the BNL-AGS E802 experiment.

Given K and K, the initial size, energy and baryon number of the fireball are
fixed. These are all the initial conditions which are required for the hydrodynamical
expansion. In order to know any other thermodynamical quantity the EOS is needed.

After specifying the initial conditions the nuclear matter is treated as an ideal

relativistic fluid obeying the laws of hydrodynamics which are written in a brief form

as follows
8, T* =0, (3.3)
a.B* =0, (3.4)
T = (€4 Py’ — Pg", - (3.5)
B* = pgu*, (3.6)
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where P, £ and pp are the pressure, energy density and baryon density defined iﬁ the
last section. " is the four-velocity and g** is the metric tensor. This coupled gystem of
partial differential equations, together with the relation between £ and P given by the
EQS, is solved numerically in 3+1 dimensions by the program HYLANDER. The hy-
drodynamical descriptioh ends when a critical “freeze-out” temperature T} is reached.
It is assurmed that at temperatures lower than T the mean distance between the fluid
constituents exceeds the range of nuclear interaction. The freeze out temperature was
first estimated by Landau 7] to be of the order of the pion mass (Ty = 0.139 GeV)
which is also the value used in this work. A discussion on freeze-out criteria can be
found in refs. [8] and [9]. When a fluid point reaches the temperature Ty its space-time
coordinates and 4-velocity components are stored. At the end of the expansion we
abtain a collection of space-time points which form the freeze-out hypersurface.
During the freeze-out stage the final particles are emitted from the fireball. The
transition from the fluid description to the free particle stage is a complicated process.
Here we use a simple model for it. We asstume that the fluid freezes out into “stable” x's,
K’s, nucleons and A’s. By stable we mean that the decay of the particle or resonance
occurs after the complete freeze-out of the system. The resonance contribution we take
into account by the introduction of a chemical potential for pions ur which describes
the overpopulation of pions due to the decoupling of resonances [10]. This procedure
seems to be a good approximation of the full treatment of final state interactions [4]
which is very computer time consuming. At this point one might ask how can we talk
about pions and kaons when our original lagrangian does not contain these degrees of
freedom. The answer is that, in the spirit of all hydrodynamical models, we do not
treat the microscopic processes through which the particles (pions, kaons, etc.) are
created. The final particles are instead statistically produced according to an energy

partition process. The initial degrees of freedom generate the equation of state (which

9

is then used in the solution of the equations of hydrodynamics} and are not directly
related to the final degrees of freedom.
The system of frozen out particles we describe by a decoupling temperature T}, a
chemical potential for baryons and strange particles and a chemical potential for pions.
The chemical potentials depend on the conserved charges Q* of the system. For
strongly interacting particles the charges can be the baryon number B* and the
strangeness S* of a particle i. We will use the following abbreviation to express the
general chemical potential fi; acting on a subset of particles of type i
o= S0k (3.7)
They are determined by the requirement that the energy density ¢ 1 and the bary-
onic density pg” of the fluid equals that of the frozen out particles and that there is

local thermal and chemical equilibrium at freeze-out. The net strangeness is assumed

to be zero. We obtain the following system of equations:

En(T) = ™ (@r, T) + Ex (s, T) + En (jig, T) + & (jin, T) {3.8)
pNT) = Zk: By g (fix, T) (3.9}
sp(T),= Ek: Sk r (ju, T) = 0 (3.10)
where
& (a4 1) = 5‘-’%2—]})2 dp m’;—)mﬁ- (3.11)

i

~ g
) = 55 [P ey @12)

The coupled system of nonlinear equations {3.8)-(3.12) can be solved and we obtain
from the fluid variables ¢, p(Bm and s; = 0, the quantities pg, ps, #p which

determine the free particle state after freeze-out.
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With the information of the chemical potential the single inclusive distribution

functions of a particle ¢ emitted from a hydrodynamically expanding source with a
four-velocity field «* on a hypersurface o is given by collecting all space-time points of

temperature Ty o a hypersurface o in Minkowski-space [11]

dan '8 p.y do
E, — = ' i 00,
dp? () /a exp [(Pu, — ) [Ty £ 1 (3.13)

where g; denotes the degeneracy-factor of the particle and the sign in the denominator
of the integrand depends on whether one deals with bosons or fermions, do, is the

surface element with four-velocity u*,

4. NUMERICAL RESULTS

Integrating eq. (3.13) we obtain rapidity and transverse momentum distributions
which can be compared to experimental data.

In Fig. 1 we compare our rapidity distributions of protons and negative pions with
those measured by the E802 collaboration at the BNL-AGS for central Si— Al collisions
with Ep,, = 14.54 GeV [12]. We have chosen this target-projectile combination Just,
because it is a nearly symmetric system and the numerical calculations could be easier
performed. As it can be seen we reproduce the proton spectrum fairly well whereas the
pion distribution is underpredicted by a factor four. This behavior was qualitatively
expected in our approach. At these energies quite few baryon anti-baryon pairs are
produced and the observed protons come mostly from the original nuclei. The imposi-
tion of baryon number conservation ensures that our total proton yield be very close to
the measured one. As for the shape our curve shows a dip in the very central rapidity
region and a large tail indicating that we have too much kinetic energy. The small

number of produced pions indicates that our EOS has too low entropy. This is not
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surprising since the QHD-I lagrangian contains a small number of degrees of freedom.
Although we might still have some freedom to change the value of the parameters, a
serious attempt to fit data ( which might still contain uncertainties in pion and proton
yields of order of 30%) is beyond the scope of this work.

Iﬁ Fig. 2 we compare our rapidity distributions of negative charged particles and
protons with those measured by the NA35 collaboration at the CERN-SPS for § — §
collisions with Ej.; = 2004 GeV {13,14]. Again we underpredict the charged particle
yield. The proton rapidity distribution reproduces the two-bumps structure of data
but the position of the bumps is wrong by one unit in rapidity. In our calculations
the baryonic matter was initially at rest. This might be a reasonable assumption at
lower (AGS) energies, but at increasing energies nuclear transparency becomes more
and more important so that even the participant baryons {(which are initially captured
in the collision volume and finally found in central rapidity region) do have initial
longitudinal velocity. With an initial rapidity distribution for baryons, data can be
correctly reproduced (as was shown in ref. [15]). As for the total proton yield CERN
data excluded the protons originating from the decay of A particles. Our calculations do
not include this subtraction process since we are not considering final state interactions.
The inclusion of this effect would probably lower the curve and make the total proton
yield smaller than the experimental one. At SPS energies baryon production is more
intense than at AGS. This feature will not be well described by the QHD-I EOS because
of its low entropy.

In Fig. 3 we show the corresponding transverse momentum distributions. Fig. 3a
and 3b show the transverse momentum spectra of negatively charged secondaries of
different rapidity intervals. As it can be seen we overestimate the large pr tail and
underestimate the low pr part of the spectrum. This seems to be a common feature

of all hydrodynamical calculations as long as they ignore the enhanced contribution of
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mesons with increasing energy of the fireball. The tran.sverse momentum distribution
of protons, shown in Fig. 3c, is consistent with their rapidity distribution, showing that
we obtain protons which are too fast in the transverse direction and too slow in the
longitudinal direction. Here again the introduction of an initial velocity field and the

use of an entropy-rich EOS would make agreement with data much better.

5. CONCLUSIONS

This work can be regarded as a continuation of ref. [3]. The equation of state of
QHD-T was derived in an alternative way and used as input in a realistic hydrodynam-
ical calculation. Rapidity and transverse momentum distributions were calculated and
compared with experimental data on heavy-ion collisions obtained at AGS and SPS.
The main qualitative features of data could be reproduced but a very precise descrip-
tion of data could not be achieved. If our calculations had produced irreparably wrong
results we would have started to believe that quark-gluon degrees of freedom, either
in the form of strings or as a quark-gluon gas, were indispensable. However, this was
not the case and it might be possible to remain alive with hadronic degrees of freedom
even at CERN energies.

In order to improve our hadronic-based description we clearly need more entropy in
our EOS, i.e., more degrees of freedom. A simple way to check whether this is correct
is to repeat our calculations using an EOS which is an ideal gas of many baryons,
mesons and respective resonances not dynamically connected, i.e., not derived from a
lagrangian. Preliminary calculations [16) show indeed that this EOS generates pion
rapidity distributions which are already very close to data. Naively one would then try
to include all these degrees of freedom in the lagrangian. This produces however no

entropy increase as long as one keeps the mean-field approximation as it was done here.
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In order to circumvent this difficult one might try to replace our crude approximation
by a mean-field expansion, allowing for the actual evaluation of corrections to the
simplest mean-field approximation. This approach has been used successfully in a

different context by L.C. Yong and A.F.R. de Toledo Piza [17].
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FIGURE CAPTIONS

Fig. 1. a) Rapidity distribution of protons in a BSi+¥Al collision at
Eyp = 14.6A GeV. Data points come from the E802 collaboration, ref. [5],

and the solid line is our calculation. b) the same as a) for negative pions.

Fig. 2. 2) Rapidity distribution of negatively charged particles in a 254325 collision
at Eysp = 2004 GeV. Data points come from the NA35 collaboration, ref. [6]

and [7], and the solid fine is our calculation. b) the same as a) for protons.

Fig. 3. a) Transverse momentum distribution of negatively charged particles measured
in the same experiment as in Fig. 2. Points are the NA35 data and the solid
line is our calculation. b) the same as in a) for a different rapidity interval.

¢) the same as in a) for protons in the full rapidity space.
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