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Abstract

The problem of generalization by single layer perceptrons is studied in the case of
time dependent rules. Lower bounds for the generalization errors within the ‘single
presentation of examples’ case are obtained for randomly drifting rules. These bounds
suggest a learning algorithm which uses knowledge of the error itself. Since this error
is not readily available it has to be estimated through a mechanism of self-evaluation.
The capacity of incorporating recency information into the error estimate is highly
desirable. The mechanism proposed has ,the advantage, beyond good performance, of
being self-adaptive, in the sense that it adjusts to changes in the unknown drift rate of
the rule. The performance is also studied for sudden changes of the rule in an attempt

- to mimic the so-called Wisconsin test.

PACS : 87.10.e+10, 75.10 HE, 64.60 Cn, 89.70.-+c

T Introduction

In an everchanging environment the ability of organisms to present adaptive behaviour
might be an important factor to determine their chances of survival. Thriving under
a randomly varying set of rules will depend on the capacity of incorporating useful
information from the outside world. Such adaptive behaviour can be modelled within
supervised learning in Neural Nets. Perceptron learning of a time dependent rule has
been recently studied by Bichl and Schwarze [1] in the case where there is a single
presentation of the examples. We discuss again this type of problem with the aim
of determining what is the optimal way in which the information from the changing
environment ( “professor” or “rule”) can be used by a single layer perceptron in order
to maximize its generalization ability.

The natural approach to this problem is “omline” learning. This means that the
examples are used only once and not repeatedly (“iterated learning”} until some error
measure over all examples is minimized. Iterated learning might not be efficient if old
examples are presented again at a later time when they are not any longer representative
of the state of the rule. Furthermore, single present;cmtion might also be quite efficient,
since in the optimal case (Expected Stability algorithm) for a static rule it leads [2] to
only exactly twice the error of the Bayes limit of Opper and Haussler (3], with just a
small fraction of the computational effort.

In section 2 the model [1] and notation are introduced. For a randomly drifting rule
we obtain in section 3 that, analogously to the time independent case, suprises carry a
high information content, and should be attributed a high weight, while to obvious facts
a very small importance must be given. More especifically we obtain an expression for
the weight a Hebbian term must have in order to maximize generalization. Examples

“easy” to classify by the student net are those with a high local field at the percepiron’s
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output unit. When an “easy” example is misclassified it receives a very high weight
and a very small one when it is correctly classified. Also in section 3 we present lower
bounds for the generalization error as a function of T, where T is a measure of the
amplitude of the white noise driving the rule. Calling, as usnal, a the ratic of the
number of patterns to the number of input units, we obtain that, for & — oo and small
T, the saturation generalization error for optimal learning grows as 7''/3, while being
proportional to 7'/ in the optimal pure Hebbian case {1). The strategy of learning by
“queries” (“selection of examples”) [4, 10] is also analized.

These bounds can be reached by a learning algorithm which uses the value of the
generaﬁzation error itself. Since this is not a very realistic feature we propose in section
4 a new self-adaptive algorithm which relies on the estimate of the generalization error,
as judgéd by recent success. Several estimators can be considered and we discuss the
effects on learning of a parameter which‘measures the persistence of old examples in
the actual estimator. Results of simulations are presented for the case of slowly drifting
.rule as well as for the so called Wisconsin test /5], where the rule is piecewise constant

in time. Section 5 has some concluding remarks .

2 The model

We now examine the problem of learning a time dependent linearly separable rule
within an exactly solvable model. A single layer, single output unit perceptron, the
“student”, learns from examples generated by another such perceptron, the “professor”,

whose synaptic weights change randomly in time. Let N be the mumber of inputs,

Se(~1,1)N and B € R" or {—1/v/N,1/+/N)¥ the input vector and the professor

synaptic coupling vector respectively. The correct (professor) output is
N
oy = sign(}_ B:iSF). (1)
t=1

The student is described by a synaptic vector J € RY and its output is

N
ol = aign(; J:SH). (2)

The generalization ability is defined as the probabilty that at a given time the
outputs of both the professor and student nets be equal. The synaptic vector J is to
be constructed from the information contained in the examples, that is, a sequence of

I3

pairs (S*, %) , where g is the time label or the example position in the sequence.

We first consider, as Biehl and Schwarze [1], a time evolution of the rule

1
B*=B"" + Wi 7", (3

where 9 is a random veclor satisfying

9 .

and we keep the professor norm B* constant equal to 1 by imposing that

1
VNB* ! it = — 3 gyt = T (5)
Thus
B*, Bn—l =1 %’ (6)

where T' is the drift parameter. As usual the overlap between B and J is the relevant
quantity [6, 10],
1t
pHo= R—, R =DB4 J4, JH=Tn Jr, (N

Ju
since the generalization ability G, the generalization error ez and p are related through:
1
eg =1— G = —arccosp {(8)
™
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where self average has been assumed. We will use the notation

Bx-1 gu

b.u _JBT‘T’ O’E; = 3i9n(bﬂ)7 (9)

for the local field and output of the teacher for the p™ example. Our notation is such
that the professor changes from B#~! to B# only after the presentation of the p'

example. Also
Ju-1 gn

Jf.lf] i

hy

Il

o = sign(h,) (10)
are the normalized local field and the output of the student. The local stabilty of a

given example, before it is used to modify J, is
Ay, =h,of (11)

and the example is correctly classified if A, is positive. The calculations will also

involve a Gardner-like parameter related to the stability on the professor

=2~

b, o

Ky =

=22 (12)

3 Lower Bounds on the generalization errors

The learning dynamics that we study has the form

0 pn-1 u-1
Jr=(1- —ﬁ‘—‘)J“‘l + :ITW#G"‘; S+ J

where (), is a decay term and W, is the weight of the Hebbian term. These two
quantities depend on the particular example, and our objective is to determine the
best possible weight in order to optimize generalization. The last term takes into
account possible white noise in the synaptic couplings, but its overall effect is just to
increase the amplitude of the drift parameter T by 1(#.4) . The J*~ factor is included

to simplify further developments. With this notation, W, = 1/J#"! for the simple

5

i (13)

Hebb rule, W, = £ — A, for the Adaline algorithm and W, = (x — A)O(k — A,) for
the relaxation algorithm, with & a positive constant [9]. We now follow closely the

method of reference [2]. In the thermodynamic limit N -» co, a = /N, the learning

. dynamics can be written as a differential equation, which after being averaged over all

the possible histories, leads to

2o (1Wlsa- A - 3w2) 1) (19

for the overlap.

The evolution of the length of the synaptic vector J is given by

4 1
o= (( Wl + 5 W2~ D) + T) (15)

The choice of Q, = W,A, + 1W? + T gives a local method to keep the norm of J
constant. Nevertheless, this needs a priori knowledge about T.

Notice that the decay term (2, is absent from the equation for p. Then, if W,
does not depend on J*~1, the two differential equations are decoupled and the decay
term does not affect the performance (in contrast with the simple Hebb case [1} where
W, =1/J""! and the two equations are coupled).

The choice of the weight function W, is made by demanding that the gain per
example, e.g. dp/da , be maximum, with the restriction that it can only depend on
b, through its sign. Not suprisingly the resulting weight function is the same as in
reference [2]

W% = (ku)ps — A, (16)
where the triangular brackets {...)zs denote the expected value calculated with the
conditional probability distribution of |b,.| given % and k,, thus the name Expected

Stabilty. Therefore, the maximum average gain per example can be calculated from

% o te)-1) (1)



where

(WES)

(e PS) = 3 [ dhup(ah b)) (18)

a' =11

Up to now the probabilty distribution of the examples P(S) from which P(a§,b,)
is-obtained has not been chosen. It reflects the strategy in the choice of the learning
examples. Two strategies have been considered in the literature {3, 4, 6,10]: passive
learning, that is, learning from random examples with a uniform distribuition, which
leads to b, and h, being normal gaussian variables with correlation p; and active learn-
ing (learning by “selection of examples” or “queries”) where the student demands the
answer fo the “hardest to classify” examples. In this case the ES average is performed
over P(jb,| | ky = 0).

In the case of passive learning the weight function is [2]

A exp(—AZ/2)%)

ES _
W= e AN 19
where
Y]
A= 1.0 4 = tan(reg) (20)
" and :
0o —t2f2
H(z) E/ Dt, Di= eﬁ dt. (21)
= n

With this weight W the function I appearing in equation (18) is
oo -(1 .\2)u2/2
f . (22)
As a — oo the error stops decreasing. The saturation error ¢ will increase as T,
with an exponent 2 characteristic of the algorithm and learning strategy. The error

eZ(T) is obtained from equation (20) and from

Ix=)=T. (23)

For small T,

1
ey =~ ;z\"" =013 (24)

~ where the constant C is given by

hu_ ~1/3
{ [ pe ] % 0.447. (25)

This z = 1 should be compared to the z = % exponent of the Optimal Hebb case

of reference [1]. For the selection of examples sirategy, we have

2
WS _ \/;,\, (26)

I0) = ’:r—z (27)

and

The assymptotic value of the error in this case is

1
ey = - arctan v T, (28)

leading to z =1 .

The exponent z is not independent of the generalization exponent 2 which charac-

terizes the behaviour of e for T = § and large o
egoxa . (29}

To show this we proceed as follows. For small T' and large @ (small A) we have in

general

% o (TN eoT) X 4o~ T) (30)

where ¢; and ¢; may depend on T. Also n; < ng, and if ¢;(T = 0) # 0 then n, = 1/z,
giving the relation

1=2-2 (31)



This can be seen by inserting the assymptotic trial solution (for T = 0)
p=1-Ka™® (32)

where K is some positive constant, into the differential equation leading to

a2 egz o a—%l? (33)

from which we obtain relation (31). The case z = 1/2 (z —» oo) indicates an exponential
error decay (selection of examples {2]).

H ¢;(T = 0) = 0 then one can only say that

1 1
> .2
z > (34)

The bounds on the generalization error eq(a) obtained by numerically integrating
equation (17} with the apropriate weight fanction are shown in figure (1) for T = 0.5.
Also the results for the Optimal Hebb are presented for comparison. This algorithm
requires the knowledge of the value of the drift parameter and uses an optimal weight
decay Q(T) for the simple Hebb rule. The saturation error is larger in the case of
random uniform examples, while in the case of selection of examples the two errors are

the same. This result should be compared with that of reference [1] bearing in mind

that we start from tebula rasa while they use J = 1 as the initial condition and so their

approach to the limit will be slower.

In figure (2) our results for the assymptotic errors e (7') are shown, as well as the
ones for the algorithm of reference [1]. Also the selection of examples strategy (lower
curves) errors are shown, being the same for both algorithms.

Since the optimal weight function W® depends on p, the algorithm cannot be
implemented without knowledge of the drift parameter T, which is needed to integrate

equation (17). As it stands it only provides lower bounds on the average generalization
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errors. Of course, we can use in the .weight function a valﬁe pu measured during the
simulation to obtain an optimal “benchmark” curve, against which other algorithms
will be compared. We will call this procedure the “begchma.rk” algorithm. Tn the next
section we will study = self-adaptive algorithm that uses an estimate of the overlap p

and performs very wel without knowledge of the noise level.

4 Self-Adaptive algorithm

We now turn to a practical implementation of these ideas. First notice that, by equation

{(20), the optimal weight function can be written as

W(ea, A,) = ﬁm(wea)exp (—mﬂ‘?(f‘m)) [H (ta;(‘:;))]_l' (35)

This suggests that we consider the neural net as endowed with a self-evaluation sys-

tem which is used to estimate the generalization error, or more specifically tan{weg),
by the results, failures or successes on the previous examples. The self-evaluator mech-
anism integrates over a range of time and two competing factors have to be considered.
If the integration time is too large, then it will remember results which are no longer
meéningful and its estimation will lag the actual value of eq. While if it is too short, it
will have no time to accumulate a significant statistics. We will consider an exponential

loss of information of old examples and look at the following evaluator

Jeg + = e (36)

w

N

& = (1

Here w is the inverse integration time or recency spar, and £, = (1 — ¢o) /2, which
is (one) zero if the last example was (un)correctly classified. Since the tangent diverges
at m/2, it is not very precise to estimate the tangent factor of equation (35) by just

calculating the tangent of wég‘ ) , and we instead use as estimators the truncated power
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series expansions
a " n 1 N 3 2 " 5 A VE )
Ay = tan(meg )y = wég + 5(11‘“&(;) + Ig(vreg) Foo e (még)E. {37

In figure (3) we judge the different estimators by comparing them to the benchmark
value in a simulation. The third power estimator 3 is seen to be the best. In figure
{4) the role is fixed for & < 5 and o« > 15, while it drifts with T = 0.2 in between.
"The performance of the }; estimator is measured for different values of w and & good
choice is seen to lie near the value w = 2.

In figure (5) the results of a simula.tioﬁ are shown for an algorithm which uses the
best estimator (};) with w = 2. This is a realistic algorithm, since neither the drift
parameter nor the value of the overlap p are needed. It is seen to work quite well since
it approximates the lower bounds very efficiently for different drift rates. This in fact
means that the algorithm is self-adaptive, a fact which can be betier seen in figure (6)
where the rule is fixed until @ = 5, performs a random walk with 7 = 0.2 until & = 15,
after which it remains fixed again.

We also have performed the so called Wisconsin test [5]. In this situation the rule
suddenly changes and the adaptation of the student to the new environment is analyzed.
In figure (7) the performance of our algorithm in the Wisconsin test is compared to
the simple Hebb, and seen to be significantly better.

The failure to use the optimal algorithm might be thougth of as a lesion to the
tearning mechanism of a neural net. Althougth by using the simple Hebb algorithm
@ perceptron can learn the first rule, it will have a great difficulty to detect a rule
change. A similar behaviour has been noticed in patients with “pre-frontal sindrome”
[5], and has been previously modeled by Danchin and Changeux [7] and by Levine
and co-workers [8] with neural networks. It is interesting that the same effects appear

in a natural way within the much simpler perceptron architecture which has not been
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designed to model this phenomena.

5 Conclusions

We have analyzed the problem of learning a Hnearlf separable rule drifting randomly
with time, through the single presentation of examples. Lower bounds to the general-
ization errors are given. For low rule drift (or low synaptic noise) the saturation error
increases as T, The exponent for passive learning can be improved from the Hebbian
with optimal weight decay result of Biehl and Schwarze, z = Ltoz= 3 while z = 3
in the active learning strategy. For online learning we obtained a relation between the
generalization exponent z and the noise exponent 2, 1/z = 1/z — 2, if T =0)#£0.
This conditon is true for a large class of algorithms, and a careful study of this will
appear elsewhere. It will be interesting to check if this relation is also valid for iterated
learning,.

These bounds inspire a realistic self-adaptive algorithm which needs, in order to
assess the actual generalization a.biltjr, a self-evaluating mechanism. The performance
of this algorithm is studied numerically for slow drifts as well as for sudden changes
of the rule, the so-called Wisconsin test. The algorithm a.pproxima&s very well the
optimal performance, does not require previous knowledge of the drift parameter and
is robust to changing rule drifts.

This algorithm belongs to the class which we have previously called Expected Sta-
bility algorithms (2], since the weight function depends on the expectation value of the
stability of an example in the professor net as judged by the student. The learning pro-
ceeds by giving higher weight to the suprising examples, that is, those with a high local
field in the student net, which have been misclassified. This differentiated treatment of

the examples is shared by other algorithms, but with a weight function independent of
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the learning stage (eg). An important characteristic is that th.e optimal Weight func-
tion depends on the generalization error, and this demands that the net be endowed
with an extra feature, that is a self-evaluator mechanism. The failure of the Hebb
algorithm in keeping information about temporal ordering leads to poor adaptability
under changing rules or “perseveration” and lack of “recency” information, which is
similar to the behaviour of “pre-frontal” lesioned patients.

The extension of this kind of results for multilayer nets would be of great interest
both for the theoretical aspects as well as for their possible applications. We are
.presently working on these ideas and this will be the topic of future publications.
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Figure Captions

[Fig.1]

[Fig.2]

[Fig.3]

Fig.4)

[Fig-5]

[Fig.6]

Lower hounds for the generalization error e¢(e) obtained from the integration of
eq. (17) with W of the Expected Stability algorithm: passive learning (dashed
line) and active learning (solid line). Simulation results for the simple Hebb (cir-
cles). Optimal Hebb for passive learning (squares), and for the Optimal Hebb
with selection of examples (stars) both for tabule rasa and starting from J = 1 [11.
Simulations starting from tabule rase (lower curves) reach the limit faster than
from J = 1. Average over 50 tuns, N = 149.

Asymptotic generalization error eg(T} from eq.(23) as a function of the noise
parameter T. Passive learning Optimal Hebh [1] {small dash), Expected Stability
(solid} and simulation results, N = 149, average over 50 runs (circles). Active
learning (long dash).

Performance of the different evaluators (w = 2), |1 — ég/eg|, where ¢ Is the gen-
eralization error for the following evaluators: Tangent {diamond), " (squa,res),j\s
(circles), As (triangles), A7 {star}), and eg is the benchmark algorithm generaliza.
tion error.

Performance of the }; algorithm for different values of w. The rule is fixed until
o = 5, then it drifts until & = 15, with a noise parameter T = 0.2. w = 0.2
(circles), w = 2 (squares), w = 20 (triangles), w = N (diamond), benchmark
{solid). N = 99, average over 50 runs.

Generalization error for different levels of noise. Self-adaptive algorithm with the
33(&) = 2) evaluator (circles) from a simulation with N = 149, averaged over 50
runs and for the lower bounds (solid line). From the lower curve to the top for
T =0,0.05,0.2,0.5 respectively.

Performance of different algorithms for changing drifts. For & < 5 and a >

15

15,T =0 and in between T = 0.2. Simple Hebb (squares), Optimal Hebb (tri-

 angles), Self-adaptive algorithm with the Xa(w = 2) (circles) and the benchmark

[Fig.7]

(solid line). N = 99, average over 50 runs.

The Wisconsin Test: The rule is piecewise constant in time. It suddenly changes
at a = 10,15,20. The dotted line is the generalization ability of the simple Hebb
algorithm. It is quite efficient at the begining, but is very slow in adapting to
a new rule. The dashed line is obtained for the self-adaptive algorithm with the
J3(w = 2) evaluator. The solid line is obtained using the measured value of p

{benchmark algorithm).
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