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Abstract

A representation for the causal propagator of a relativistic spinless particle by
means of a path integral over velocities is presented. For a class of the so called
quasi-Gaussian functionals one can formulate universal rules of handling the path
integral, similar to ones in the field theory (in the framework of perturbation the-
ory). An advantage of the representation consist in the integration over velocities
is not anymore restricted by boundary conditions, and matrices which have to be
inverted in course of doing Gaussian integrals, do not contain any derivatives in
time. Using the technique, an explicit expression for the propagator is gotten in
arbitrary constant homogeneous electromagnetic field and its combination with a
plane wave field.

1 Introduction

Already for a long time, different path integral representations for propaga-
tors of relativistic particles are discussed in the literature [1-35]. Over recent
years this activity got some additional motivation {o learn on these sim-
ple examples how to quantize by means of path integrals more complicated
theories, such as string theory, gravity and so on. On the other hand, the rep-
resentations are interesting themselves and could be used for calculations of
relativistic particle propagators in external electromagnetic or gravitational
fieclds. However, in contrast with the field theory, where path integration
rules are well enough defined, at least in the frame of perturbation theory
(36,37}, in relativistic and nonrelativistic quantum mechanics there are some
problems with uniqueness of definition of path integrals, with boundary con-
ditions, and so on [1,2,38-41].

In this paper we present spinless relativistic particle propagator by a
path integral over velocities. One can define universal Gaussian and quasi-
Gaussian integrals over velocities and rules of handling them. An advantage
of the representation consists in the integration over velocities is not anymore
restricted by boundary conditions, and matrices which have to be inverted
in course of doing Gaussian integrals, do not contain any derivatives in time.
This approach is very similar to one used in the field theory (in the frame of
perturbation theory [36,37]). We illustrate the convenience and advantage of
our method on the most general combination of an external electromagnetic
field, admissible for path integration, namely on calculations of the propa-
gator in a constant homogeneous electromagnetic field and its combination’
with a plane wave field. For these cases we get closed expressions for the
propagator. One ought to say that path integral methods were often ap-
plied for such kind of calculations. For example, in the works [3,4,42,43,13)
the causal propagators for scalar and spinning particles in external electro-
magnetic field of a plane wave were found by means of path integrations.
More complicated combination of electromagnetic field, consisting of parallel
magnetic and electric field together with a plane wave, propagating along,
was considered in [4]. In [19] they made particular functional integrations
to proof a path integral representation for the causal propagator of spinning
particle in an electromagnetic field.



2 Representation of scalar particle propaga-
tor by means of path integral

As known, the propagator of a scalar particle in an external electromag-
netic field A,(z) is the causal Green’s function D°(z,y) of the Klein-Gordon
equation in this field,

(18— 94)" ~m® +ie] D(2,9) = 6"z ~v), ()

where z = (z*), Minkowski tensor 7, =diag(1,~1,—1,—1), and infinitesi-
mal term ie selects the causal solution.

Consider the Hamiltonian form of the path integral representation for
I’ (,y). For certainty we will use notations and a definition of the integral
by means of discretization procedure presented in [29]:

D¢ = D (:cm,t,:cm)—tf d)\gf DAfDrf szDp
Xexp{zfd'r Pz—m)+p5:+7r.\]}, (2)
where P, = —p, — gA, (z), and the integration goes over trajectories z# (),

Pu(r) ,A(7), w(r), parameterized by some parameter 7 € [0, 1] . The
boundary conditions supposed to hold only for z(r) and A(r),

r (0) =Ziny, <T (1) = Tput, A (0) = AU . (3)

In (2) and in what follow we use the notation

jd‘r:j:df.

Our aim is to transform the integral (2) to a form convenient, from our
point of view, for calculations. First we shift the momenta,

z
—Ps 2 Pt ﬁ‘*“yAu(“’) )

make the replacement e = 2\ and fulfil the integration over 7 and A,

de.,

2 Bg Fin

xexp{ fd'r [—ﬁ+-"529(p2 —m?) —gz’A(a:)]} .

Then, after the replacement

DC

2~ 2in — TAT

vEP P, ,—BD -z, Az:mout_win;

taking into account the definition of the integral (2) by means of discretization
[29], we get the expression

[“’de"e [ 2.(60111 +—)]f D::po (5)
X exp {ifd‘r [-3’;+ %2 — g(v/ea# + Az)A(y/eoz + 2in + TAz) } )

where the trajectories ©* (1) obey already zero boundary conditions,

z(0) =z(1)=0. (6)

On this step we replace the integration over the trajectories 2*(7) by one
over velocities v#(7),

o(r) = [8(r—Yo(r)ar = ["o()ar,
0
v(r) = &(r). (7)
The corresponding Jacobian can be formally written as
J =Det 8(r — 1)

and regularized, for example, in the frame of discretization procedure. But,
our desire is as less as possible to refer to that procedure, so we will try to



define that Jacobian in an independent way. Note that because of (§), the
trajectories v (7} must obey the conditions

fv(-r)dr:[l. (8)

We can take it into account, inserting the corresponding four-dxmensmnal
&- functlou in the path mtegra.l Thus,

T O I
[ovi poa“ (fvdr)exp{ifdr {—1’2-2»#;_2
—g(/eov + Az) A (,/a [ o) + o+ ‘rA:r:)] } .

One can formally find the Jacobian J, switching off the potential Au(:c) in
(9) and usmg the expression for the free causal Green function D

00 : A 2
Df = D§(zout, Tin) = 2?:' / ] exp{ 2 (eom " .i)] .

€o

So, we formally get

- i(211r)2 [[vaDp L (fvd‘r) exp {i/d'r (—3’; + %) }] - (10)
Gathering these results, we may write
D= T;}?[m i:ggexp [—-'2- ( eom? + ’i—)] Aleo) )
A(ep) = fD'u 5 (f vdT) exp {;f dr [—; — 9(/eov + Az)
x A (\/Eforv(r')dr' + Bin + TA::)]} s | _ (12)

where new measure Pv has the form

Dy = Do [va 5 (fvdr) exp {ifd-r (-"2—2-) }]—1 . a3)

It is clear that A(e) =1at A=0.
A regularization of the infinite measure (13) can be, in principle, per-
formed in the frame of the discretization procedure, but, we are going to

consider in the next Section a different approach to the calculation of path
integrals of type (12).

3 Gaussian and quasi-Gaussian path inte-
grals over velocities

A calculation of path integrals of the type (12) ,

[ovst (/vdr) Flo], (14)

with some functional F [v], may be performed in the frame of the discretiza-
tion procedure, according to the initial definition of the integral (2). How-
ever, if we restrict ourselves with a limited class of functionals F [v], which
are called quasi-Gaussian [37] and are defined below, then one can formulate
some universal rules of their calculation without referring each time to the ini-
tial definition. Similar idea has been realized in the field theory (see [36,37]).
The restriction with quasi-Gaussian functionals corresponds, in fact, to a
perturbation theory, in that concrete case it corresponds to the perturbation

theory in the interaction with the external potential of an electromagnetic
field.

Introduce the Gaussian functional as

Fglv,I] (15)
i ’ 2 ¥ .
= exp {—Efdfdr (1)L (g, 7, 70 (7') - zfd‘rI,,(T)v‘"(f)} ,
and the quasi-Gaussian functional as .
Fqg[‘v,f] —_ F[‘U]Fg[‘U,I] N . . (16)

6



where F[v] is a functional, which can be expanded in the functional series of
v,

Fpl=% f dry .. @ Fy o (11 )0 (1) v (n),  (17)

n=0
and I are sources associated with the velocities v. In (15) the matrix
L,.{g,7,7") supposes to have the following form

Lulg,7, T') = ﬂ#vﬁ(f - T’) +gM,. (7, T’) . (18)

Define the path integral over velocities v of the Gaussian functional as

[ ( / vdr) Falv, 1] (19)

- [g:: ﬁg; j:: ;Egg} o exp {% j drdr'I{7)K{r,") I(.,-f)} \

where

K(r,7") = L (9,7, T,) - QT(T)[_I(Q)Q(T') )
i(g) = /drdT'L"I(g,T,T'), Q(r) = fdr’L_l(g, 7). (20)
It is possible to verify after straightforward calculations that the formula
(19) can be derived from the discretization procedure, taking into account
the origin of the measure Dv.
To calculate not quite good defined determinants of matrices L(g) with

continuous indices, entering in (19), one may use some convenient represen-
tation. Let us differentiate the well known formula

Det L{g) = exp [Tr ln L{g)]
with respect to g. So we get the equation
d dL
EDet L(g) = Det L(g) Tr L"l(g)—% = Det L(g) Tr L7'(g)M ,

which can be solved in the form

Ber ol = cxp { [ o 175} o

Taking into account that det I(0) = —1, we get for the path integral of the
Gaussian functional

[post ( / vdr) Falv, 1) (22)
= [—det .l(gl)]_u2 exp {-;— f drdr'I(r)K (r, 7" I(+")
_% fo ? dg'Tr L-l(g')M} .

The path integral of the quasi-Gaussian functional we define through one
of the Gaussian functional

]
1 e 4
[oos (fvd‘r) Fylv,J]= F (;H) [pos (f vd'r) Falv, 1]
= [—det {g)] V2 F i exp {i j drdr'I(r)K (7,7)I(r")
81 2 '
1 fo r 17

5 [[dgme 17 )M} . (23)

One can derive rules of handling with integrals from quasi-Gaussian func-

tionals, using the formula (23). For example, the integral (22) is invariant
under the shifts of the integration variables,

[ ( [o+ u)dr) Fiolo +w,1) = [ Do &* ( [ 'ud'r) Filv, 1] (24)

The validity of this assertion for the Gaussian integral (19} can be verified
by a direct calculation. Then the general formula (24) follows from the
(23). As another comsequence of the property (24) one can derive an useful
generalization of the formula (23),



[post ( [vir- a.) Foolv, 1] (25)
= [~ det Ug)] V2 F (i%) exp {% f drdr'I(r)K (7, 7)I(+")
— e @)a—ial(g) [ @I — 1 [ ag e 1M

where a ia a constant vector. The integral of the total functional derivative
over v*(r) is equal to zero,

f‘D‘u &Jf(f) & (f vd‘r) Flv,I]=8. (26)

This property may also be obtained as a consequence of the functional inte-
gral invariance under the shift of variables, as well as by direct calculations of
integral (26). As a consequence of the property (26), one can derive formulas
of integration by parts, which we do not present here. If a quasi-Gaussian
functional depends on a parameter « , then the derivative with respect to
this parameter is commutative with the integral sign,

-é%-fﬂv 5t (/vd'r) Fglv,I,0] = /D" & (f ”dT) B%FQG[”’I)C‘] . (27)

Finally, the formula for the change of the variables holds:

§p-(v)

4

[post ( / vdf) Fyalo, 1) = [Do§ ( / ¢d—r) Frol#, 1| Det 5, (28)
where ¢.(v) is a set of analytical functionals in v , parameterized by T . The
ideas of the proofs of the formulas (27,28) are similar to ones used in {36,37]
for the corresponding proofs in the field theory.

Thus, in the relativistic quantum mechanics in the frame of perturbation

theory, one can define path integrals over velocities and rules of handling
them. These definitions are very close to ones in field theory, the analogy is
siressed by the circumstance that, as in the field theory, the integrals over
velocities do not contain explicitly any boundary condition for trajectories of

9

the integration. After the rules of integration are formulated, one can forget
about the origin of the integrals over velocities and fulfil integrations, using
the rules only. In the next Section we demonstrate this technique on concrete
calculations. :

4 Calculation of propagator in external elec-
tromagnetic fields

Here we are going to calculate the propagator of a scalar particle in an exter-
nal electromagnetic field, using representation (11) and rules of integrations,
presented in the previous Sections. We consider a combination of a constant

homogeneous field and a plane wave field. The potentials for this field may
be taken o be

A,(8) = —3Fs” + fu(n2) (29)

where F,, is the field strength tensor of the constant homogeneous field with
nonzero invariantes

1 1
F o= FuF™ 40, G=— FLF" #0,

(Fp, = 3€wapF*, €uap is totally antisymmetric tensor), in terms of which
its eigenvalnes £ and H are expressed

Fun' = —€n,, Fon"=¢En,, (30)
Fo b = 1ML, , le—y = _iﬂfu ’

£=(F"+6%)i - J—"]% yH=[(F+g3) + F)E.

The eigenvectors n, #i, £, £ are isotropic and obey the conditions

n=at=f=FL=0, (31)



The functions f, (nz) are arbitrary, except for the fact that they are subject
to the conditions

fu(nz)n* = f,(nz)@" = 0. (32)
The total field strength tensor for the potential (29) is

Fu(z) = Flo -+ ¥u(nz), C(ne) = "uﬁ("’z) - ny_f;;(nz) . (33)
Since the invariantes F , G of the tensor F,, are nonzero, there exists a
special reference frame, where the electric and magnetic fields, corresponding
to this tensor, are collinear with respect to one amother and to the spatial
part n of the four-vector n. In this reference frame, the total field F,.(z)
corresponds to a constant homogeneous and collinear electric and magnetic
fields together with a plane wave, propagating along them; £ ,H, being equal
to the strengths of a constant homogeneous electric and magnetic fields,

respeclively. In terms of the defined eigenvectors the tensor F,, can be
written as

g . iH . -
Fu = 5 (Rumy — i) + - (2.8, - L) (34)
and the completeness relation holds
1 - -
ﬂpu = 5 (ﬁ,#n,, + n”ﬁy - tpfy - e,uzu) . (35)

The latter allows one to express any four-vector u in terms of the eigenvectors

(30),

ut = pFul) 4 ey o gy, () 4 gy, (9) ,
1 1

1.
u) = Eﬁu , ul® = 3" ul® = —Elu , ul® = -—-él-fu . (36)

In these concrete calculations it is convenient for us to make a shift of
variables in the formula (12), to rewrite it in the following form

 Afeo) = exp (i‘{;:') [oost (fmt _ %)

X exp {1: [ar [-"2—2 g /eovh (,/a [ otar + z)]} . (37)
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The calculations will be made in two steps: first in a constant homoge-
neous field only, and then in the total combination (29), using some results of
the first problem. Thus, on the first step the potentials of the electromagnetic
field are

1
Au(z) = 9 e . (38)
Substituting the external field (38) into (37), one can find

Aleg) = exp (i%) f Dy &* ( f vdr — %) (39)

X exp{—%fdrdr'v('r)L (9,7, 7") v(r") —if g\é% zin P vd‘r} )

where

geo

Lu(g,m, '7") = ub(r — "J) I Fue(r — T’) . (40)

The path integral (39) is the Gaussian one (see (25)). To get an answer, one
needs to find the inverse matrix L='(g,,7'), which satisfies the equation

fL(g,T, T”)L_l(.qs 7'"1 T’)d'r” = 6(7 - T’) .

One can demonstrate, that this equation is equivalent to a differential one,

;L‘l(g,r, ') — geoF L™ (g,7,7") = 8'(r - 7'}, (41)
-
with initial condition

L“I(g, 0, Ti’) + 96;1"' f L'l(g, 'r”, T’)df” - 6(1") .

Its solution has the form

L™Yg,r,m") (42)
=§(r—7')+ ge;F exp {geo(r — 7)F} [e(‘r -7') - fanh (ge;F)] .

12



Using (42}, one can find all ingredients of the general formula (25), taking
into account that

a=-22  jr)=9Vo, p.
Ve 2
Thus,
K(r,7") (43)

=8r 1)+ gegF exp {geo(r — 7')F} [E(T '} - coth (g_eé’f)] ’

, " _ _ tanh ge, F/2
fd‘l"d‘.l’ K(r,7} =40, fd'rQ(‘r) =1(g), U(g) = ngoF/Z ,
M(r,7) = —~82—0Fe(-r -7}, fg dg'TrL (g )M = trin(cosh geo F/2) ,
0

where the symbol “tr” is being taken over four dimensional indices only.
Then

. —1/2
Afey) = {— det (_anl;_g_ﬂf / 2)] (44)
- 2 F
X exp : Az + g 20uFz;, — -I-Aw gF coth (geo ) Az b .
2 En 2 2

Substituting (44) into (11), we get the final expression for the causal propa-
gator of a scalar particle in a constant homogeneous eleciromagnetic field

. 1 o0 de sinh geo F/2 -1/
D (zou,,a;,,,)_z—»—(zr)z [D de,,[ d t(———-—)] (45)

gF/2
ks : 1 geoF
X exp {~2— [ga:outFa:;n — egm” — EA::: gF coth( > )A:r:]} .

This result was first derived by Schwinger, using his proper time method [44]. |

Now we return to the total electromagnetic field (29). Let us substitute
the potential (29) into (37),

13

Afe) = exp (i%e?;) /'Dv §* (f vdr — -3::0) (46)
X exp {—;—fd'rdr'v(r)l.(g, 7,7 ) (') — :'f 9\2/50 Zin F vdr
—igv/e, f drv(r)f (nz.—,, + e, -/o i nv(r')dr')} ,

with L{g,r,7") defired in (40). One can take the integral (46) as quasi-
Gaussian, in accordance with the formula (25). So, one can write

Afeo) (47)
— exp { ovey [ arf (nz,-,. +ive, /; " Hfr,) d-r’) 5—1{7—)} B(I) |10,

where

B(I) = exp (i‘%z) f Do 6 ( f wdr — %) (48)

X exp {——% f drdr'v(r)L(g,r, ) v{r')
—if (g‘éégz,-,.F + I(r)) 'v('r)dr} .

The integral can be found similar to (39). As a result we get

BU) (49)
= exp { 2 [ arar 1)K (r, ) 1) - 5 / I(T)a(f)df} Afeo)luco ,

where A(eo)|y is the expression given by (44), K(r,7')is defined in (43),
and ' '

A
a(r) = K-/_z'— (1 + coth (gey F/2)) geo F exp(—geoFr) .
0

14



To obtain the action of the operator, involved in (47), on the functional
B(I), we decompose the sources I*(7) in the eigenvectors (30), using (36)

IP(r) = (n" al(r) + &% nl(r) - £ U(r) ~ & L(r)) .

Then, it is possible to write

& _o_8
P50 = 28I 0

fu?r)=ff.s_if(_1—)+£f3#ﬂ'

Using this, we get

(“"’"‘ + “["f 61( ) EICET)
={f ("“"'“”‘[0] §al{r) )6!316(1")
+f (“”‘“*i‘/g°./; JﬁI(r’)dT’) 5;(,) ’

f drdr'I(r)K (r,7) I(+)

= /drdr" [ﬁI(-r) nI(r}K (7, 7, £) - l—I(-r) lI('r')K (r,7, i'H)] ’
[ 1m)atr)er
= 2 [ [31(r) ma(r) + ni(r) ma(r) - E(r) tatr) — 21(r) Far) dr ,

where

K (r,7E)
= §(r—7) 4+ 2
K (r,r',iH)

= §(r — 1) + 22

£ exp {geo(r — 7)€} [5("' —7') — coth (gezog)] "

H.exp {igeo(r — 7 YH} [ (t—7') 4 icot (g ;H)] .

15

Now the exponent of the functional B{I] is linear in nI(r), #I(r), ¢I(7),
£I(1). Thus, one can easy to get a result

Afeg) = exp {%gzeo f drdr’ f (nza(7)) K(7,7) f (nza4(r'))
+igv/ey [ dra(r)f (nzc:(f))} Afeo)lo=a (50)

—exp(gefT)
1 — exp(gecf)
nzq(0) = nxm , nea(l) = nzow ,

uAE 3y

nza(r) = nzin +

where 24(r) is the solution of the Lorentz equation in the external electro-
magnetic field (29) [28]. Gathering (50) and (44), we get

] gey Sinh (geoF/2)] 7 { .
Afey) = [— det geoF /2 exp 5 (9% 0w F'zir,

_.% (Ax 4 l{eo,1)) gF coth(geaF/2) (Az + l{eo,1)) + 28(eo)
+as gFileo )+ 2]} (51)

where

il

¥e) = co [ of (nau(r)lof (n2a(r) + gFlfeo, TN dr . (52)
Kewt) = eo [ exp{geo(r ~¥)F)gf (naalr')} dr’.

Substituting (51) into (11), we arrive to the final expression for the causal
propagator of a scalar particle in the external electromagnetic field (29):

. 1 oo sinh geg F'/2 1
D (zouty Zin) = ——2(2ﬁ)2f0 deg [— det( oF /3 )] (53)

X exp {% {_qzw;Fz,-,, —egm? + Az gFl{eo,1)

—%(Az +Heo,1) F coth (ge0F/2) (Az + Heo, 1)) + 28(e0)] }

16



This expression coincides with the one, obtained in [45], by means of the

method of summation over exact solutions of Klein-Gordon equation in the
external field (29).

5 Acknowledgment

Sh.M.Shvarisman thanks FAPESP (Brasil) for support and Departamento
de Fisica Matematica of the Universidade de Sio Paulo for hospitality. W.
Da Cruz thanks CAPES (P.I.C.D.) and the Universidade de Londrina for
support.

17

References

[1] R.P.Feynman, Rev, Mod. Phys. 20 367 {(1948); Phys. Rev. 80 440 (1950);
84 108 (1951); R.P.Feynman and A.R.Hibbs, Quantum Mechanics and
Path Integrals (Mc Graw-Hill, N.Y. 1965)

[2] W. Tobocman, Nuove Cim. 3 1213 (1956)

(3] E.S.Fradkin, Green’s Function Method in Quantized Field Theory and
Quantum Statistics, Proc. P.N. Lebedev Phys. Inst. 29 5 (1065) (Nauka,
Moskow 1965) [English transl.:Consultants Bureau, N.Y. 1967]; Nucl.
Phys. 76 588 (1965); E.S. Fradkin, U. Esposito and S. Termini, Rev.
Nuovo Cim. IT 498 (1970)

[4] L.A. Batalin and E.S. Fradkin, Teor. Mat. Fiz. 5 190 (1970)

[5] F.A. Berezin and M.S. Marinov, JETP Lett. 21 678 (1975); Ann. Phys.
104 336 (1977)

[6] R. Casalbuoni, Nuovo Cim. A33 389 (1977)

(7] L. Brink, S. Deser, B. Zummino, P. Di Vecchia and P. Howe, Phys. Lett.
64B 435 (1976)

(8] L. Brink, P. Di Vecchia and P. Howe, Nucl. Phys. B118 76 (1977)

[9] A. Barducci, R. Casalbuoni and L. Lussana, Nucl. Phys. B124 93
(1977); Nuovo Cim. A33 377 (1977)

(10] A.P. Balachandran, P. Solomonson, B.-S. Skagerstam
and J.-O. Winnberg, Phys. Rev. D15 2308 (1977); B.-O. Skagerstam
and A. Stern, Phys. Scr. 24 493 (1981)

[L1] P. Di Vecchia and F. Ravndal, Phys. Lett. A73 371 (1979)
(12] V.D. Gershun and V.I Tkach, JETP Lett. 20 320 (1979)
[13] A. Barducci, F. Bordi and R. Casalbuoni, Nuovo Cim. 64B 287 (1981)

[14] M. Henneaux and C. Teitelboim, Ann. Phys. 143 127 (1982); Proc. of
Second Meeting of Quantum Mecharics of Fundam. Systems. Dec. 1987
(Plenum Press. N.Y. 1987)

18



[15] N.V. Borisov and P.P. Kulish, Teor. Math. Fiz. 51 335 (1982)
[16] A.M. Polykov, Mod. Phys. Lett. A3 325 (1988)

[17] V. De Alfaro, S. Fubini, G. Furlan and M. Roncadelli, Nucl. Phys. B229
402 (1988); Phys. Lett. B200 323 (1988)

{18] P.S. Howe, S. Penati, M. Permini and P.K. Townsend, Phys. Lett B215
555 (1988); Class. Quant. Grav. 8 1125 (1989)

[19] V.Ya. Fainberg and A.V. Marshakov, Nucl. Phys. B308 659 (1988);
A.V. Marshakov and V.Ya. Fainberg, JETP Lett. 47 (1988) 381;
Proc. P.N. Lebedev Phys. Inst. 201 139 (1990) (Nauka, Moskow 1991)

{20] R. Marnelius and U, Martensson, Nucl. Phys. B321 185 (1989); B335
395 (1990); Int. J. Mod. Phys. A6 807 (1991)

(21] E. Bergshoeff and J.W. van Holten, Phys. Lett. B226 93 (1989)
[22] G.M. Gavazzi, Nuovo Cim. A101 241 (1989)
(23] LB. Khriplovick, JETP, 96 385 (1989)

[24] E.S. Fradkin and Sh.M. Shvartsman, Fortsch. Phys. 36 831 (1989);
Mod. Phys. Lett. A6 1977 (1991); Class. Quant. Grav. 9 17 (1992)

[25] M. Pierri and V.O. Rivelles, Phys. Lett. B251 421 (1990)
[26] Sh.M. Shvartsman, Mod. Phys. Lett. A5 943 (1990); A6 805 (1991)
[27] P.K. Townsend, Class. Quant. Grav. 8 1231 (1991)

{28] E.S. Fradkin, D.M. Gitman and Sh.M. Shvartsman, Quantum Electrody-
namics with Unstable Vacuum (Springer-Verlag 1991); Europhys. Lett.
15 241 (1991)

(29] E.S. Fradkin and D.M. Gitman, Phys. Rev. D44 3230 (1991)
[30] R.H. Rietdijk and J.W. van Holten, Clas. Quant. Grav. 7 247 (1990)
[31] G.M. Korchemsky, Int. J. Mod. Phys. A7 339 (1992)

19

[32] R.H. Rietdijk, Clas. Quant. Grav. 9 1395 (1992)
[33] J.W. van Holten, Int. J. Mod. Phys. A7 7119 (1992)

[34] D.M. Gitman and A.V. Saa, Mod. Phys. Lett. A8 463 (1983);
Class. Quant. Grav. (1993) to be published

[35] LL. Buchbinder and Sh.M. Shvartsman, Int. J. Mod. Phys. A8 643
(1993)

[36] A.A. Slavnov, Teor. Mat. Fiz. 22 177 (1975)

[37] D.M. Gitman and L.V. Tyutin, Quantization of Fields with Constraints
(Springer-Verlag 1990)

[38] F.A. Berezin, Uspekhi Fiz. Nauk 132 497 (1980)
[39] M.S. Marinov, Phys. Rept. 60 1 (1980)

[40] L.S. Schulman, Technigues and Applications of Path Integration
(Willey-Interscience 1981)

[41] J. Gimm and A. Jaffe, Quantum Physics. A Functional Integral Point
of View (Springer-Verlag 1987)

[42] B.M. Barbashov, JETP 48 607 (1965)

[43] D.I. Blokhintsev and B.M. Barbashov, Uspekhi Fiz. Nauk 108 693
(1972)

[44] J. Schwinger, Phys. Rev. 82 664 (1951)

[45] S.P. Gavrilov, D.M. Gitman and Sh.M. Shvartsman, Sov. J. Nucl. Phys.
29 1392 (1979)

20



