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Abstract

Bosonic strings in graviton, dilaton, and antisymmetrical B, background fields
are studied. It is shown that the well known background fields equations gotten
by the vanishing of one-loop beta functions, correspond to Einstein-Cartan gravity
equations. This opens new possibilities of interpretation for the massless states of

the closed bosonic string.

There is a great interest in the investigation of strings in curved back-
grounds. The Einstein equation for the vacuum, R,, = 0, appears natu-
rally as a consequénce of conformal invariance in a quantum analysis up to
one-loop order for bosonic strings interacting with a graviton background
field[1, 2]. The purpose of this work is to show that, the well known equa-
tions obtained as consequence of conformal invariance up to one-loop order
for bosonic strings in interaction with graviton, dilaton, and antisymmetrical
B, background fields simultaneously[l, 2], correspond to Einstein-Cartan
gravity equations for the vacuum, provided that one identifies the dilaton
and the B, background fields with certain non-riemannian quantities of the
background manifold,

The classical action which describes 2 bosonic string on a curved N-
dimensional background and that takes into account the relevant closed-
string massless states (the graviton Guw, the dilaton @, and the anti-symmetri-

cal tensor B,,) is given by [1, 2]

1
§ = g/ ®e (VR0 X¥35 X" g, (X) + €0, X8, X" B,.,(X)
-aRo ), o

where o, hag, ¢, and R® are respectively coordinates, the metric tensor,
the totally anti-symmetrical symbol, and the scalar of curvature in the 2-
dimensional world-sheet. The Einstein vacuum equation arises from an one-
loop analyses of (1) with B, =®=0.

The necessary conditions to guarantee the conformal invariance up to




one-loop order of (1) are[l, 2]

N-—-26
gt = 3o T4D.2D"e —4D*® — R+ 11—2305,,3*“57 =0,
1
o = R~ 2HMH,, +2D,D,8 =0, (2)
Ao = D, ~2(Dy3)H, =0,

where R, R, and D, are respectively the Ricci tensor, the scalar of curva-
ture, and the covariant derivative in the background manifold M, which
usually is assumed to be Riemannian and so these quantities are calcu-
lated from the Christoffel symbols. The following conventions are adopted:
sign{guw) = (+, =, =), R, f = 8,18, +T8 T2 —(a & v),and R,, = o
The new field Hag, in (2) is the third-rank anti-symmetrical strength tensor
defined from B,,,

Hapy = 0aBgy + Oy Bap + 85 Bsa- (3)

One can check that the equations (2) follow from the minimization of the

action [1]-[4]:

5=— de:c\/w-ge_N (R +48,88"% — -I%H,,MH“'G" - 26) . (4)
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The action (4) is the effective action for gravity with one-loop “stringy”
corrections, and it is the starting point for the string cosmology discussions
[5]. The aim is to show that (4) is in fact equivalent to the Hilbert-Einstein
action for a N-dimensional Riemann-Cartan background space-time, and to
do it, we introduce briefly some facts on Riemann-Cartan (RC) geometry.
The RC space-time Uy is a N-dimensional differentiable manifold en-

dowed with a metric tensor g.5(x) and with a metric-compatible connection

2

T%,, which is non-symmetrical in its lower indices. From the anti-symmetric

part of the connection one can define the torsion tensor
1
8.8 =73 (T2 — %) (5)

The metric-compatible connection, that is used to define the covariant deriva-

tive D,, can be written as
T2 ={1s} — Kug (6)

where {15} are the usual Christoffel symbols from Riemannian space-time

Vi, and K, is the contorsion tensor, which is given in terms of the torsion

tensor by .
I{aﬁg == o:f; + S,G‘Ta - S‘rﬂﬁ' (7)

The contorsion tensor (7) can be covariantly split in a traceless part and in

a trace

- 2
Kopy = I{a.ﬁ-y - § (.‘Ja'rsﬁ - gcxﬂs‘f) B (8)

where I?aﬁ., is the traceless part and Sz is the trace of the torsion tensor,

Sp = 8,4 The RC curvature tensor is defined by using the connection (6),

R o = 30!I‘£.u - aurgu + ngrﬁy - I‘Eprcpru'l (9)

ovp

and after some manipulations we get the following expression for the scalar

of curvature
R=g""R,." = R—4D, 8" 4 45,5% — K, pa K, (10}
where R is the Vi scalar of curvature, calculated from the Christoffel symbols.
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In Vi, the invariant volume element

dv = \/~gd'z, (11)

is also covariantly constant, as one can check by calculating the ¥y covariant
derivative of the scalar density /=g, D,\/—¢ = 0. One can check that the

Vn volume element (11) is not covariantly constant in Uy,

Du\/__.‘J': aﬂ\/__g—rzp\/__g= “25#\/__9' (12)

In order to construct an invariant and covariantly constant Vy-like volume
element in Uy, one needs to find out a density f(z) such that D, f(z) = 0.

Such density exists only if the trace S, can be obtained from a scalar potential
Sp(z) = 9:0(=), (13)

and in this case we have
dv = ¥/ g dtz, (14)

that is the invariant and covariantly constant Uy volume element, With the

volume element (14) we have the generalized Gauss formula

f dvD, V" = j d'z0, (e%°y/=gV*) = surf. term, (15)

where we used that 'Y, = 4, (ln(e"’e\/—g)) under the hypothesis (13).
Now one can construct the Hilbert-Einstein action, using the scalar of

curvature (10), the condition (13}, the volume element (14}, and (15)

Spay = —f dv (R + A) (16)
= - f €®/=5 d"z (R + 48,000 — K,pa K** 4 A) + surf. terms.
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where A is a cosmological constant. The similarity between (4) and (16) is

surprising. They can be identified if one assumes that:

8() = =-%(x),
N-26
A= =-— 1 L] (17)
%Ha‘g.,f:{aﬁ'y = KypaK* = K, K** — %a@aﬂé.

The expressions (17) deserve some explanation. The first equation, iden-
tifies the dilaton field with the scalar potential for the trace of the torsion ten-
sor, i.e. Su(z) = —3,8(z). The last one, relates the totally anti-symmetrical
tensor H,g,, which is derived from the anti-symmetrical field B,,, to the
contorsion tensor, which is not anti-symmetrical in general and depends on

the dilaton field. Tt admits as solution:

. 1 Has
wiy = e/ Hyiv H# + 160, 90" & ——22L__ 18
Kopy 2\/§J i + 163, {18)

prw Hpvw

valid for Hup, H*?' £ 0. Let us explore (17) in more details with some
particular cases, the 3 and 4-dimensional ones. In a 3-dimensional manifold,

a totally anti-symmetrical third-rank tensor has the form

Hapy = €apyfl{z), (19)

where §2(z) is a scalar density. In this case Hap.,H"‘ﬁ" = (t leads to 2 = 0,

and (18) does exist in this limit. For the 3-dimensional case (18) is valid for
any Hopg.,.

In an 4-dimensional manifold, a totally anti-symmetrical third-rank ten-

sor has only 4 independents components, what allows us to write
Hopo(z) = eag.,sj(:r)H‘s(:z:), , (20)
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where H® is a contravariant vector and j(z) is a scalar density, in order to

compensate de totally anti-symmetrical symbol. Defining
HePY(z) = e“ﬁ""sj'l(w)Hg(m), {(21)

and using that the traceless part of the contorsion tensor in (18) is also anti-
symmetrical, and so derive from a vector K, in the same way of (20), we
have the following expression for the last equation of (17)
1
2
The condition H,gz, [ = ¢ implies that H,H* = 0, and in this case

H H" = 65, feo — gs,,s'*. (22)

solution of (22} is K, = léqu. One needs to construct K.gy from S as in
(20). A consistent choice for the density j(z} is that allows us to identify
{20) with the Hodge star (%) operation, and in order to get it one picks
J(x) = €2 /=7 (see ref. [6]), which leads to the following equation

Kopy = —?eamge‘”\/—_ga‘f@, (23)
valid for H,,, Hof7 =,

It is interesting to note that these solutions involve only the trace and
the anti-symmetrica] part of the contorsion tensor. The traceless part of
the contorsion tensor is not anti-syminetrical in general, but only its anti-
symmetrical part enters in the solutjon. Ope can think that, by (1), bosonic
strings interact with the non-riemannian structure of the background mani-
fold only by means of the trace and the anti-symmetrical part of the torsion

tensor. The torsion tensor from (18) is given by:
Hogy _ l
/ H,, Hwe 3

(gnwaﬁq" - gﬂ'vaa“m .

(24)

1
Sapy = ~——=/H ., Hove 160, 80-0
By 2\/5“ Hi +

~

where Hupy = 8,Bpy + 8yBog + 83Bq.

The action (16} for the Einstein-Cartan theory of gravity was recently -
proposed, and one of its new predictions is that torsion propagates, what
allows non-vanishing torsion solutiens for the vacuum.

As the conclusion, we stress that these results allow us to say that (1)
describes in fact a bosonic string moving in a Riemann-Cartan background
manifold M, where g,, is the metric of M, and & and B, are related to the
non-riemannian structure of M by (17). This is a new interpretation for the
spin § and the anti-symmetrical massless states of the closed bosonic string.
A two-loop analyses shall give “stringy” corrections to Einstein-Cartan grav-
ity equations. These topics are now under investigation.
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