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Abstract

We study the one-loop contributions of matter and radiation to the grav-
itational polatization tensor at finite temperatures. Using the aralytically
continued imaginary-time formalism, the contribution of matter is explicitly
given to next-to-leading (7?) order. We obtain an exact form for the con-
tribution of radiation fields, expressed in terms of generalized Riemann zeta,
functions. A general expression is derived for the physical po]a-riza,tion tensor,
which is independent of the parametrization of graviton fields. We investi-

" gate the effective thermal masses associated with the normal modes of the

corresponding graviton self-energy.

I. INTRODUCTION

(any properties of plasmas in thermal field theories can be understood from the study
e polarization tensor evaluated at finite temperature [1-5]. This tensor, which is the
roint dor;elation function, describes phenornena such as tﬁe propagation of waves and
sing of ﬁel(is in the plastna. In tfxen"na.l quantum gravity, the behavior of the polarization

_r is also of interest, especially in connection with cosmological applications. If the

erature T iz well below the Planck scale, perturbation theory can be used to calculate .

hermal Green functions. Thus, orie obtains loop-diagrams in which the internal lines

sent matter and radiation in thermal equilibrium, and the external lines represent the

gravitational fields. There has been a lot of work on hot quantum field theory in the presence
of a gravitational field [6-9]. Thus far these investigations have been mainly restricted to the
study of the hard thermal loops contributions, which are obtained in the high temperature
lirnit.

The purpose of this work is to study the behavior of the graviton polarization tensor
at all ternperatures, which might be useful in some applications. Since these calculations
are considerably more complicated than those performed at high temperatures, we have
restricted for definiteness to work to one-loop order with thermal bosonic fields, which may
be of spin 0 or 1. The method we use is that of reference [9], where the Green functions
are related to a momentum integral of the forward scattering amplitude of thermal particles
in a gravitational field. Then, the temperature-dependent ﬁart of the graviton polarization

tensor can be written at all temperatures in the form:

H””'&ﬁ(k) = 1 dﬂq 1

@Y/ 2Qexp (Q/T) — 1
Here g, = (@, ) represents the on-shell momenta of a thermal particle with mass m and

energy Q = \/|g]" +m?. F#eP (g k) is the forward scattering amplitude, summed over

the polarizations of thermal particles, which is a covariant function of ¢ and the external

Fr b (g,k). (L.1)

momenta k. This temperature-independent amnplitude is weighted in (1.1) by the Bose dis-
tribution factor. Because of the angular integrations, I1¥*# is no longer a Lorentz covariant
function. It depends on the time-like vector u*, representing the local rest frame of the
plasma. For simplicity, we work in the comoving coordinate system where u* = 8;. The
above method simplifies very much the calculations in the present case.

In Sec.II we consider the contribution of matter particles described by the scalar field ¢,
coupled to a gravitational field. The coupling characterized by the term { R4* is included,
where £ is a numierical factor and R denotes the Ricci scalar. We verify that II#**# satis-
fies the Ward identity which reflects the invariance of the action under general coordinate
transformations. We obtain a general expression for the leading (T*) and next-to-leading

(T*) contributions to the graviton polarization tensor. The special case when ¢ = —1/6 and
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m = 0 is of particular interest, since then the scalar action is also invariant under conformal
transformations [10}. Due to this invariance, TI**? gaticfies in this case a Weyl identity
which is explicitly verified.

In Sec.1lI we discuss the coupling of radiation fields which may be photons or gluons, to a
gravitational field. This coupling is also invariant under general coordinate transformations
as well as under conformal transformations. We remark that the thermal contributions
associated with internal gauge fields represent gauge-invariant quantities. The Ward and
Weyl identities determine uniquely the (T*) contributions, which are the same for all thermal
particles, apart from numerical factors which count the number of degrees of freedom. Using
general properties of the forward scattering amplitude, we show that all other contributions
can be expressed in terms of just 2 parameters which are not fixed by the Ward and Weyl
identities. Rather, these parameters depend specifically on the nature of thermal particles.

In Sec.IV we obtain a closed form expression for the contributions of thermal radiation
fields to the graviton polarization tensor. We show that these can be expressed in terms
of generalized Riemann zeta functions ¢(—n,t) {11] for natural values of n, ¢ being a ratio
of external momenta and the temperature. In the high temperature limit, this expression
yields a series of decreasing powers in the temperature, which includes leading (7} and-
next-to-leading (T?) contributions. Some technical aspects which arise in the calculations
are discussed in the Appendices.

In Sec.V we analyze the dependence on the parametrization of the graviton fields, of the
one-particle irreducible (1PI} contributions to the graviton polarization tensor. This behav-
ior occurs generally becausé of the non-vanishing of the thermal graviton 1-point function.
We show that the physical polarization tensor, identified with the graviton self-energy, is de-
scribed by a traceless function which includes contributions from thermal 1-point functions.
A general expression for the physical self-energy at finite temperature is derived, which is
independent of the graviton parametrization.

In Sec.VI we discuss the effective graviton propagator, obtained by iterative insertions

in the free propagator of the physical self-energy. We analyze, in the static limit, the
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corresponding poles which describe three normal modes of dynamical screening. While on:
of the modes remains unshielded, a non-vanishing screening mass m? = 3211'6’,6/3 appears i1
the spatially transverse one, where p is the thermal energy density. The spatially longitudina
mode is characterized by an imaginary mass m% = —32rGp, similar to the classical Jean:

mass, indicating an instability of thermal quanturn gravity.

IL. MATTER CONTRIBUTIONS TO THE POLARIZATION TENSOR

We consider here thermal matter represented by scalar particles of mass'm, coupled tc

the gravitational field via the Lagrangian:

£(z) = ~3/~o(@) [ 0,00.8 — (" + ¢R) ¢, (2.1;
2

.

and expand the metric tensor g,, in terms of the deviation from the Minkowski metric L/

Guv = T + £ Ry, (2.2

2

where x = v/32xG. In order to derive the one-particle irreducible (IPI} contributions tc
the thermal graviton 2-point function, we consider the Feynman graphs shown in Fig.1.
According to Eq. (1.1), these can be expressed in terms of the forward scattering amphitude
of on-shell scalar particles, as indicated in Fig.2. The corresponding contributions to the
amplitude can be expressed in terms of a basis of 14 independents tensors T (q, k), which
are symmetric under the interchanges (4 « »), (@ & £) and (g, ) « (a, ). These tensors
are covariant functions of g and k, being polynomials of maximum degree 4 in the momenta.
They can be obtained from Table I, replacing the vectors (X, ¥) by the pair (g, k). With help
of the Feynman rules given in Appendix A, it is straightforward to obtain for the forward

scattering amplitude the expression:




Fonet (g,) = s U= (GER 4 3R ke g) T - (2004 Tk g) Tty
TE"es | G.sk‘ Ok %g Bkoq+ %(k : q)’) sy
(G4 + €2 Toeo? 4 yeed 4 (56 + 3k-q) 20—
T8 4 %Ti::]u,aﬁ _ % £TEn P | grmnod_
(v ser)s s (b o]
+(k o —k).
(2.3)

To obtain the leading (T*) and the next to leading (T?) contributions to the polarization
tensor, we need to expand the energy @ = 1/14]* + m? in powers of (m?/ |§]?), as well as the

Feynman denominators:

11 LA K
k2+2k-q  2%k-q (2k-q)°  (2k-q)° (2k-q)*

+oee (2.4)

The T* contributions come from terms in the forward amplitude (2.3) which are homoge-

" neous functions of ¢ of degree 2. These are given by:

=13 (g, k) ~

k? pi, oo 1 pv, o
(k‘q)2T3 (st) + rq_TT (k!Q) b
— (720%¢™ + n7og*d + ¢ ¢ + pPogref) -

“aa%a” . 2.5
(k_q)zqqqq (2.5)

1 Lo s | vILOo Voo Voo
o (¢"¢"¢°F° + ¢*¢" k6" + ¢*k“q"0" + K*¢*¢"¢")
Note that terms involving the parameter £ do not contribute to (2.5). These contribute only
to next-to-leading (T?)} order, which result from terms of degree zero in g in the forward

amplitude. In order to find these contributions, we perform the lg} integration in {1.1) using

the formulas:

° lgdld  _ »T?
[3 lexp{@/T)-1]~ 6’ (2:6)
S I v
o Qlexp(@/T)-1] 15 4 (27)

The angular integrals can be done using the methods described in [9]. The result can

expressed in terms of the basis of 14 tensors T (u, K), obtained from Table I, where

replace the pair (X,Y) by (u, K). Here u? = 6 and

ko ;
K“Em=(]—§],k)z(r,k). (s

Then the 1PI contributions to the polarization tensor can be written up to the next

leading order in the form:

14 .
= (k,m, &) = Y11 (r, K, £) T (u, K),

. (-
=1
where:
2
IL (r,K,€) = 5o |# T LK) + B T Ko+ mi T si(n K, )] 40 (22

The explicit form of the dimensionless functions li(r, K), nir, K, £) and s;{r, K, £) are gi
in Appendix B. These exhibit, apart from a logarithmic dependence in r, a polynor
behavior in K of maximum degree 10. The coefficients I (r, K} which contribute to
leading (T} order, have been obtained previously [8] and are included here for completen

As a consequence of the invariance of the theory under general coordinate transfor

tions, the 1PI graviton 2-point function satisfies the Ward identity:

2

kI (k) = BT — &, (P ™ + D% ). .

Here I'*? denotes the thermal graviton 1-point function, which is given by:

m2T2x
48

T4

of
e = 180

(0 —28565) +--. (2

(48565 —1™) +

With the help of the expression given by Eqs. (2.9) and (2.10), the Ward identity (2.11)

be explicitly verified to this order. It is well known [10] that in the conformally coupled ¢

when € = ~1/6 and m = 0, the action is also invariant under conformal transformati
given by:
Guu (2) = Q? (=) Guv, (2
6




$) =0 () d(e). (214)

In consequence of this invariance, the 1PI graviton 2-point function will also satisfly the Weyl

identity {8,9]:
1
;H‘”" 7. (k) = ~T#v. (2.15)

This identity is explicitly verified by our expression for [1#*2% (k) [Eq. (2.9)] and for T*
[Eq. {2.12)] evaluated at £ = —1/6 with m = 0.

ITI. RADIATION FIELDS CONTRIBUTIONS TO THE POLARIZATION
TENSOR

In this section we analyze the contributions of spin I gauge fields, which may be photons
or gluons. Since for our purpose the self-interactions of the Yang-Mills particles can be
neglected, there is no loss of generalily in considering only the contribution of an Abelian
field A*-. For non-Abelian fields the contributions are the same, up to an overall color factor.

The coupling of the gauge field A* is described by the Lagrangian:

La= _%\/_g (2) 8" 3°° (8. Ao — BuAy) (0,45 — BpA,). (3.1)

It is convenient for computational purposes to fix the gauge by choosing:

Lrie = —2—1a-\/-g(3:) (V.4 (V.A%), (3.2)

where V,, is the covariant derivative. The corresponding Faddeev Popov Lagrangian is given

by:
Lrp=g"\-1 (:C) (al-l)_f) (&.x), (33)

where ¥ and ¥ are the ghost fields. The form of the above interactions is such that the
theory is invariant under local coordinate transformations, as well as under conformal trans-

formations given by:

A= Au(2); G (2) = O (2) g (3.4
As we have seen, these invariances ensure the 1PI graviton 2-point function to satisfy the
Ward and Weyl identities given respectively by Eqs. (2.11) and (2.,15). Here I'*® is obtainec
multiplying (2.12) by a factor 2 and setting m = (. '

With help of the Feynman rules listed in Appendix A, we can evaluate the 1PI graph:
contributing to 11**°# which are shown in Fig.3. The diagrams contrlbutmg to the cor
responding forward amplitude are represented in Fig.d. It is important to note that the -
thermal contributions from internal gauge fields represent gauge-independent quantities
We have verified this independence explicitly, performing all computations in the genera
class of covariant gauges defined by (3.2). The dependence on th gauge parameter o cancek

in the final expression of the forward scattering amplitude, which is given by:

uv, a3 2s? 1 2 puv, 0f k'q v, of prn i
B (Q7k)=m‘f' Z(k'Q) bE (?,’C)“—""T' (g, k) + 137" (¢, k)

(kg T“""'ﬁ(q,k)u Eapmet (g i 4 Koot (g 1)
T (0, k) + T °"(q,k)—%m"'°"(q,k))
+{k & ~k)

3.5

At this point, it is interesting to compare (3.5) with the amplitude corresponding to the
scalar case [Bq. (2.3)], evaluated for m = 0 and £ = —1/6. We see that in both amplitudes
the coefficients of the tensorsr'1",-’"’"""3 (t = 2,3,7) which contribute in the high temperatur
limit [cf. Eq. (2.5)] are the same, up to a factor of 2 which counts the degrees of freedom
of a physical gauge particle. On the other hand, all other coefficients seen to be different i1
general.

In order to understand this bekavior we consider now the consequences of the War
(2.11) and Weyl (2.15) identities on the structure of the forward scattering amplitudes. Tt
this end, we use the following representation of the graviton one-point function:

1
211') ./ Q exp(Q/T) ~

TP =

7 ¢ ¢ (3.6
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Then, we find from Eq. (1.1) that the Ward and Weyl identities ensure the forward scattering

amplitudes to obey respectively the relations:

1
IR (g, k) = Rt — kg (¢ + o), (3.7)
1 FITAEY u.u
= F % (0 k) = ~2¢%¢ (3.8)

~We will now investigate the constraints imposed by the relations (3.7) and (3.8) on the
general form of the amplitudes F*2%, Since these are Lorentz covariant functions of q and
k, they can be expressed in terms of the tensor basis T#°% (4, k) as follows:
14
Pl (g,k) = £ 37 F, (K k- q) T8 (g, k), (3.9)
i=1
where F; are invariant functions of k2 and k- ¢. Inserting (3.9) into the Ward identity (3.7)
and identifying the coefficients of the independents tensor structures yields 10 relations
among the F;. Similarly the use of the Weyl identity (3.8) gives 4 more relations. However,
not all of these relations are independent, so that we can express 11 functions F; in terms

of the remaining 3 as follows:

34

= ”'Z“'FIZ +kegFy, (3.10a)

1 k* k*
T TR Eg (3:100)
k2 2k8 k
= - - 10

B= Egp Tt g (3:109
2

Fy= ~5Fu— (k- q)Fy . (310d)

¥ | 3.10
Fy = _(_k"-'q_)F“ (3.10¢)
k2

Fg = ?Fu - Fyy (3.10f)

1 2kt E?
- _ F 3.10
Fy 2k-q+(k-q)2FH E g 1 (3.10g)
. k2

Fy= _%ﬂp,l - %—-Fn (3.10n)
2k2 2 .

Fg = —EFH + H-FH (310!)

9

3k? ‘ :

F]O = —EE'_QF“ (310j
k? - .

Fiz = 7 (3.10k

We see that the jnvariance of the theory under local coordinate and conformal transfor-
mations does not fix the functions Fy;, Fi; and Fy,. Further constraints are provided by
the property of the forward scattering amplitude of being a function with dimension of
{momenta)?, ﬁhiéh is even under (k «— —k). Furthermore, to one loop order in perturba-
tion theory. this amplitude can have at most one denomjnator involving (k? + 2k g). For

instance, these general properties require the functions F; and F; to have the structure:

1 1
F3=°3(k'2+2k-q+k2—2k-q)’ (3.11)

1 1 '
F7=c’(k2+2k-q“k=—2k-q)’ (3.12)

where c3 and ¢; are constants. Furthermore, it follows that Fy must be an even function of

k, having the structure:

1 1 2 1 1 )
- _ _ ' : . 3.13
fa=ak q(k2+2k-q k’—2k-Q)+c’k (k’+2k-q+k’~2k-9 @)

where ¢; and ¢, are constants. Similar structures can be found for all other functions
appearing in Egs. (3.10). These structures yield a set of relations which must be satisfied
identically in Eqs. (3.10), for all values of ¢ and k. In this way, we find that the constants

€2, ¢3 and cy are uniquely determined as:

1 1
a=-3 &= L, o= 5 (3.14)

Note that the functions F3 and Fy, as well as the part of F; which determine the T con-
tributions [cf. Eq.(2.5)] are now uniquely fixed. This is in accordance with the argument
[9] that all hard thermal particles should contribute the same, up to a weight factor. The

above relations imply further the equation:

10




(k- q)

Fy=2k*F,, + .
14 11 2—h‘“4(k'4)2

(3.15)

Using (3.15), we see from Eqgs. (3.10) that the only independent functions left over are Fo¥
and Fj;. From the general properties of the forward scattering amplitude, these functions

must have the structure;

1 1 -
F“_c"(kz-[;2k-q+k7—2'k-q)’ (3.16)

1 1
Flz:c"(k2+2k-qhkz-—-Zk-q)’ (8.17)

where ¢;; and ¢;; are constants which depend specifically on the nature of the thermal

particles. For instance, in the scalar case we get:

1 1
= ﬁ; tiz = 36" (3.18}
whereas in the case of internal gauge fields we find that:
i1 = Cip = 0. (319)

The above relations explain the features of the forward scattering amplitudes described by

Eq. (2.3) [at £ = —1/6 and m = 0] and by Eq. (3.5).

IV. EXACT EVALUATION OF RADIATION FIELDS CONTRIBUTIONS

We will now evaluate all finite-temperature contributions in closed form, using the tech-
niques described in the first paper of reference [12]. To this end, we express the 1PI graviton
2-point function in terms of the tensor basis T**” (u, K) in a way analogous to (2.9):

113
B (k) = 310 {r, K) T# P (u, K) . 4.1
i=1

According to the discussion of the last section [cf. Eq.(2.10)], we can write the functions

II; (r, K) as follows:

11

274 -
M (r, K) = 8 | Sl (r, K} + [FPT2N, , B)| (4.2

where the functions [; (r, K') are given in appendix {B). Our task is to determine the func
tions N; (r, K}, which should be non-leading in the high temperature limit. For this, it i
convenient to consider first the projections of the graviton 2-point function into the tenso:

basis T#¥*#,
P K) = ST (), (1, K). W
Once we find these (see next), the functions I¥; in (4.2} can be determined by the relation:
T (r, K) = 8(T2"*T, ,0p)"" P; (r, K) = 8(T3;)"" P (r, K), (44

where (73;)™" denotes the inverse of the matrix T; = T.-"""‘“BTJ. v, 0B

We now proceed with the evaluation of the functions P;(r,K) in 4.3. From Table 1
we see that for j = 4,5,.. -,14 these involve the contraction of II**# (k) with o gk
or with the external momenta. Using the Ward (2.11) and Weyl (2.15) identities, the
corresponding functions P; (r, K) will be given by a linear combination of graviton 1-point
functions. These are proportional to T* [cf. Eq. (2.12) with m = 0], and so will contribute
ouly to the functions ; (r, K) in (4.2). The functions N, (r,K) are determined from the
contributions corresponding to P;(r,K) (j = 1,2,3), which are not propottional to T4,
These contributions, which we denote by P; (j = 1,2,3)} can be found from Eq. (4.3) by
using for the graviton 2-point function the expression (1.1). Substituting here the expression
(3.5) for the forward scattering amplitude, we are lead to integrals of the form:

1 dq Q° I 1
IshT) =5 | Dep@m =1 (k= Tk g T B —2k-q) ’ (4.5)

where § = 0,2,4 and @ = |§]. In terms of z = cos (@), where 4 is the angle between k and

¢, we find that the above expression becomes:

_ 1 k1 dz © @ 1
BD= gy, (ko H]=)’ b em=igreny

(4.6)

12




vhere,

1 k?
4inT gy — lk|

(4.7)

\part from simple functions, the integration in (4.6) can be reduced to the basic integral

11k

e QdQ 1 1 1
10= [ Gt s @ =T = 30 (- £ -9 ) e o),
: (4.8)

vhere ¥(y) = a%ln I'(y) denotes the Euler psi function. The real-time limit of the Green's
unction can be obtained from the analytically continued imaginary-time formatism via the
rescription [13] ko = (1 + ie) Ko, where £ — 0% and Kj is real. With the presence of the ic
actor being understood, we find in (4.8} that Re{y) = ¢'Re(k,}, with ¢’ — (.

Many of the angular integrations in (4.6) can be easily done in terms of elementary
unctions, after changing variables from z to y. The most difficult one involve an integrand
ontaining ¥ (y) multiplied by a power of y*, for n = 0,1,2,3,4. The relevant integrals can

»e put in the form:-

Ju = O[Re(ko)] [Jn(t(ko)) — Ju(—t{—ko))] + [ko « —ko], (4.9)

vhere

inT\"" p 1 ]
Ju(f) = | = *n(y) — — — dy. 4.10)
©=(50)" [v [t - 5 -0 (
The choice of  is immaterial, since any constant is irrelevant for our purposes because

t cancels out in the expression (4.9). Here ¢ (ko) and —t{~ko} denote the limits of the

r-integration corresponding respectively to 2 =1 and z = ~1 in Eq. (4.7}. Hence:
ko + |E
t(ko) = -J-‘[ (4.11)
4ixT

These integrals can be expressed in closed form in terms of derivatives of generalized
liemann zeta functions ¢ (—n,1) for natural values of n = 0,1,2,3,4. For instance we have

hat:

13

Jo(t) = %j' [ln(y) -%-w(y)] dy— [tlnt — (0 —t— -lnt] (4.12)
ao=y [ln(y) - wm] W= -c-10+5m-20 @)

In the above expressions, the derivative is taken with respect to the first argument of the

generalized zeta function. The functions J,(t) are discussed in more generality in Appendix

Cicf. Eq. (C6)). In this wa:y, we find that the functions P; (j = 1,2,3) in Eq. (4.3) are

related to J,, in (4.9) as follows:

K* K*
Pi(rnK)= 56 " = (4.14)
K2 K«i Kz K2
P = m —L(r}- ﬁ‘-f" - TTJz - —é—st (4.15)
1 K? 2+ 3K?
Po= g 192L(r) 256 —r g - +8 Iy = 1y = I, (4.16)
where we have defined:
+1

L(r) = %111 : -1 (417

-1
With help of these relations, the functions N; (r, K) can be explicitly determined from Eqs.
(4.2) and (4.4). After a straightforward calculation we obtain that:

M(r,K)=P +K*P + K'P, (4.18a)
Na(r, K) = K*P, + 2K*P, + 5K°P, (4.18b)
Na(r,K) = K*P, + 5K°P, + 35K°P; (4.18¢)
Ny(r,K) = —P, — K*P, + K*P; (4.184)
Ns(r,K) = —K*P, — K*P, + 5K°P; {4.18¢)
Ne(r,K) = ~r (P, + 2K*P, + 5K*P;) (4.18f)
Ni(r,K) = =1 (K*Py + 5K*P, + 35K°Py) (4.18g)
14




Na(r,K) = Py + (142K?) Py 4 (4K 4 5K*) Py (4.18h)

No(r, K) = (2 K*) Py + (6K* + 5K*) P, + (30K* 4 35K*) Py (4.18i)
Nio(r, K) = K*Py 4 (3K” + 5K*) P, + (30K* 4 35K°) Py (4.18)
Nutr,K) = ~r [Py + (24 5K?) P, + (20K* + 35K*) R] (4.18K)
Nua(r K} = Py + (44 8K?} P, + (8 + 40K* + 35K*) P, (4.181)
Nis(r, K) = =P — K*P, + (4K* + 5K*} P, (4.18m)
Nu(r,K)=r (P 4+ K*P, + 5K*P3) (4.18n)

At high temperatures, the Riemann zeta functions can be expanded in a power series
in i, as shown in Eq. (C10). Then, in the high temperature domain, we can express the

functions F; (7 = 1,2,3) as a series of powers of (1/T"). The dominant terms in these series

are given by:

K2
= 4.19
P, % (4.19)
K?
Py, = «-—-48 L(T‘) : (420)
1-3K*L(r)
- _ r) 1.21
Ps 576 (4.21)

Although the above contributions are gauge invariant, they do not directly describe the
physical properties of the plasma at finite temperatures in a gravitational field. This problem
is related to the fact that the thermal graviton 2-point function depends on the choice of

the basic graviton fields.

V. THE GRAVITON SELF-ENERGY AT FINITE TEMPERATURE

In thermal quantum field theory the 1PI contributions to the graviton 2-point function
are in genera] dependent on the parametrization of the graviton fields. However, as shown

in the second work of reference [12], the traceless quantity:

15

fjuwas (k) = [Ievad (k) — 41 (n””’ﬂ”m"a + q“BH”m"’" + ,qvanpp_uﬂ + ’?Vﬁnpp.m) , (5.1

represents at high temperatures a quantity which does not depend on the choice of basi:
graviton fields. In this domain, the masses can be effectively neglected so the theory i
invariant under conformal transformations. The representation-independence of II then fol
lows in consequence of the Ward and Weyl identities. As we have seen, the coniribution:
from internal massless particles, are invariant under local coordinate and conformal trans
formations. Consequently, the physical amplitude given by {5.1) can be identified in thi
case with the graviton self-energy even at finite temperatyre.

However for contributions from thermal matter, which are characterized by the presence
of massive particles, II***# is no longer independent of the graviton field parametrizatior
at finite temperatures. Qur task is to generalize (5.1) in such a way that the corresponding
quantity should represent a physical graviton self-energy at all temperatures. To achieve
this we consider the effective action which generates the one-particle irreducible thermal

Green functions. In the representation (2.2) for the A fields, we have that:
1
Sets = TiPhop (0) + 5 [ ARIE2 (k) By (B) hg (<K) + . (52)

Starting from these fields, the most general re-parametrization of the graviton fields can be

written as:
R = a b £ BEN g R B 4 AR R e (BY)) 0 E fhagh™ 40, (53)

where @, b, ¢, d, ¢, and f denote arbitrary constants. For example, a basic graviton field

often used in the literature which is defined by [9]

Vg (2)g™ =7 + khi¥, (5.4)

corresponds to a special case of (5.3), with:

i f=-1 (5.9)
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In what follows we shall assume, without loss of generality that ¢? = 1. This can always be
achieved by a further rescaling of the , fields in (5.3) [see ref. (12]]. Furthermore, we ghall

consider for simplicity the class of parametrizations characterized by the conditions

ab~ac+2bd=0; b+2f=0, (5.6)
which are explicitly verified by all the graviton representations discussed in the literature
[6-9].

Since the effective action is invariant under a general re-parametrization of the graviton

fields, it can be written in terms of A, as

Sers = TP hiap (0 f‘fiknw (k) by (k) huag (=) + -+ (5.7)

Identifying with the help of (5.3), the corresponding terms in (5.2) and (5.7), we obtain the

following relations:

T = aT8 + 6" T, (5.8)

% (k) = 22 () +ab (05, 07 + IR0 2, o) + B IIG 3 ™
+c (P""’ S i *"’)
+ g (Fuaqvﬂ + I\Uﬂ o + P;?l’]“ﬁ + l"ﬁ‘ﬁ’?ua)

+2eTE, 0™ + T4, (79" + nen+d)

{5.9)

When the theory is invariant under conformal transformations, the following Weyl iden-
tity holds {12]:

at4c+2d ,,

poaBv — _.~‘“’ .1
Hh'p —K a(a+4b) h = Ph,a (5 0)

where f‘::' is a traceless function. In general, this is no longer true in the presence of thermal
matter at finite temperature. In order to take this fact into account, we generalize (5.1) by
considering the following traceless quantity:

ﬁ,uv,uﬂ (k) = [Jumal (k) + %A,\A (qpa,?yﬂ + nyﬁqua) — (T]”VA""G + ﬂaﬁApy) +

,  (5.11)
(nuaAV.ﬂ + q“ﬁA"'“ + pre A 4 UVﬁAua)
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where the tensor A*" is given by:
v 1 o T 1 I
A = o (1w 4 Bo) — 35 (0% + 15} . (5.12

We remark that when the Weyl identity (5.10) is applicable, A** vanishes so that Eq. (5.1
reduces to (5.1) as expected. For this reason, only the contributions from thermal matie
will appearin Eq. {5.12). ‘

It is now ;t'ra.ightforward to '\;erify, with the help of the relations (5.6), '(5.8) and (5.9
that:

ﬁﬁv. o (k) = ﬁ;v.ﬂﬁ (k) . (5.13

This equation shows that the graviton self-energy given by the relations (5.11) and (5.12
is invariant under re-parametrizations of graviton fields at all temperatures. In order ¢
understand the mechanism which enforces the above property, using the relations (5.1’

(5.11) and (5.12), we write the expression for the graviton self-energy in the form:

fi#ad (k) = I ofl (k) + H:‘a";"ﬁ (%), (5.14

where 11247 is given by:

T () =

(nﬂafwﬁ + quﬁf‘va + ﬂvuf‘#ﬂ + ,?v{lf‘uw)
_,T.uvAaB — ,?aﬁAﬂv ’

o f

(5.15

As mentioned before, A vanishes in the case when the thermal fields can be considered a
being effectively massless. The contributions associated with the graviton 1-point functio:
in (5.15) can be represented diagrammatically as shown in Fig. 5. Both II and I' depen
individually on the choice of basic graviton fields in 2 way that ensures I1 to be independen
of these parametrizations. Hence, in order to obtain a physical self-energy, one must conside
in addition to 1PI graviton 2-point function, also the corresponding “tadpole”® contribution:
Since the graviton self-energy (5.11) is parametrization-independent, it may be convenientl
evaluated in the representation {2.2) of the gravitational fields, from the contributions ¢

thermal matter and radiation fields given respectively by Egs. (2.9) and (4.1).
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V1. THE EFFECTIVE GRAVITON PROPAGATOR,

In order to investigate the thermal mass of gravitons, we will study the properties of
he poles in the effective graviton propagator. This is obtained by iterative insertions of the
hysical self-energy in the classical graviton propagator k~2P¥;, where:

8455 + 8585 — 1" 1ap
2

v —rav W 7as
Pop = =155 - 5 (6.1}

hich is insensitive to changes of parametrizations [6,12).

As we have seen, because of the inclusion of graviton 1-point functions, the graviton self-
nergy (5.14) is also independent of the parametrizations of graviton fields. These properties
nsure that physical quantities such as masses are independent of the choice of basic graviton
elds. Using the fact that the physical self-energy is traceless, P behaves effectively like the
lentity when acting on {l. Hence, the effective graviton propagator can be written in the

wm;

a1 1 v 1~ v 1 ? . v Yoo
D23ty = s [P + s + () e +... (5:2)

ke right-haud side of this equation sums up to a geometric series, giving the relation:
(kP — ML) iy = 12 (6:3)

" The effective propagator satisfies certain fundamental constrains. In view of the traceless

roperty of I, BEq. (6.2) requires that:

Df; = __7?_]:2: {6.4)

urthermore, the Ward identity (2.11) expressing gauge invariance requires a longitudinal
»ntribution in Tf connected with the background energy-momentum tensor [cf. Eq. (2.16)
t the second paper of Ref. [12]). Considering for definiteness the high-temperature limit, it

then straightforward to verify that Eq. {6.2) impliea:

- bk, 1 : . -
kakg D3l = 2 — on + 207 — 485801 - T . (6.5)
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where the energy density p is given by:

_ wriTd
=55

(6.6)

Here w denotes the total number of degrees of freedom of the thermal particles.
In what follows we shall be interested only in determining the effective dynamical masses
in the static case ko = 0, which are relevant in the process of dynamical screening. To this

end, we project the corresponding contributions of IT into the following traceless normal

modes:
7o = [-30(w) = (5Tiw) + 3Tu(w) et (6.7)
J 37 574 3
1 s af
TEmes [—iTg(u) +2T3(u)] , - (6.8)
where the tensors T *?(u) (i = 1,---,5) are obtained from the corresponding ones in

Table 1 by replacing X* with u® = §¢. The normal modes Ty and Ts are idempotent (up
to a minus sign) and orthogonal to each other, While the mode T is three-dimensionally

longitudinal, the mode T is spatially-transverse in the sense that:
RETE ™ =0; (i,j=123). (6.9)
In terms of these tensors, we can decompose the self-energy as follows:
(ks = 0) = % (T4 - %Tg"""’) (6.10)

It s then easy to invert Eq. {6.3), yielding for the effective graviton propagator the result:

v, o _ 1 b, o f} 1 voaf i g, af?
D il (kﬁ = 0) = ﬁTﬂ + ng + mTJ (6.11)
where the normal mede Ty given by:
1 1 2 7 1 walf
T30 = [-3Ti(w) + 3Taw) - ST0) + 5 T4(w) - 3Ts0)] (612)

is orthogonal to the modes T; and Ts.
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We see that in the normal mode Ty, the gravitational plasma is unscreened. This is
mewhat similar to the spatially-transverse mode in the QCD plasma. On the other hand

¥

10n-vanishing screening mass appears in the mode Ts:

md =

x%p  327Gp
5= {6.13)

3
alogously to the behavior shown by the spatially-longitudinal mode in the QCD plasma.

The mode T is characterized by an imaginary mass:

m = —322Gp (6.14)

iich is similar to the classical Jeans mass. This anti-screening mode indicates a gravita-
mal instability for density fluctuations with wavelength larger than |m;{~!, owing to the
bractive nature of gravity. One may generalize this calculation by including internal gravi-
ns in thermal equilibrium at high temperatures [9). Their contributions will not affect the
ove conclusion, since these change only the weight factor w appearing in p [of. Eq.(6.6)]
lich counts the total number of degrees of freedom.

In conclusion we emphasize that this work, like that of Ref. [6], has been concerned with
avitational perturbations at finite temperatures around the Minkowski background, in an
ymptotically flat space. Using a different approach, based on the study of small distur-
nces around the solutions of Einstein equations, Rebhan [8] has performed a rather com-
ste investigation of the gravitational instabilities. These metric perturbations are relevant

high temperatures in the context of a radiation dominated Robertson-Walker universe,
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APPENDIX A

In this appendix we present the Feynman rules for the couplings and propagators in-
volving scalar, gauge and graviton fields. These rules can be obtained from the respective
Lagrangians given in Eq. (2.1) and Egs. (3.1), (3.2) and (3.3). In a perturbative calculation
we first have to expand all the metric dependent quantities up to some given order in the
graviton field 2. These expansions and the subsequent reading of the momentum space
Feynman rules is a.straightforward procedure (but a very tedious task for i:lumans) which
was accomplished using a algebraic computer algorithm written in Mathernatica, Here we
will only present the results for the vertices involving up to two gravitons, which are rele-
vant for the calculation of the graviton polarization tensor. We will also restrict only to the
Abelian couplings of the gauge fields [cf. Eq. (3.1)].

In a}l the expressions which follows we will always denote the graviton momenta and
indices by [ki, {g, v)] and [ks, @, B8)]. The momenta of scalars and ghosts are denoted by
p; and p;. The gluon momenta and indices are denoted by [py, p] and [p., ¢]. Using this

notation, we obtain from the Lagrangian (2.1} the scalar-scelar-greviton interaction vertex

2
;'C'V;::mrm(kﬁphpi) = PiuPart PowPin—P1"P20pe — m’ Mo + 26 (km ko~ k? U:nr) (A1)

and the scalar-scalar-graviton-graviton interaction vertex

16
=3 Vo2l (ky, ka; prapa) = ~8 P PapMlow + 2P1 * P2 Naw Moy + 4Py Pop M

Pr - Paaplay + M2 (2000 00 — Tap ) +

£ (Akykunag + 4k, Fyap — 4 kg ko Qo—
6k gkonay —4kpk o+ 2k gk Now— (A2)
Akok,unpy — 2k abyupu+ 2k - k2 00 Tpu—
dkakunp —8kukans +2kakumpt

8K o + 4 K1 - Ko oy gy 4 8Kya Kyp unt

Ak pkyonu —4 k? Tag Tuw — 2 K1+ k2 9ap Tu) s

where in the expression above one has to perform a symmetrization over the graviton indices

and permutation of the scalar particles.
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From the ghost Lagrangian we obtain the ghost-ghost-graviton interaction vertex

1ghost . —
;fo (k15 p1yp2) = —p,, Pap — Pyu Pov + P1* P2 sy (A3)

wd the ghost-ghost-graviton-graviton interaction vertex

8, 2
Yy vhost . _
% Vo (B K23 PLP2) = 4Py Pas Mo + B Pyp Pos Tlaw = 291~ P2 Mg + P1 * P2 T Ny

(A4)
ixpression (A4} has to be symmetrized over the graviton indices. Notice that, as can be

asily seen from Eqgs. (2.1} and (3.3), the interaction vertices of ghosts or scalars with the

raviton field, differ only by a minus sign when £ = m = 0. The corresponding propagators

Te given by
! for the ghost
= or the ghost,
D(k) = k% . (A5)
o for the scalar

From Eqgs. (3.1) and (3.2) we can obtain the gauge fields Feynman rules in the general
ovariant gauge characterized by the gauge fixing parameter a. In this class of gauges the

auge field propagator is given by

1 ky Ky
D, (k) = 5z [T — (l“a)"%é_ : (A6)

“he interaction vertices will also depend on the parameter a. The gauge-gauge-graviton

oupling is

.-:V#E:.‘ye(kﬂ PLP2) = ~Pio Pop v + Pro Pav Mup + Prov Pap Moot

Pyo Pap Mvp + Py Pap Moo = 2P1 * P2 Tup o —

2P Pav Moo + P1 " P2 Ny Tpe + (AT)
;1;('—2p,pp,a Tuw = Pip Pao Hur = 2 Pru Pas Rup+

AP0 Pap Tue + 2P0 Pov e 5

nd the gauge-gouge-graviton-graviton vertex is
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16
2 Vy:?jg.ep.a(kli k2;Plipﬂ) = 2?10 DPap Nou M — 4qu Pav Nau Noe — 4P,u P2o Nau Noet

4P1ss Pav Moo Mo = Pro Pap Nap v + 2P0 Pap Norw Mt
219 Pap Moo Muv + 2P0 Pra Mgp s + 2 Py Pap Mgt M=
471 P2Now 00 v — 4 Pro Pav e Mup — 4 Pro Pap Nou Tip—
4916 Pas Tac Tive + 8.1 * P2 o 8o Tup =~ 4 Py Pap Mo Moot
410 Pag Tun Moo + 80,0 o Mo Moo = 291 P2 Py Mo Tpo—
4 pla P28 Taw Moo+ P1 * P2 Yos Toaw Tpo+
; (16 K1y Pap Taw 18w = B Kyo Py Now Moy — 2Py Pae.Tay Mot
2ky5 Fpe Nag Tuw + 4 Ky Pyp Nap Tuv + Pro Pac Mo v —
8 ke P15 Mlap v = 4 P2 Pao Naw M — 4 K10 K8 Tew v —
8,5 oMo Tuw = 4 Pyp Pop Nao Muv — 4 1o Kyo Nap ot
8 P15 Pao Mo Mup + 8 Kyw kyg Mo Mup + 81w Pap o Mo~
8 Ky Do Mot Mo + 8 K, P Taw Tuo + B21p Pas M Mo+
16 £,y P12 Tao Muo + 8 Ky Pro Mo Mo -
(AB)
Similarly as in the scalar vertices, one has to symmetrize the gauge ficld vertices over the
graviton indices and include the permutations of the gluons. In all interaction vertices there
is momentum conservation, with all momenta inwards.
From the expressions above we can perform the explicit computation of the scattering
amplitudes shown in the figures 2 and 4. This was done using these Feynman rules as an

input to a algebraic computer program.

APPENDIX B

In this appendix we present the leading and next-to-leading structure functions for the
matter contribution to the polarization tensor. The leading structure functions presented
here are the same for all thermal particles. The explicit result for the functions L(r, K),

ni{r, K) and s;(r, K} appearing in Eq. (2.10) is the following:
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The dimensionless quantity L is a function of r given by

814

L(r)——lur+i 1.
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APPENDIX C

re we calculate the integrals

0= (%) [ ary i) - - - ) ()

a8 of the generalized ¢ function, defined as

({z,y} = Z (!—i—y) . (C2)
this end we express the 1 function as
Dy )—lmé [——C(1+£,y)] (C3)
e the formula
t 1 ‘
[ dimy) = 7t -=0), (C4)

in be easily verified from eq. (C2), and can be generalized to

[ e =2 bl -1, (08)

is eq. (C4) integrated by parts n times.
stituting eq. (C3) in eq. {C1) and using eq. {C5) we can verify, using the properties
inction, that the divergent term as ¢ — 0 cancels out, as expected. For n # 0 the

ing terms give:

irT -1 ot gt " n Fanei (™ pre
J()_(Ikl) {n-l-ll“t_(ru-l)’—f;*v“:(_l)it (J’)C(—J'm

3=0
m (=1 fnY (1Y L
St | = | "7 B4t C6
Z i+ 1 j g k J'H( ) s ( )
B,. are the Bernoulli polynomials [F1]. For n = 0, Jy(t) is given by Eq. (4.12).
w we discuss the behavior of the generalized zeta function for asymptotic values of the
eter {{ko) = ‘lﬁ::—:;.—.k-{, which correspond to high temperature expansion. To this end,

rt from the representation [11]:
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R _[°° e -izda:. (C7)

"Expanding (C7) in power series of ¢, making use of the integral representation of Rie-
mann’s zeta function and Euler’s gamma function we find
T +1)(-t)
z t) Z r(z) “ (z+ l) ’ (CS}
Taking the derivative of (C8) with respect to z we obtain in terms of the psi function
¥(z) that .
) = (—t) Tz + l) : :
¢'(2,1) Z_I— {B(z +0) = ()] (z + D+ (= + D)} - 'inf2). (€9
i=0
We are actually interested in the values of ('{z,t) for = — —n where n is a natural
number. After a strajghtforward calculation we obtain

c'(—n.t)=i()[c(z—n) (=) 3 ]t'~t"1n(z)

1=0 k=n-l41

__t':"l (’r ki )+ Z( 1)n+1tin—(l—--—--1—)-C(l-—n) (CIO)

n+1 } I=n42

With help of this forrnmula we can compute the functions J, in Eq. (C6) and express
F, from Eqs. (4.14), (4.15) and (4.16) as a series of decreasing powers of T'. Then, it is
straightforward to arrive at Eqs. (4.19), {(4.20) and {4.21).
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TABLES

T X, Y) = a4 e

TEOP(X,¥) = X# (XPn + Xt} + X* (XPob + Xonhe)
e B (X, Y) = Xe XBXr X+

TP (X, Y) = o0

TE P (X,Y) = X# XV B 4 X XBppv

) Tg""’”(x,}’) = X8 (Yvnor £ Ve vy 4 y# (Xvqee + X0 7°*)

+ Xe (YVnPe 4 YRoP) 1Yo (X7 0PH 4 XM )
THo (X, Y)=Y* XoXPX» + Yr XaXP XY 4 YP X X+ X* + Y2 XO X+ X*
TE B (X, Y) = YPYVyor 4 ¥RV aqov L Yo yy gfu Yo Yy
TE P (X,Y) = Yr Y X2 XP + Yo YA Xu X¥
T P(X,¥) = (YA X2+ Y XP) (Y* X* + ¥* X*)
TEHoP(X ¥) = YBYRYY X 4 YO YE YV XB 4 YoYBYY X0 + YYO¥s X
TP (X, Y) = YoYPYsyy
T (X, Y)=YrY P $ YOV v
T P(X,Y) = (Y7 XM+ Yu XY o8 4 (YA X* + Y XF) g

TABLEL A basis of 14 independent tensors T3 (X,Y)
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FIGURES

FIG. 1. Lowest order matter contributions to the thermal 1Pl graviton two-point function. (0) (b)

Cutly lines denote the gravitational field and solid lines represent the scalar particle,

FIG. 2. The forward seattering graphs corresponding to Fig. 1. Crossed graphs with (k ~ —k)

are to be understood.

FIG. 3. One-loop contributions of radiation fields to the graviton polarization tensor. Wavy

lines denote the gauge field and broken lines represent ghost particles. FI6. 3

F1G. 4. Farward scattering diagrams containing ghost particles connected with Fig. 3. Crossed

diagrams (k& — —&) should be included.

FIG. 5. Lowest order contributions of graviton 1-peint functions to Iy;a. The black dot repre-

sents terms proportional to 5.

(a) (b)

(a) (b)

(¢} {d)
F1G. 4
FIG. 4
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