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Abstract

We study the mean-field version of the axial next-nearest-neighbor Ising (ANNNI)
model with an arhitrary intralayer coupling. Within the mean-field theory there is
the possibility of emergence of commensurate phases with the same period but
with different symmetries, We study the transition between these different types of
cominensurate phases as a function of the intralayer coupling. We also study the
dependence of the accumulation points on the strength of the intralayer coupling,

model with an arbitrary intralayer interaction

1 Ihtroduction

The axial next-nearest-neighbor Ising, or ANNNI model, is one
of the simplest models exhibiting modulated structures. In this model
each spin S; = 31 interacts with nearest-neighbor coupling J; > 0 and
next-nearest-neighbor coupling J, along one lattice direction, and with
nearest-neighbor ferromagnetic coupling Jy > 0 within the layers per-
pendicular to the axial direction. The ANNNI model has been actively
studied during the past decade and the subject has matured to the point
of receiving two extensive reviews (Selke, 1988; Yeomans, 1988). However
the model presents a very rich behavior and many of its aspects remain
to be explored.

Recently the mean-field phase diagram of the ANNNI model
was investigated for arbitrary intralayer interaction Jy (Nakanishi, 1989;
Yokoi, 1991), thus extending the previous works mostly lmited to the
case Jq = J;. The main motivation in carrying out this kind of study was
to investigate to what extent the generic aspects of the phase diagram
of the ANNNI model is sensitive to the variation of Jy. Interestingly
enough, it was observed that some gualitative changes in the phase dia-
gram is brought about by the decrease of Jy, most notably the pinching
of some of the commensurate phases, as can be seem in figure 1 show-
ing the phase diagram for J; = 0.2J;. The pinching effect is intimately
related to the appearance of commensurate structures with disordered
(zero magnetization) layers and also of commensurate structures without
definite symmetries.

In this paper we wish to reexamine the above mentioned effects
in greater detail and also to investigate other aspects of the problem left
out by previous works. Al the calculations will be carried out within the



conventional mean-field approximation. Although the mean-ficld theory
“lof the ANNNI model for J, = J; has revealed to be extremely successful
- {in predicting the qualitative features of the phase diagram, there are no
_{grounds for supposing that the same situation holds for Jy < J;. In fact,
very recent results based on improved mean-field approximation, where
“Ithe model is treated exactly along the axial direction of competing inter-
“Jactions (Nakarishi, 1992), and Monte Carlo simulations (Rotthaus and
“ISelke, 1992), provide strong evidence against the existence of commensu-
"f rate phases with disordered planes in the real ANNNI model. Therefore
it is possible that some of the results presented in this paper, in par-
T' ticular those which assume the existence of commensurate phases with
disordered planes, will not be realized in the real ANNNI model, but
rather reflect the mathematical properties of the mean-field equations
“lof the ANNNI model. However the disappearance of the accumulation
points occurs for rather high value of Ja, namely J < 0.75J;, and may
::ébe relevant to the real ANNNI model.

-A:-._2 Mean-field equations

The free-energy functional of the ANNNI model in the mean-

“ifield approximation is given by (see, e. g., Yeomans, 1988),

N7°F = —NkgTIn2— J; Y(20M2 + MyMpyy — 6MoMy,s)

+kBTZf0M“ tanh™' m dm | (1)

where p = Jy/Jy, & = —J, /J1, My is the magnetization per spin in the

nth layer, and N? is the number of spins in the system. In what follows

3

we will adopt the unit system such that k3 = 1 and J; = 1. The conditjon
that F be an extremum with respect to M, gives

1 .
M, = tanh T [4PM1:. + Mn—l -+ Mn+1 - l"'\"(J?M"ﬂ.%?. + Mn+2)] . (2)

To be physically acceptable, an extremum should at least be metastable,
that is, a local minimum of F. For a given periodic solution of period Q
to be a local minimum it is necessary that the matrix

0 1 0 0
10 0 1 0
M—,Ei 0 0 0 11} (3)
-1 ip, 1
where
1 T

has no complex eigenvalues of unit modulus (Janssen and Tijon, 1983;

Hggh Jensen and Bak, 1983). Due to the fact that the matrix M is

symplectic, the secular equation becomes

At — (tr M)X® + (tr, M))x2 —(tr M)A4+1=0. (5) |

This is a reciprocal equation which can easily be solved in terms of

quadratic equations.



When Jy < Ji, that is p < 1, there is the possibility of phése
! transitions between commensurate phases with same period but different
| symmetries. Conventional commensurate phases, those found for p = 1,
| will be called of type A and are characterized by the fact that the centers
| of inversion symmetry are located midway between two planes. Com-
' mensurate phases with disordered planes, which can be found for p<l,
will be called of type B and have the centers of inversion symmetry lo-
cated on the planes. Finally, commensurate phases with no centers of
syminetry of any kind will be called of type C, and usually are present
" | between commensurate phases of types A and B. In this section we study
“:{numerically the existence and dependence of these phases on the param-
eter p. In particular we determine the critical value p.(g), for a given
- commensurate phase g, such that for p < pc(q) there is the possibility
“jof type B and C phases. We remark that in this paper q denotes the
;33; reciprocal of wavelength or wavenumber divided by 2.

' The commensurate g = 1 /6 phase shows the most pronounced
i--: effect as the parameter p is varied and it is the easiest to study. Figure
12 shows, for k = 0.5, the relative dominance of different types of com-
mensurate 1/6 phase as a function of the parameter p in the T' versus p
plane. The transition lines T and Tp between A, B and C phases are
“lof second order (Yokoi, 1989), and were determined by monitoring the
eigenvalues of the secular equation (5). In this case we found numeri.
“feally pc(1/6) = 0.3 in agreement with analytical calculations (Nakanishi,
" 1989). Notice that as p decreases below 0.3 the B-phase becomes increas-
jingly dominant until at T = 0 it dominates completely. Of course this

{is an artifact of the mean-field approximation, since for p = 0 the model

reduces to a set of ﬁon-intefacting chains, which has no ordered phase.
The C-phase, on the other hand, first increases for decreasing p and then
decreases again to zero for 7' = 0, as shown in Figure 3.

The study of commensurate phases other than g = 1/6 is more
difficult not only because the widths of commensurate phases are nar-
rower but also because they are slanted relative to the 7' axis. Let us

denote by

(r) = ") e l) ©

the average value of x between the left (x;) and right (k+) boundaries
of the 3/14 phase. The line %(T') follows the middle of the 3/14 phase
and is equivalent to the line £ = 0.5 for the 1/6 phase. Figure 4 shows
the curves ®(T') for different values of the parameter p. The heavy line
indicates the transition between the A and B phases. The phase C is also
present but it is too narrow to be indicated at the scale of the figure. By
extrapolating the curve of figure 4 we found numeriéa.]ly that the phase B
exists only below p = p;(3/14) = 0.2316.. .. In a similar way we have also
studied the commensurate phases 1/8 and 1/10. We found numerically
pc(1/8) = 0.2095... and p.(1/10) = 0.1904....

Nakanishi (1989) provides an analytic expression for p.(q) which
gives the results pc(3/14) = 0.2867..., p(1/8) = 0.2352... and p,(1/10)
= 0.2050. ... We tend to attribute the discrepancies between the numeri-
cal and analytical calculations of p,(g), except for g = 1/6, to the neglect
of higher order harmonic terms in the analytical calculations carried out
by Nakanishi. In fact, we performed ar analytical calculation taking into

account up to the eighth harmonic in the expansion of the magnetization



V2 3
pc(1/8)—56 1+6 5 = 0.2095836.. ., (7

full agreement with numerical calculations.

Evolution of the accumulation points

_ The transition between commensurate phases or between com-
" ensurate and incommensurate phases in the ANNNI model can be de-
firibed by the mechanism of creation of defects (also called walls, discom-
“lensurations or solitons) (Bak and von Boehm, 1980). To be specific, let
consider the phase ¢ = 1/6. At low temperatures the right boundary
| the phase 1/6 is composed of segments of first-order transition lines
| the phases of the form (237). As the temperature increases the seg-
':;ents become shorter and they pile up as J — oo at the accumulation
lint corresponding to the temperature 77 (p = 1) = 2.8563. .. (Selke and
" hixbury, 1984; Siems and Tentrup, 1989). Above this temperature the

6 phase undergoes a continuous commensurate-incommensurate tran-

ion. Thus the accumulation point separates the boundary composed
“Hfirst-order transition lines from the boundary consisting of continuous
:f'fmmensura.te-incommensurate tramsition. A similar behavior is found
o in the left boundary, the transition being to the phases of the form
37) and the accumulation point corresponding to a different tempera-
e Ty(p). It should be remarked that the transitions to the phases (437)
j:_i}r be cut short by the intervening ferromagnetic phase and have no

-2l existence.

The simplest way to locate the accumulation points is to use the

' fact that the eigenvalues of the matrix M in the phase 1/6, given by the

solutions of equation (5), change from complex to real, which is related
to the change over of the interaction between defects at large distances
(Siems and Tentrup, 1989). Figure 5 shows the dependence of T (p) and
T;(p) on the parameter p for the phase (3). The most interesting aspect
of these curves is that they tend to zero simultaneously for p = 0.75,
indicating that for p < 0.75 all the boundaries of the phase 1/6 consist of
lines of continuous commensurate-incommensurate transitions. A similar
behavior is observed for the phases of the form {23). The dependence of
T3 (p) for the cases j = 1 and j = 2 are also shown in figure 5. At low

temperatures it is possible to show that these curves behave as

el
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thus confirming the numerical result that p — 3/4 as T — 0. This
indicates that all the phases (273} undergo a second order commensur-

ate-incommensurate transition for p < 3/4.

5 Concluding remarks

We investigated two aspects of the mean-field theory of the
ANNNI model when the intralayer interaction Jo is weakened relative
to the interlayer interaction J,. The first aspect is the occurrence of
phases with disordered planes. We obtained numerically various values
of p(q) = Jy/J1 below which disordered phases appear, checking the pre-
vious analytical calculations by Nakanishi (1989). The values of pelg)



however, rather small, and in the light of recent results (Nakanishi,
22; Rotthaus and Selke, 1993), it is likely that these phases are ar-
‘: cts of the mean-field approximation and have no counterpart in the
ANNNI model. The second aspect we have investigated concerns the
endence of the location of the accumulation points on the parameter
9) = Jo/J1. For the phases of the form (293) we determined numeri-
" lly as well analytically, that the accumulation points disappear below

© = 3/4, indicating that all the boundaries of these phases become second
er.
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PARAMAGNETIC

Fig. 012?101);11 phase diagram of the mean-ficld ANNNI model for Jo = Fig. 2 Transition temperatures between different types of commensurate
et (3} or g =1/6 phases for k = 0.5 in the T versus p plane.




Fig. 4 Graph of ¥ as a function of temperature for different values of
p for 3/14 phase. The bold line indicates the transition between
different types of commensurate ¢ = 3/14 phases.

Fig. 3 Width of the 1/6 C-phase as a function of p for x = 0.5.




0.75 0.8 0.85 09 095 1
p= JO/ Jl

. Fig. 5 Temperatures of the right (R) and left (L) accumulation points
: of the (3) or 1/6 phase as a function of the parameter p. Also shown

are the temperatures of the right accumulation points of the phases
(23) and (223).




