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Abstract. We examine the potentiality of the Gabor spectrogram as a tool for the study of the
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properties of nonlinear oscillators in situations where the conventional Fourier analysis are not
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1 Introduction

Non-linearity limits the usefulness of some basic tools of linear dynamic analy-
sis, such as the Fourier Transform (FT). The latter looses its power as concise
description of the movement if the system is nonlinear. On the other hand, as
we introduce new methods, it is desirable to preserve as far as possible our famil-
iar tools and mathematical objects arisen from linear systems, while entering the
domain of non linearity.

The Gabor Transform (Gabor, 1946), (Bastiaans, 1980}, (Perelomov, 1971),
(Bargmanret al., 1971), (Quian, 1992A) and (Quian, 1992B) keeps many essential
features of the FT, while adding time resolution. The power spectrum becomes
then a function of both frequency and time. Many of the features of the FT are
still distinguishable on each “time slice” of the Gabor Transform. In particular,
" if the motion becomes locally periodic, its harmonic series can be recognized as a
family of equally spaced, albeit transient, “spectral lines”. These properties make
the Gabor transform a useful tool in the analysis of nonstationary phenomena
ranging from eletroencephalography (Banquet, 1973) to plasma physics (Franco et
- al., 1992).

In this work, we use the Gabor transform to analyse the free oscillations of a non-
linear snap-through oscillator. We perform numerical solutions of the differential
‘equations with both the exact force law and with a cubic approximation, which
is equivalent to a homogeneous Duffing equation. The Gabor spectrogram then
allows us to discriminate the transformations of the spectral content of the motion,
along the simulation time.
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2 Gabor Spectrograms

The Fourier transform is an expansion of a function over a base of oscillating
functions with the form of a complex argument exponential. The expansion
coefficients are calculated by the scalar product of the function by each of the
base elements in the Hilbert space (Courant and Hilbert, 1953). In the case of
a discrete variable, such as in a numerical simulation, the FT is replaced by the
discrete Fourier transform (DFT). For a discrete time function s(t), the DFT reads:

N

S(f)=">_s)g® ; g; = exp(2mi f;t) (1)

T+1

" where £ is a time counting variable, the g; are the base functions and the asterisk

denotes complex conjugate (Oppenheim, 1989).

The FT is an economic description of the motion of linear systems, since most
S(f;) vanish. With a single degree of freedom, we have a single lorentzian “spectral
line”, perhaps broadened to some extent by a damping effect. A sole coefficient
accounts for a large number of points of a sinusoidal function in time domain. In the
case of many degrees of freedom, we have as many eigenmodes, each corresponding
to a single independent oscillator in a convenient coordinates system. This makes
the set of base elements of the FT quite appropriate to describe linear dynamic
systems. However, if the spectrum changes in time, the F'T, while still a complete
expansion of the function, is no longer a concise one. It does not account for the
time evolution.

The lack of time resolution of the FT arises from the fact that the base elements
give equal weights to all the points of the function, so that every time information
is mingled. The Gabor transform brings time resolution to the base elements
by multiplying each oscillating term by a set of Gaussian window functions with

" the median centered at different times t; and a mean square deviation ¢;. The

window function acts as a mask, selecting only a narrow slice of the time domain
and screening the outside points. A single wave packet can then “tune in” a single
narrow frequency band and a single time slice. A complete set of Gabor wave
packets spans the two dimensional time-frequency domain. -The discrete Gabor
Transform reads then:

N
S(fiste) = 2 s g5(t) (2)
t=1 "
where the analysing base functions {wave packets) are defined as:
t—1p\’ :
gik = €xXp — (—2—0—> exp 271 f; (T — 1)) (3)
t

and t; = kvV21 oy .
The Fourier transform of the wave packet has in the frequency domain also a
form of a Gaussian wave packet (Gabor, 1946). The frequency domain Gaussian
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peak is, of course, centred at the wave packets own frequency, while the oscillating
term is linked with the function displacement in time. However, the frequency
and time mean square deviations oy and o, are linked through a constraint arisen
from the wave packet definition: they have a constant product: oy oy = /4. It
can be shown that any other possible forms of the wave packets would have a
‘greater product of time and frequencies mean square deviation or uncerteiniies.
In general o; 0y > 1/47 ((Schiff, 1955), p. 67).
- Thisisa general mathematical property of wave packets. It was borrowed from
an equivalent problem of great conceptual importance on quantum mechanics,
the uncertainty principle. The choice of Gaussian minimises then simultaneously
the uncertainty of the base wave packets in time and frequency domains. This
optimises the analysis resolution on the two-dimension time-frequency domain and
_brings symmetry between both variables since they have the same form on time
and frequency domains.
The times and frequencies of the Gabor grid are:

t= kV2r oy fi=iVere; - 4)

The time domain is completely spanned by a grid of analyzing wave packets with
frequencies and times f; L. The number of possible values of 1 is N, [t different
time slices, where N, is the number of discrete points of the function or simulation
to be analysed. The highest frequency value attained by f; is half the “sampling
frequency” or half the number of simulation points per time unit. The total number
of analyzing wave packets, which can be calculated from the above considerations
and equations (4) is asymptotically equal to N, the number of points of the original
function. The Gabor grid has thus as many independent numbers as the analysed
function.

In figure 1 we show the form of this grid (2) and the form of the real part of
a few wave packets (b) from a complete set, as well as their envelopes. Since the
time-widths of all envelopes are equal, a variable number of cycles are enclosed
inside the envelope for different frequencies f;. ‘

It is possible to perform the Gabor analysis in a grid of times and frequencies
denser than one described above. In this case, we have the number of independent
numbers of the expansion larger than that of the original function, and the expansion
is overcomplete or oversampled. Some degree of oversampling may be desirable
to enable an easier visual examination since the spectrogram becomes smoother.
Although the just complete Gabor spectrogram contains all the information about
the original function, it can result on a hardly readable graphic representation,
with a mosaic of a few squares with discontinuous borders. Qversampling, while
bringing an extra computational overhead, yields a more readable graphic display.

A mumber of different names were used for the Gabor discrete transform. When
continuous variables are used for time and frequency, the method is called Gabor
transform. Otherwise, the names discrete Gabor transform or Gabor matrix are
employed. On the other hand, the word spectrogram was coined in the context of an
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Fig. 1. Construction of the Gabor spectrogram: a) Gabor grid in the time-frequency domain;

- b) Examples of analyzing wave packets in the Gabor grid

analogue device invented in the 40’ that performs a signal analysis very similar to
the Gabor method, while using a different kind of envelope function. In this work,
we shall refer to the latter as Gabor spectrogram (GS), whether it is oversampled
or not. This name links the Gabor discrete transform with an electronic technique
in use for decades in the analysis of human voice and animal sounds.

2.1 WHY NoT WAVELETS?

We should also mention here the wavelet transform, quite related to Gabor spec-
trograms, that received great attention in the last years (Morlet et al., 1982A)

and ((Morlet et al., 1982B); (Grossman, 1984); (Combes al., 1987), (Meyer, 1989),

(Daubechies, 1990), (Daubechies et al., 1992) & subsequent papers). It analyzes
the function along different scales, rather than frequencies, and provides a better
convergence during the function reconstruction. Tt is also a more acute analytical
to0l than Gabor Transform and possibly better suited to analyse a hard non-linear
transient, where relevant phenomena are distributed through a wide range of time
scales.

On the other hand, the wavelet transform involves a hardly intuitive variation of

time resolution through the frequency range that makes delicate its interpretation.
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- The frequency scale is logarithmic, so that harmonic series are no longer recognizable

by the signature of evenly spaced lines . Since the Gabor transform is also a good
approximation of discrete wavelet transform on a narrow band of frequencies, we
considered it a good compromise between efficiency and readability of results.
Moreover, the phenomena here analyzed span less than a decade.

2.2 ELEMENTARY EXAMPLES

~In order to provide some graphical insight about the method, we shall examine

first an elementary case of the Gabor spectrogram. We show in figure 2a the

" time history of the displacement of a damped linear oscillator with a natural

frequency 1 Hz, and in figure 2b, the corresponding (discrete) Fourier transform.
Both frequencial and temporal behaviors of the system are displayed in the G5 of
figure 2c.

The spectrum exhibits a “keel” or “crest” located along the natural frequency
of the system, 1 Hz. A higher oscillating frequency would displace the crest to the
bottom. On the other hand, the crest profile mirrors the oscillation amplitude,

. showing the expected exponential decay envelope. Of course, in this simple linear

-case, the GS does not bring new insight. It may just serve as a guideline to

understand more complex nonlinear cases.

Another simple example is a frequency modulated (FM) function (figure 3a).
The frequency slowly migrates from 0.6 to 1.4 Hz. The DFT amplitude {figure 3b)
shows a broadened peak with a flat irregular top that encloses the band of frequencies
crossed by the function. It bears no information about the time changes. The
GS (figure 3¢) shows an inclined ridge that maps the function path on the time-
frequency domain, masked on the Fourier transform.

3 The Snap-through (ST) System

3.1 SvysTEM DESGRIPTION

The snap-through system (ST system) shown in figure 4a is one of the simplest
geometrically non-linear truss structures. It represents however the essential fea-
tures of a larger ciass of structures, like shallow frames, arches or shells (Holmes,

- 1979), (Karaesmen, 1992) which may present kmit point instabilities (Thompson,

1973), (Thompson, 1984), (Huseyin, 1975), (Simetsen, 1990). The name “snap-
through” derives from this property: under a sufficiently high compressive load, the
original configuration looses its bearing capacity and the truss suddenly collapses,
undergoing large displacements until a new stable configuration is reached.
Generally speaking, bifurcation instabilities are also possible for this system,

depending on its parameters: lateral buckling of one or both rods or lateral

buckling of the whole structure. Nevertheless, if we disregard the bending flexibility
of the rods and assume symmetry about the vertical axis to hold, the system
behavior may be described by only one degree of freedom. The vertical displacement
z of the apex is a natural choice. In this case, the system parameters are those
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Fig. 2. Analysisofa damped linear oscillator: a) Time history; b) Fourier transform; ¢) Gabor
spectrogram

" depicted in figure 4b.

For the sake of simplicity, we assume hefe that the system remains linear elastic,
regardless of the magnitude of the deformations it undergoes. We are concerned
with spanning either large and small amplitude oscillations, but avoid inclusion
of any material non linearity, thus avoiding changes in the characteristics of the
equilibrium equation. This would introduce complications that could screen the

b
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()

Fig. 4. Mechanical model of the “snap through” system, showing the names of variables: a)
Structure depicting a snap-through system; b) A simplified model with a single degree of freedom

3.2 EQUILIBRIUM EQUATIONS

We deduce the dynamic equilibrium equation of the ST system from the Fuler-
Lagrange Equation (ELE):

d (oL oc

alw) == )

The Lagrangean function L is defined, for elastic systems and in absence of a
potential field, as £ = T — U, where T is the kinetic energy and U is the energy
of elastic deformation. The term N, in the right hand of the equation 5 includes
all non-conservative forces acting upon the system.

For the ST system we thus have

T = %mz-i:2 (6)
U= %k(i — L) (7)

where m is the generalized mass of the system, # is the velocity of the apex, £y is the
undeformed length of the rod, £ = /(2% + L?) its current length and k = EA/{q
its spring constant. Now considering viscous damping and an oscillating external

——




ANALYSIS OF NONLINEAR OSCILLATIONS BY GABOR SPECTROGRAMS 9

force Fycos(§Mt) acting upon the apex of the truss, and substituting in the ELE,
we obtain the dynamic equilibrium equation of the ST system:

mi+ci +k (1 - \/a—;f_:——ff) z = Fycos(§it) (8)

where it can be seen that the system qon-linearity arises from the restoring elastic
force term

P(z) = k (1 - 7;;2?_3—2) z ()

if we expand P(z) in Taylor series we obtain

P(z)=k [1 - %—z + (-1% %5) 2+ 0(35)} . (10)

With this approximation, equation 8 is known as the Forced Duffing equa-
tion, well studied in the domain of nonlinear oscillations and chaos (Stoker, 1950),
(Holmes, 1979), (Nayfeh, 1979), (Thompson, 1987). We may expect that the same
sort of phenomena displayed by the Duffing equation exists also for the 5T system.
Nevertheless, we shall consider in this work exclusively the behavior of the system
in damped free vibrations, with p(t) = 0. No chaotic behavior is possible is this
case.

Moreover, if we consider the tangent stiffness of the system we have
dP(l') Eo T 2
= = s b . 11
kr dz k {1 £ (2) (1)

im kr=F% (12)

r—Fo0

Now, clearly

that is, for large displacements, the ST system tends to linear behavior. Instead,
a 3rd order polynomial restoring force is non-linear regardless the intensity of the
displacements. We used k = 4r?; L = 1.0; & = V2 and m =180 that the
equilibrium points are & = 41 and the system high amplitude frequency is 1 Hz.
A Yinear damping —ci is also included on the model.

Figure 5a sketches the restoring elastic force P(z) (both exact and the polyno-
mial approximation), the elastic potential U(z) (figure 5b) and the tangent stiffness
kr (figure 5¢) as a function of the displacement of the system. The dashed area in
figure 5b corresponds to the region of negative stiffness. In Figure 5d we show also
the undamped phase trajectories for the ST system with different energy contents.
The attraction basin clearly has two competing point attractors.
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+ P(x)

Restoring Force

Tangent stiffness

Elastic potential

Velocity

Fig. 5. Mechanical behavior of the snap-through system a) Restoring force; solid lLime:
snap-through system; dashed line: polynomial approximation (homogenecus Duffing equation).
The diagonal straight line corresponds to an equivalent linear oscillator; b) Elastic potential solid

line: snap-through system; dashed line: polynomial approximation; ¢) Tangent stiffness; d) Phase

space diagram of the snap-through system
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4 Numerical Solutions

4.1 CALCULATION ALGORITHM

In our first simulations, we used the Newmark method, with a constant mean
acceleration scheme (Bathe, 1976). However, this procedure proved to be satisfactory
only in cases where considerable damping was present. For low damping, very

_small time-steps were required to avoid divergence of the solution (with the system

energy being amplified up to an asymptotic limit); for zero damping, the divergence
was unlimited.

These difficulties lead us to choose other algorithms to solve equation 8. The
principal methods available to solve ordinary differential equations may be divided
in single or multiple step methods, like the Runge-Kutta and the Adams methods
respectively. Both types apply to a set of n first order differential equations, thus
requiring dismembering equation 8 in a set of 2 equations. Detailed descriptions of
these methods may be found in Curtis (1989) and Kahaner (1989). It can be shown
that, whilst of different implementation, both types of method are essentially
equivalent. When a regular spacing of the time steps Is not required, the single

 step algorithms may be more economical (Kahaner al., 1989).

For the aims of the present work, however, we require the solution to be sampled
at tegular time intervals, in order to afterwards perform the calculation of its
GS. In this case, multiple step methods may be more attractive. To perform
: the calculations presented in this work we chose the Adams-Moulton method,
 a predictor-corrector multi-step algorithm that displays twice the computational
efficiency of the R-K method for the same degree of accuracy (Curtis, 1989). We
have employed the DGEAR routine (IMSL Library 1984), which implements the A-
M algorithm with polynomials up to 12th order, depending on the desired precision.

By employing the A-M algorithm, much larger time-steps than those required
by the Newmark method could be used. However, a very restrictive tolerance was
still required, as long as the phase of the oscillations — and therefore the “choice”
of the final potential well — showed to be strongly dependent on it.

4.2 ParaMETERS CHOICES

- As stated above, the system parameters used in this work are L = 1.0, £, =
V2, k = 47% and m = 1. We can also define from these parameters two
characteristic times of the system :

= 4r°m/k

™ = 2mfc

where ¢ is the linear damping factor.

In a linear oscillator, 7, would be the simply the system period and 75 the energy
decay time constant. This is also true for our system, at large oscillations regime.
In a nonlinear regime, the constant 7, still approaches a characteristic energy loss
time. For the non dimensional ratio 7,/m we used the values 10, 20, 40, and 80.

T o -
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Fig. 6. Time history of damped oscillations,r2 /71 = 10: a) position; b) velocity history

The A-M algorithm was used to simulate the system transients. In order to
keep comparable the results for different damping factors, we performed all the
simulations with the same initial velocity vo = 50,0. This value corresponds to
large oscillations, with a near linear force regime. The length of the simulations is
five times the time constant 75, so that the system undergoes roughly through the
same energy contents in all simulations.

The simulation time step is Dt = 0.001 s, so that the longest simulation involves
400,000 time steps. The record actually stores one out of 50 time steps, so that
the final time steps have Dt = 0.5s.

4.3 COMMENTS ON THE SOLUTIONS

The results of the simulations of the ST system are shown in figures 6, 7, 8, and

‘9 with position (a) and velocity (b) as a function of the dimensionless parameter

72/71. In all simulations it is possible to identify two distinct regions, both with
a monotonous amplitude decrease, separated by a sudden discontinuity. In this

“step”, the amplitude suffers an abrupt reduction, in the neighbourhood of the
time ¢ /7 0.5. This change happens when the system energy reaches the same
- ‘value as the potential “hill” in the middle of the potential curve. Below this limit

the mass can no longer travel between the two potential wells and is confined to

“one of them. The return points change, and so does the amplitude.

e
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Fig. 7. Time history of damped oscillations, 72/ = 20: a) posiiion; b) velocity history

The amplitude “step” is less dramatic than it could appear in a first sight.
Although there is a sudden change in amplitude in the position history, there is a
continuity in the energy content of the system. This can be seen by inspection in
the velocity history plots of, whose local maxima and minima correspond to the
total energy. The velocity envelope does not show discontinuities.

This abrupt change on movement regime is essentially different from the jump
phenomena that occurs on forced nonlinear oscillators (Stoker, 1950), (Abramson,
1961), (Nayfeh, 1979). In the case of a forced “hardening” or “softening” systems,
jumps are expected to occur. They arise when the oscillating force reaches an
unstable solution range of parameters. In the snap through system, the “pseudo-
jump” above described occurs in the absence of an external force.

We show on figure 10 the system trajectory in the phase space, for /7 = 40.
The first points were skipped and the trajectory starts near the “pseudo-jump”.
The system first transits across both potential wells. After the “pseudo-jump”,
the trajectory moves across a single potential well. There is a clear change in
the movement regime. The energy loss per cycle becomes smaller, since the area
enclosed between two successive cycles shrinks. The systermn moves toward one
of the point attractor and orbits approach a circular form, since the oscillations
become linear.

The simulation of the equivalent unforced Duffing equation yields similar results,

: tisp T TR R 5 n,
; . P

s
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Fig. 10. Phase-space trajectory of the snap-through system 72/ = 40. The system exhibits
two different regimes (see text).

so that the visual aspect of both js essentially the same. For this reason, the time
histories of the Duffing equation are not shown. However their spectrograms reveal
many differences that will be discussed below.

5 Analysis of Gabor Spectrograms

The Gabor Transform has a single adjustable parameter, the frequency spacing
between the “filters” or “voices”. We first performed the transformation with
spacing of 0.05, 0.1, 0.2 and 0.4 Hz and then selected the Df = 0.1 Hz, one
- tenth of the natural frequency in the large amplitude limit, which yielded the
best global visibility for the involved phenomena. The Gabor spectrograms are
calculated directly from equations (2, 3, 4). The wave packets were first evaluated
for every Gabor grid frequency and then pointwise multiplied by the velocity time
history points.
The calculations are performed over a finite number of points. However, the
~calculated wave packets, with a length of 800 points, had the absolute value in the
edge that was about 1071? of the top value. The contribution of the points outside
~this range is smaller than the numerical uncertainty of the simulation points, so
that the effects of the use of a finite number of points are negligible.
~ An oversampling factor of 2x for the frequency scale and 4x for time scale was
used to smooth the spectrogram and adjust its final aspect ratio. The output of
the analysis is then a 200 x 320 complex matrix. In this work, only the amplitudes
are analysed. In order to improve the visibility of higher order harmonics, we
“compressed” the amplitude scale by taking its logarithm.
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Log (Ampltde

Fig. 11. Gabor spectrogram of the snap-through system for r = 40s. The “pseudo jump” is
around the middle of the time domain. On the lefi side, a bundle of ridges describe the system
dynamics when it oscillates across two potential wells. On the right side of the picture, a second
ridge series is also visible.

We show in figure 11 a mesh graphic of the resulting GS. Each knot corresponds
to a point in the Gabor grid, and the height is proportional to the logarithm of
the amplitude at this point.

The mesh is bounded at the left and right edges by 2 tilted “wall”. This effect
is a result of a discontinuity that naturally exists in the beginning and the end
of the finite simulation. The abrupt step from a finite value to zero has spectral
components in all frequencies, which appears as a wall along the frequencies’ axis.
Such effect can be avoided by enlarging the simulation slightly beyond the region
of interest, so that the edge walls are excluded. The region on a flat plain with
slight irregularities, on the right top of the spectrogram, corresponds to a digital
noise originated both from the integration of the DE and the calculation of the
wave packets.

5.1 ALiasING NOISE

Another sort of noise can also arise in digital spectral analysis. We can note that
there are two bundles of “ridges” that cross each other in a wafer like structure on
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the left half of the spectrogram. Only the high amplitude ridges truly correspond
to physical effects, which we shall discuss below. The secondary smaller amplitude
ridges are a numerical effect named aliasing noise.

The origin of the aliasing noise is the appearance of spurious frequencies when
a fast oscillating function is sampled at a too low rate. It is analog to spurious
rotating frequencies that can appear when a stroboscopic light illuminates a rotating
wheel at a too low rate.

The aliasing noise is a well-studied effect of sampling rate, in the context of

 digital signal processing (Oppenheim, 1989); (Embree, 1991). The most economic

sample rate that still contains all the information on a signal is, according to

Nyquist theorem, the double of the higher frequency component. While in a

true sampled signal it is possible to limit the incoming signal frequency band
by a suitable analog filter, in the case of a simulation the high frequencies are
inherently present on numerical integrations. If the simulation truly reflects the
system behavior, it is not possible to eliminate the high frequencies present in the
time history.

On the other hand, to increase the “sample rate” means also to increase in the
number of time steps. This increases, however, the simulation and spectrogram
computational overheads. Since the number of harmonics in a nonlinear oscillator
is, in principle, infinite, the best we can is to decrease the aliasing noise amplitude.
Although the intensity is supposed to decrease with the frequency, a necessary
condition for solution convergence and finite energy, there is no sharp cut-off.

The signature of the aliasing noise is that the harmonics with a higher frequency
than Nyquist frequency are mirrored into the lower frequency region. In our
spectrogram, we can clearly see that the continuations of the high amplitude ridges

. to upper frequencies has been “folded” into the spectrogram range.

- 5.2 CoOLOR SPECTROGRAMS

~ The mesh plot has some inherent interpretation problems. The simulated 3-

dimensional perspective can cause a peak or ridge to hide another. In the figure 11
spectrogram there is a second ensemble of ridges at the right side. Since the ridges
overlap each other, it is difficult to examine them independently. An alternative
method to translate the GS into a graphic is to use a flat colour map. Colours are
then used to indicate different “heights” much as in a geographic elevation chart.

The colour scale we use here assigns the colours of the visible spectrum to the
levels of amplitude logarithm. The higher amplitudes correspond to a saturated

- red, while the orange, yellow, green, blue and violet indicate successive decreasing
_amplitudes, with a total of 256 color hues.

5.3 SNAP-THROUGH SYSTEM

The GS for 7, = 40 is shown in figure 12a . The spectrum exhibits two bundles of
red and orange tracks emerging from the middle of the time domain, around ¢ =

- 200s. Each track represents a sinusoidal function with a slowly varying frequency.

g
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Colour changes in a track indicate a time-changing amplitude. We can conceive -
each track as a ridge in the time-frequency domain.

The left track bundle corresponds to the first stage of the time history, with
large amplitude oscillations, where the mass crosses both potential wells, The lower
frequency track or ridge corresponds to the time varying fundamental oscillation
frequency along this stage. This track has a downward curvature and tends
asymptotically to a frequency of about 1 Hz as time approaches zero, a consequence
of the system geometry. As pointed out above, this system approaches a linear
behaviour also for large amplitudes, so that the frequency approximates 1 Hz.

The large amplitude oscillations of the beginning of the time history, through
locally periodic, are not exactly sinusoidal. Although the period approaches that
of the linear oscillator, the nonlinear character of the restoring force near z =
0 distorts the oscillations. As a consequence, there should exist harmonics of
this fundamental frequency. At the left edge, the track bundle indeed assumes
asymptotically the form of a series of nearly horizontal lines. This is the GS
counterpart of a harmonic series.

We can also note that this local frequency series has only odd multiples of
~ the “fundamental” frequency. Since at the first stage of the simulation the mass
transits across a symmetrical potential well, we expect each velocity cycle to be
almost symmetric either. Since the Fourier transform of a symmetric function with
period 7

s(t) = —s(t+1/2)

has only odd harmonics, a similar pattern appears locally in G S. This reflects the
potential symmetry along the first stage.

Along the time-history, the fundamental frequency track migrates towards lower
frequencies, while decreasing in amplitude. The whole left side track bundle follows
this behaviour. Since the “fundamental frequency” is decreasing in frequency, the
spacing between harmonics also shrinks. The whole structure eventually collapses
around the time ¢t = 200s, where the system switches to a different regime with
movements around a single potential well.

The right tracks bundle corresponds to single well oscillations. The fundamental
. track rises in frequency and tends to the frequency of small oscillations around the

equilibrium point. This stage also shows.a track series with frequencies that are
odd and even integral multiples of the fundamental. The restoring force of a single
potential well is no longer symmetric, so that the complete harmonic series appear.
Motion symmetries are again reflected on GS.

As we approach the right edge of the spectrogram, the harmonic tracks vanish.
Their amplitude decrease is expressed by a slow change in colour, drifting from
_red to yellow to blue, the latter being the numerical noise level. The vanishing
harmonics indicate that the system approaches linearity and the motion tends to
be purely sinusoidal as oscillations become small.
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- Fig. 12.  Gabor spectrograms in color representation: a) snap-through system for m = 40s;
b) unforced Duffing equation .




2_0 H. Franco and R. Pauletti

5.4 HoMOGENEOQUS (UNFORCED) DurrING EQUATION

‘This spectrogram (figure 12b) shows many qualitative features similar to the
snap-through system. In particular the second phase of the time-history, on the
right side of the spectrogram is virtually identical, since the Duffing equation was
constructed as an expansion of the ST restoring force at the point z = 0. Some
extra harmonics are visible at the second stage, 2 feature that can be attributed
to different numerical noise levels. ,
The left track bundle shows some differences from the ST spectrogram. Since
" in the Duffing equation the cubic term can lead to arbitrarily high frequencies, the
path of the fundamental track does not approximate any constant limit. The
frequency grows continuously as we reach the larger amplitude reglon at the
beginning of the time history. Since the symmetry of the potential well is similar
to that of the ST system, We also have a track series with odd multiples of the
fundamental frequency track.

6 Discussion and Conclusions

We employed Gabor spectrograms to analyze numerical simulations of a nonlinear
system. They revealed a complex structure that contained essential features of the
system dynamics. Moreover, patterns already familiar to FT users reappear in a
generalized form, so that the results are easily readable. On the other hand, G5
does not add new information about linear gystems, where natural frequency does
not change in time. It becomes helpful only on systems with frequency drifts.

The method proved to bring more enlightening results on cases where the energy
loss per cycle is small compared to total energy, so that the system 1is nearly
piecewise periodic. However, on a strongly damped system, the number of cycles is
small and the very idea of local frequency becomes senseless. In this case GS, while
still a complete expansion, does not bring new insight about system dynamics.

We expect that Gabor spectrograms of systems with chaotic behavior to show
essentially the same results of the Fourier transform, in the stationary regime.
No information about attractor dimensions can be directly extracted from GS.
However, the wavelet transform, close related to GS, was already used to analyze
fractals (Holschneider, 1988); (Arneodoel al., 1988); (Ghez, 1991), and it is expected
to reveal information about the attractor on chaotic systems. Nevertheless, the
wavelet transform, due to its logarithmic character, eclipses some important signatures
of non chaotic systems such as local periodicity. In non chaotic systems, the GS
probably brings results of easier interpretation.

Although we analyzed here a particular system and parameters set, the same
general procedure can also be adopted on a wide range of nonlinear systems. It
is also a potentially good method to analyze other nonlinear phenomena such as
{forced oscillations, jumps and synchronization effects. GS can also be employed on
a variety of experimental oscillation problems. Numerical implementation makes
GS accessible to the analysis of virtually any physical variable that can be digitized.
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Analog spectrogram methods have long been used to analyze the quite nonlinear
musical instruments, as well as human voice and nature life sounds. Those old
spectrograms used to have a rather narrow frequency range and were limited by
the mathematical behaviour of real word components such as capacitors and coils.
With the help of fast digital signal processing, spectrograms become also available
to the analysis of numerical simulations. Furthermore, the use of Gaussian wave
packets as a privileged expansion base, makes Gabor spectrogram an optimized
tool in the analysis of nonlinear oscillations.
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* Figures 12 aand b are

200

color pictures. We show above a gray level version, made on a dot matrix

printer and more appropriated to black & white preprint copies.
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