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Abstract

A color gauge approach, based on the intermediate 53 group
symmetry, is proposed for gentilionic quarks. Using this gauge
in the framework of Dirac’s equation, we develop a dynamical
model that gives guark confinement.

1, Introduction

In the last few years(l-s)

we have developed,
according to the postulates of guantum mechanics and the
principle of indistinguishabkility, the concept of general
statistics, first proposed by Gentile about fifty years
ago_(6-9) In our theory three kinds of particles could exist
in nature: bosons, fermions and gentileons. Bosons and fermions
are represented by horizontal and vertical Young shapes,
respectively, and gentileons would be represented by
intermediate Young shapes=. Bosonic and fermionic systems are
described by one-dimensional totally symmetric (ws) and totally
anti-symmetric (%) wavefunctions, respectively. Gentilionic
systems would be described by wavefunctions (Y¥) with mixed
symmetries. Due to very peculiar properties of gentileons, like
confinement and non-coalescence of systems, it seemed natural
to think guarks as spin-1/2 gentileons. With this hypothesis
we have shown that the Dbaryon wavefunctions are given
py(373) 4 - ¢ . Y(color). 'the one-dimensional wavefunction

$ = (SU(G)XO3)symmetric
symmetric guark model of baryons, to a totally symmetric state,

corresponds, according to the

and the two-dimensional state ¥Y(coler) corresponds to the

intermediate representation of the symmetry group S In order

3°

to preserve the intermediate S, symmetry, ¥Y(celor)=¥(123) ocught

3
to depend on three new guantum states, named color states, blue
(|b>}, red (|r>) and green (|g>). These states have been taken
as the SU(3)color (4,5) We have seen(®) that the

color state ¥(123)=Y(brg) can be represented by. Y+(123) or

eigenstates,

¥_(123), that are two eguivalent irreducible representations of
S3. Thus, in what follows, the color state will be represented
by Y, (brg) or Y (brg), indicated simply by Y(brg}.



2. Rotations in the color space, color gauge and confinement

According to the symmetric group S there are six

3’
permutation operators(4’5) which leave invariant
[Y(123)|2 = |Y(brg)|2. We have shown{(%s5) that these

transformations could be interpreted as discrete rotations by
angles 7 and 2n/3, in a three dimension space (X,Y,X), of the
equilateral triangle formed by the basic triplet of the

SU(3) .
color B ~
to the axes I3 (color isospin) and to ¥ (color hypercharge),

In this color space E3, the axes X and Z correspond

respectively. These rotations, written in terms of the Pauli’s

matrices, are represented by 2x2 matrices, {ni},i =1,3,...,6,
(4,5) :
It is clear

given explicitely in our preceding papers.
from these papers the spinorial character of the color state
¥Y{brg).

In our last paper,5 we proposed a guantum
chromedynamics for gentilionic hadrons assuming a SU(3) color
gauge, With this hypothesis, the usual QCD and gentilionic QcbD
have the same gluons and the same Lagrangian density. In these
circumstances, both theories will give identical predictions
for hadronic properties.

We have called a8, the algebra(

3
group 53 spanned by the six vectors [ni}, i=1,2,.,.,6. Since

3) of the symmetric

the S3 group admits two generators a = My and b = Mg, We can
consider As, as being an associative polynomial algebra

generated by a and b, {nl,nz,...,ns} = {I,ba,ab,a,aba,b}.
These generators, a and b, obey the commutation relation,
ab + ba = -I. We have also seen(4’5) that this algebra has an

(2,13
o oo (201) .
This invariant, that was named "color Casimir", has a very

invariant, K =7, + g + M, = 0, with a zero eigenvalue.
beautiful and simple interpretation in the color space: "the
baryon color charge is an egqual to zero constant of motion".
This result, that automatically satisfies the
Gell-Mann-Nishijima relation, can also be interpreted as a

selection rule for quark confinement. Since in our scheme,

color and quark confinement rules appear as a consequence of
geometrical and symmetry properties defined in the color space
E3’ it seems natural to expect that the dynamical confinement
of guarks could be deduced from a gaude symmetry based on the
E, gentilionic characteristics. So, with thig in mind, we could
write the states |b>, [r> and |g>, in the (f3,?) plane, as

> =Z -3 = B n+is o= |,

respectively, where |+> = [é] and |-> = [2] and interpret the
rotations in this plane as transformations being produced by
gluons exchange between guarks. Taking the properties of the

hadrons as invariant by these transformations in E we write

31'
the gauge field A” as(lo)
2
_ k
n=3 Bk, (2-2)
k=1
where Buk = aak(x)/axu, 6(x) the rotation angles in the color

plane and the generators of the internal symmetry group Tk are
given by Ty =aand T, = b.

In the above approach we would have only two gluon
fields, associated with the two generators of the rotations, a
and b. It is net ocur intention to develop here a quantum field
theory based in these new gluon fields or to present a rigorous
procf for the quark confinement. We intend only to propose a
phenomelogical dynamical model that gives quark confinement
(4:5)  gefined in the (iB,Q)
plane. This model will be elaborated within the framework of

based on the symmetry properties

Dirac’s egquation assuming that the quark is submitted to an
external field Au given by Eg. (2.1). So, taking, in a
first approach, that Bu1 = Bu2 = Bu and averaging AIu over the
color states, the statefunction ¢(x) of a quark inside a hadron

would be described by the Dirac’s equation



[ar”(pbl - ig B,) - imc] W (x) = 0, (2.2)

where g 1is +the coupling constant for the strong color
interaction.

Now, we adopt a simple model for +the quark
interaction with Bu: taking the hadron radius as r,, we assume
that the guark moves freely in the region with r < r, and that
there is an interaction between the gquark and the field only
when it reaches the frontier r = r,e In this interaction the
quark color is changed. We also assume that Bu is a wvector
field, that is, Bu = (o,ﬁ), where B = Ve(x), which corresponds
to a Coulombk gauge. Analyzing this interaction in terms of
rotations in the (ig,?) plane, we see that one color state is
effectively transformed into another only when a rotation by
angles of m or 2m/3 is accomplished. Thus, we could imagine
8(x) as a step function that, at the point r = Eo: varies from
zero up te wm or 2rm/3 due to the color change in the
interaction. This would imply that B = ve(x) = S(r—ro) ﬁ, where
R is the unit vector in the radial direction. In these
conditions Eg. (2.2) becomes

[iaro g—t +i7.v-1ig7.08 s(r-r,) - m] W(x) = 0. (2.3)

In order to solve Eq. (2.3) we use polar co-ordinates

and writefll)

f(r) Q

¥(x) = exp(-iEt) itm ] ' (2.4)

("l)(l+£_£’)/2 g(r) ng'm

where thn are the spinor spherical harmonics, £ = j + 1/2 and
£ = 23 - L.

Taking inte accont Eq. (2.4) and using the

(1) g = ¥ 3.3 a

property jén

jerm we get from Eg. (2.3):

%F f{r) + (1+K) f(r)/r + g a(r—ro) f(r) - {(B+m) g(r) = o,
4 (2.5)
ag 9(r) + (1-K) g(r)/r + g S(r-r_ ) g(r) + (E-m) £(r) = o,
where K = —(&+1) when j = € +1/2 and K = ¢ when j = ¢ -1/2.

Our Egs. (2.5) are similar to Egs. (3.13) obtained by
Villani(lz)
a classical field-theoretic context. From Egs. (2.5) we deduce,

in agreement with Villani, that ¥ 7 ¢ . R = 0 at r = r,- This

implies that there is no flow of quarks through the surface of

analysing the freedom and confinement of quarks in

the hadron. This result can be interpreted as the
manifestation, in the Lorentz space, of the confinement rule
predicted by the color Casimir.

Thus, in our gentilionic dynamical model, quarks
behave as free particles at short distances, but at the éame
time are confined, in agreement with the successful "bag
model“.(l3)
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