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Abstract

We apply spectral density reweighting techniques to study the deconfinement transition
of the SU(2} lattice gauge theory. We have included scaling corrections in our finite-size
analysis of the order parameter susceptibility ¥(P). The stability of finite-size scaling fits
of x(P) is investigated in the {y/1, w} parameter space, where w is the critical exponent
related to the leading irrelevant scaling field.

(PACS numbers: 11.15.Ha, 68.35.Rh)

. During the last years new numerical techniques and the improvement of earlier methods

‘of data analysis have led to a better determination of physical quantities in Monte Carlo

(MC) calculations. In particular, reweighting techniques and optimization in combining MC

samplings, because of their efficiency, have received considerable attention f1-9]. In [10] we

have further claborated on the reweighting technique ideas and introduced a new procedure to
combine (”patching”) overlaping MC data from simulations at various Bo couplings. There,
we have shown how spectral density methods greatly increase accuracy and facilitate finite-size
scaling (FSS) calculations for the SU(3) deconfining phase transition. This have allowed us to
obtain more accurate MC estimates for the location of the peak of relevant thermodynamic
functions, i.e, specific heat c, and the Polyakov loop susceptibility x{P).

Here, we also apply the patching procedure to the SU(2) lattice gauge theory to study its
well known second order deconfinement transition. To draw conclusions about the evaluation
of the ratio «y/v of critical exponents, we investigate the stability of FSS fits of x(P) in the
{7/v, w} parameter space. Here w is the critical exponent related to the leading irrelevant

scaling field [11,12] of the model.

We simulated the SU(2) Wilson action in a four-dimensional lattice,

§=3"5, with §,= %TT(UP) : 1)
P

where Uy is the ordered product of link matrices around the plaquetie p of the L,L* lattice,
for Ly = 4. For each simulation, a certain number of initial sweeps (10000} were discarded for
thermalization, and due to the continuous nature of SU(2) action density it was convenient
to store all measurements after every sweep through the lattice. This storage procedure
provides us with the full empirical time series for each MC simulation (120000 measyrements
in general, for L=16 and 8y = 2.300 we have used twice this statistics), which allows a
precise application of reweighting and patching techniques. With the available {ime series,
the reweighting technique allows us to calculate an estimator :‘f.‘(ﬁ ) for the physical observable
f, in a neighborhood Af of the simulated point 8y. Af is the range of validity for a

spectral density obtained from a MC simulation. We have defined in [10] a convenient way to
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estimate this range by applying the concept of g-tiles s, [13] on our empirical action density
distribution. This A-range is used to check the validity in finding out the maximum of x(P)
when carrying out the extrapolation in B. Besides that we can define better overlapping
regions among different MC runs at Bi values (B > B&, i=1,...,P) for P runs. This led
us to 2 new procedure of combining different histograms to improve our estimate for (3,

—_ P p—
f=zwif|‘s (2)

i=1

where the optimal choice for the normalized weight factors w; turns out to be the inverse

variance of f;, which can be estimated as the empirical error bars,

Wi G 3)
from each MC simulation at B5- The overall constant is fixed by the normalization condition
E{;—] w; = 1.

This approach is now applied to the lattice average of the Polyakov loop P = -3 3 P
Here Py stands for the product of all link variables U(s,x);0 along the time direction at a fixed
spatial lattice point x, closed by the imposed periodicity of the lattice. The expectation value
of Py is an order parameter for the deconfinement transition quite similar to the magnetization
in a Zy spin system [14]. Recall that the universality conjecture [15] classifies the SU(2) lattice
gauge theory and the three dimensional Ising model in the same class.

In this letter we present our data analysis for the order parameter susceptibility which,
due to a spin flip like system, is most conveniently defined in terms of the modulus of its
lattice average [16,17),

x(P) = I}(< P? > - < |P| >?). (4)

In table 1 we present our numerical results for the maximum of the susceptibility density
L% naz(P) in the validity 8 range, for each of our main data sets at couplings fq, and the
most significative patching results. The relative weights of patched data sets at Prmqr are
presented in the last column. Here, By, corresponds to a L-dependent series, defined by the
condition

X(P5L)(B) = mazimum, for 8 = Bua(l). (5)
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The leading scaling behavior for the maximum of the susceptibility in a second order
phase transition determines the ratio between the critical exponents v and v. If analytic

contributions dominate, the susceptibility may scale as
X(P; D)D) = eIty . (6)

For small systems, we may have, beyond corrections to finite-size scaling, corrections due
to the leading irrelevant field or nonlinearities of the scaling variables [11,12] as we stay away
from the truly asymptotic regime. This regime is expected to be atitained at the infinite-
volume critical coupling g, = Be(L = co). In fact, our Bpma, is 2 finite-size estimate for the
critical coupling, B:(L} = Bynaz, obtained from rather small lattice sizes. Correspondingly, if
we take into account the effect of these possible corrections, we can obiain a more reliable

estimate for x(P) through the scaling fit [18,19]
x(P; L)(Be(L)) = a1 LY 4 ap L7/, (7)

where w is a negative exponent. It stands for an effective correction exponent to account
for the above mentioned possible sources for corrections. For large lattice sizes we expect
that finite size effects will not give relevant corrections, although we may have them from the
leading irrelevant field [20].

The leading irrelevant exponent has been calculated for the 3D Ising model by high-
temperature series expansions as the first confluent correction exponent [20,21], which cor-
responds to w ~ ~0.80. Monte Carlo calculations give the values w & —0.25 (19] (for the
susceptibility, and values close to 1.0 for other thermodynamic quantities), and w ~ —0.75
[18].

We now proceed to evaluate the critical exponents /v and w. Equation (7) corresponds
to a multi-parameter fit. Hence, it is convenient to study its consistency under the input
parameter w by monitoring the goodness-of-fit @, 0 < @ <1 [22]. As 2 natural assumption,
a very small value for @ would mean that the fit is probably not acceptable for the available
data. To have a more stable fit we looked at eq. (7) as a two parameter fit for a; and a; in

the {y/v, w} parameter space.



In fig. 1 and 2 we show the Q-surfaces pez;formed for the ranges L = 6—26 and I, = 8—26,
respectively, for our patched data from table 1 and data for L = 18 and 26 from ref. [16].
A simple inspection of table 1 shows that patched data are clearly more precise than the
ones obtained as a simple error propagation average over single data seis. A figure similar
to fig. 2 is also obtained for [ = 10 — 26, Fig. 1 shows how stable is the /v determination
(7/v ~ 1.98) on a rather large range for w, while its position decreases to v/ ~ 1.94 for the
next [ range. In table 2 we illustrate numerically some /v estimates for the above mentioned
values for w, with the corresponding values for Q. As a matter of fact we can not select values
for w as given the most probable /v estimation, due to its large acceptable range. It seems
we need to study in addition larger lattice sizes to observe the above correction. This is
because the fit seems to be fully compatible with the condition w — —v/v, which means we
are just fitting eq. (6). Actually, eq. (7) is only valid for Y¥/v > |w|, else corrections coming
from the nonsingular part of the free energy will dominate the first correction term. This is
in analogy with the specific heat FSS behavior, where the leading correction is a constant
(12,18]. In fig. 3 we show the F'SS fit eq. (6} for all available data. The estimates given in
table 2, with acceptable @ values, are in good agreement with the recent ones obtained for
SU(2) lattice gauge model in ref. [16,17].

We now consider the . evaluation. Under the above considerations we should take into

account the correction term to estimate 4, as a fitting in L [18,19],
BAL) = Be+aL ¥ fpL M viw (8)

However this is a 5-parameter fit, which decreases the number of degrees of freedom, On
input conditions b = 0 and 1/ = 1.587 it is possible to obtain an estimate for the critical
coupling. For our patched data we obtain 3. = 2.2973(4) (@ = 0.01) for the range I = 6186,
and 4, = 2.2979(4) (@ = 0.13) for the range L = 8 — 16. From standard error propagation
- data we obtain 8. = 2.2978(9) (@ = 0.43) for L = 8 — 16. These values can be compared
with the estimate 8. = 2.2985(6) of ref. [16,17].

In conclusion, we have discussed the dificulties in estimating the critical exponents v/v

and w. The Q-surfaces give an overview of acceptable values for the critical exponents when
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one uses the criterium of highest goodness of the FSS fit. Our FSS analysis for lattice sizes
from L = 6 — 8 up to L = 26 showed how the v/v evaluation dependends on the w-range.
Since a conclusive evaluation of w can not be obtained for the available number of lattice
sizes, it appears that our results for w also include finite size effects beyond the one expected
from an irrelevant scaling field, as shown by the different Q-surface shapes.

Thanks are due to B.A. Berg and S. Sanielevici for providing valuable help with the
Montie Carlo data. This work is supported by CNPq - Conselho Naciona! de Desenvolvimento
Cientifico e Tecnolégico, Brazil. The data analysis made use of the IFUSP and Departamento

de Fisica Matemdtica computer facilities.
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Table 1 ) . . Fahle 2

Single runs and patching for the Polyakov loop susceptibility FSS fits of Ymax(P)
L Ho L% max(P) Bmax weights : - L range —w viv ay : ap Q
4 2.200, 2.300
2.30 mone : 5—28 0.25 (=) 1.906 (22) 0.0448 (50} 0.612 (04} B x 104
6—26 0.75 (¥ 2.208 (02) 0.0128 {02) 6.071 (01) 0.09
] 2.3 .00 ' .
o 758 -3 o 6126 1.06 (=) 2.127 (02) 0.0213 (02) 0.092 (02) 0.19
6 2332 7.58 (12} x10 2.345 (86) 1.00 6 26 @ T oeg (s o (e o.oea (o pged
6  2.300,2.332 T.712 (95)x10-%  2.346 (11) 0.37, 0.63 - /v 883 (28) 0.0352 (35) -201 (86) .
§-26 0.25 1.931 (26} 0.0425 (30) ©.010 {06) 0.37
8 2,282 nohe 1.00
8 2'300 5.142 (93))(10-3 2.2083 (18) 1_00 8- 26 0.756 1.979 (03} 0.0375 (03) 0.030 (02) 0.41
-3 828 1.00 1.860 (84) 0.041 (13) 0.033 (43) 0.41
8 2320 5.37 (11) x10 2.3109 {15)  1.00 828 Lo3s (a7 00880 () e o
8 2282, 2.300, 2.320  5.236 (63)x10~3  2.3102(19)  0.24, 0.40, 0.3 /v 936 (47) 0459 (71) 11 (16) :
10 2.287 4.148 (89)x10—2 23018 (16)  1.00
10 2.300 4.05 (14)x10™3 2.3049 {16) 1.00 The guoted values for w are taken from FSS analysis for the 3D Ising model, respectively, according to
I0 2314 4.09 (14)x10~3 2.3047(24) 100 the references ref. [19] (*), ref. [18] ®), and (c) means we fitted the susceptibility maxima to eq. (6).
19 2.287, 2.300, 2.314 4.094 (69)x10~%  2.3032 (11)  0.35, 0.29, 0.36
12 2.290 3.008 (95)x 103 2.3021 (19) 1.00
12 2.300 3.34 {12)x10-2 2.3027 (14) 1.00
12 2310 3.39 (13)x10-3 2.3043 (13)  1.00
12 2.290, 2,300, 2.310 3.215 [78))(10_3 2.3056 (19) 0.37, 0.37, 0.26
14 2.292 none 1.00 : Figure Captions:
i4 2.300 2.80 (13)x1073 2.3028 (12) 1.00
14 2.307 2.720 (82)x10~%  2.3021 (07)  1.00
14 2.292, 2,300, 2.307 2.808 {63)x 103 2.3020 (07) 0.23, 0.40, 0.37 . .
Figure 1: Q-surface for eq. (7) in the {7/v, w} parameter space. This surface corresponds to
16 2.293 none 1.00
16 2300 2433 (65)x10~® 23013 (06)  1.00 L = 6 — 26 range.
16 2307 2.51 {16)x10-3 2.3006 (15)  1.00 . . .
16 2.293, 2.300, 2.307 2.457 (58)x 103 2.3013 (05) 0.16, 0.71, 0.13 Figure 2: Q-surface for eq. (7) in the {7/v, w} parameter space for L= 8 — 26 range.
Figure 3: FSS fit eq. (6) for the susceptibility x(P). We fitted our patched data in table 1 and data
The last column gives the relaiive weights of patched data sets ordered by increasing fp. Single MC for L = 18 and 26 from ref. [16]. This fit shows that the dominant analytic contribution
runs are labelled with “weights” corresponding to 1.00 . The resnlt “none” means that maximum of the
sugceptibility is either unrealible or out of the f-range. All error bars are calculated with respect to twenty for x(P) can not be excluded for the analysed data. It gives an acceptable fit with
Jackknife bins and correcied for the bias.
Q=037.
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