UNIVERSIDADE DE SAO PAULO PUBLICA (; () E S

INSTITUTO DE FiSICA

CAIXA POSTAL 20516 |
01452-990 SAO PAULO - SP IF¥USP/P-1079
BRASIL

PATH INTEGRALS OVER VELOCITIES IN
QUANTUM MECHANICS

Dmitri M. Gitman and Shmaryu M. Shartsman

Instituto de Fisica, Universidade de Sao Paulo
and

Department of Physics,
Case Western Reserve University
Cleveland, OH 44106, USA

Qutubro/1993



Path Integrals over Velocities in Quantum Mechanics

Dmitri M. Gitman and Shmaryu M. Shvartsman
Institulo de Fisica, Universidade de Sdo Paulo
Caiza Postal 20516-CEP 01{98-970-8do Paulo, S.P., Brasil
Department of Physics, Case Western Reserve University
Cleveland, OH {4106, USA

(October 12, 1993)

Abstract

Representations of propagators by means of path integrals over velocities are
discussed both in nonrelativistic and relativistic quantum mechanics. It is
shown that all the propagators can only be expressed through bosonic path
integrals aver velocities of space-time coordinates. For spinning and isospin-
ning particles that is guite nontrivial statement, to prove which one needs
to do all grassmannian integrations in conventional path integral representa-
tions. In the representations the integration over velocities is not restricted
by any boundary conditions; matrices, which have to be inverted in course of
doing Gaussian integrals, do not contain any derivatives in time, and spinor
and isospinor structures of the propagators are given explicitly. One can de-
fine universal Gaussian and quasi-Gaussian integrals over velocities and rules
of handling them. Such a technique allows one effectively calculate propaga-
tors in external fields. Thus, Klein-Gordon propagator is found in a constant
homogeneous electromagnetic field and its combination with a plane wave

feld.

Typeset using REVTEX

L. INTRODUCTION

Propagators of relativistic particles in external fields {electromagnetic, non-Abelian or

-gravitational) contain important information about quantum behavior of these particles.

Moreover, if such propagators are known in an arbitrary external field, lone can find exact
one-particle Green’s functions in the corresponding quantum field theory, taking functional
integral§ over the external field. It is known that the propagators can be presented by means
of path integrals over classical trajectories. Such representations were already discussed in
the literature for a long time in different contexts {1-16]. Over recent years this activity got
some additional motivation to learn on these simple examples how to quantize by means
of path integrals more complicated theories such as string theory, gravity and se on. Path
integral representations can be effectively used for calculations of propagators, for example,
for concrete calculations of propagators in external electromagnetic or gravitational fields.
However, in contrast with the field theory, where path integration rules are encugh well
defined, at least in the frame of perturbation theory [17,18], in relativistic and nonrelativistic
quantum mechanics there are problems with uniqueness of definition of path integrals, with
boundary conditions, and so on [1,19-23].

In this paper we discuss representations of relativistic and nonrelativistic propagators
by means of path integrals over velocities. It is shown that all the propagators can only
be expressed through bosonic path integrals over velocities of space-time coordinates. For
spinning and isospinning particles that is not only a question of convenience, but a nontrivial
statement, to prove which one needs, particularly, to do all grassmannian integrations in
conventional path integral representations and find spinor and isospinor structure of the
propagator explicitly. Conveniences of the representations are: the integration over velocities
is not restricted by any boundary conditions, matrices, which have to be inverted in course
of doing Gaussian integrals, do not contain any derivatives in time, and spinor and isospinor
structures of the propagators are given explicitly by their decomposition in the independent

~-matrix structures or generators of a gauge group. One can define universal Gaussian




and quasivGa.u;c,sia,n integrals ove;r velocities and rules of handling them. This approach is
similar to one used in the field theory (in the frame of perturbation theory [17,18]). Using
such a technique one can effectively calculate propagators in external fields. As examples,
Klein-Gordon propagator is found in a constant homogeneous electromagnetic ﬁéld and its
combination with a plane wave field. One ought to say that path integration methods
were ‘already applied for such kind of calculations. For example, the causal propagators
of relativistic particles in external electromagnetic field of a plane wave were found by
means of path integrations in [2,4,24] and in crossed electric and magnetic fields in 5. More
complicated combination of electromagnetic field, consisting of parallel magnetic and electric
feld together with a plane wave, propagating along, was considered in [3,12]. In [8] they
did particular functional integrations to prove a path integral representation for the causal

propagator of spinning particle in an external electromagnetic field.

II. PATH INTEGRALS OVER VELOCITIES IN NONRELATIVISFIC

QUANTUM MECHANICS

In nonrelativistic quantum mechanics they usually consider path integral representations

for the propagation function {amplitude of the probability) G(z,;2't"), = = (=, i = 1,3),

Glz, 82/, 1) =< ple O 5 | (2.1)
H

(i% N }?{) Glz,tiz',t) =0, G(z,tj2',t) = 53(“: —z').

If we suppose, for example, that quantum Hamiltonian H is constructed from the classi-
cal one H(z,p)} by means of Weyl's ordering procedure, then the following path integral

representation takes place:

G= G(:Uauhtout; :Dl'n)tl'n) - [ ™ Drm‘/.Dp exp {ESH[:B,}D]}

dSPN N-] damkdspk N [ Amj i . ]
= > (Pt — H(%j,p;)| At 2.2
Gy ST (O P B
tou - tin _ [T o
Azj=z;—z;q, Al = EN y Tj = . 211,

Sulerl = [ o~ Az,

where Sy is hamiltonian action and the integration in the right side of (2.2) is going over
trajectories z{t) with the boundary conditions z(ti) = %in , 2(fowr) = Zow, and over
trajectories p(t) without any restrictions. We denoted thc functional differential of & with
prime to underline the number of integrations over = is less then one over p.

The expression (2.2) presents a hamiltonian form of the path integral for propagation

function (2.1). To get a lagrangian form one can make a shift
p—ptm, (2.3)

where py = po(=z, &) is a solution of the equation

0y s s pey 2 OE
Eﬁﬁ == w—{:ﬂ,H}— ap ,

with respect to p. If H is constructed from a Lagrangian L(z,#), then po = 0L/, so that

Sile) = Sule,l = [ ‘ L(z,3)dt .
and
Splz,p+ pol = Sple] + ASy, ASp = */::m nz=:z i—r;%r;f - dt .
Thus, one can write the path integral (2.2) in the following form
G= [ D'z exp {iSelal} Mzl (2.4)
with the measure
Mz] = f Dp exp {iASx[z, 2]} - (2.5)

The expression (2.4) presents a lagrangian form of the path integral for the propagation

function (2.1).

One can express the propagation function by means of a path integral over coordinates
and velocities. To this end we make a change of variables in (2.2}, {z,p) — (z,v), where v

and p are connected by the equation




p= F = po(z,v) .

i=v
{We suppose for simplicity that Hessian is not zero in the case of consideration).

The Jacobian of the change of variables is

8 L(z,v)

J(e2) = Dot s )
and
5;;[3,1;0(::,1))]:/:: [L(a: v)+ ( )(zw)]
S0, we get
G = IM‘D’ fpvexp{f"“‘[ (2,v) @{‘g‘;-’)_"_)( )]dt}.f(;,u). (2.6)

This formula presents the propagation function by means of a path integral over coordinates
and velocities. A similar formula can be derived in the field theory for the generating
functional of Green’s function [25].

Making the shift of velocities, v — v+ &, we get again the lagrangian form (2.4), but the

expression for the measure M[z] is given now in terms of a path integral over velocities,

Mz] = f Duexp {iAS; [z, v]} J(2,v), (2.7)
n—1 plow G°L
= - v"dt .
ASifz,1] ,fg n! /:‘,,, 3:1:"
In case if
.3
L= L(} + Lint ) LO = % ) Lint = —-V(E) ’ (28)
or

H = Hy + Hint H"zip:_«.’ Hine = V().
we get simple Feynman’s {1] answer (2.4) with 2-independent measure (2.5} or (2.7).
Let us consider different kind of representations, containing path integrals over velocities.
To this end it is useful first to make the number of integrations over z and p equal in the

initial definition (2.2). Namely, one can write

5

G = f Do f Dp 8(2(tous) — Bou) exp {iSy[z, 7]}
Sppd? N a;
N_.wf H 2ic )3Pf€ 63(31\' - :Bou:)exp {ZZI [Pj%f - H(:Ej,pj)] At} y (29)

where now only one boundary condition remains, £(t;n} = 2;,. Making the shift of momenta
(2.3) in the integral (2.9), a change of parameterization of trajectories, introducing instead

of time £ a parameter v, T € [0, 1],

t—tin
TZW’ AT"—"taut"'tl’n,

replacements

m
a(z — @i —TAZ) >z, ap—p, AL =t -2, a= AT
and restricting ourselves for simplicity with the case (2.8), we get the expression!

imAz®

G=a3exp{ o }LD@M&S(:::(I))

X exp {ifd’r [fg — V(e + zi + -rAa:)AT]} , (2.10)

where the integration over 2 is subjected the boundary condition z(0) = 0, and the measure

M has the form

M= /exp{—%fpzd'r} .

On this step we replace the integration over the trajectories z() by one over velocities
(7},
2(7) = fﬂ(’r — Yo(r)dr = fT v(r)dr’,
a
v(r)=2(r), =(1)= [vd'r . {2.11)

The corresponding Jacobian can be written as

1Here and in what follow we use the notation Jdr = fUI dr,



J =Det 8(r —7')
and regularized, for example, in the frame of discretization procedure. Thus, we get

imAaz?
G=a exp{ SAT }va MJTF (f 'ud'r) (2.12)

2 .
X exp {z’ f dr {% - V(a'/(; o(#)dr' + 2y + TAa:)AT]} )

where integration over v as well as over p is already not subjected any boundary conditions.
One can formally find the Jacobian J, switching off the potential V(z) in (2.11) and using
the expression for the free propagation function (1],

G _( m )% imAz?
° = \omar) P\ 2aT [

So,

J= (%) [vaMJS(fvdr)exp{ifd'r (”;)}]_1

Gathering these results, we may write

¢ =Gy [Dos® (f vd‘r) exp {ifdr [”; - V(a/(;rv('r')d'r' + i+ TAm)AT]} . (2.13)

where new measure Dv has the form
. , .

Dv = Duv [f Dy & (/ 'ud'r) exp {i[d‘r (%—) }] . (2.14)
Thus, we got a representation for the propagation function (2.1} by means of a special
kind path integral over velocities. The conveniences of this representation are: the inte-
- gration over velocities is not subjected any boundary conditions and no time derivatives
appear in integrand, so, e.g. matrices, which have to be inverted in course of doing Gaus-
stan integrals, do not contain any time derivatives. The same kind of path integrals arises
in representations of relativistic particle propagators, which we present in the next section.
One can formulate universal rules of handling such integrals in the frame of perturbation

theory, what will be done in Sect.4.

L. PATH INTEGRALS OVER VELOCITIES IN RELATIVISTIC QUANTUM

MECHANICS
A. Scalar particle propagator in an external electromagnetic field

As known, the propagator of a scalar particle in an external electromagnetic field Aulz)

is the causal Green’s function D°(z,y) of the Klein-Gordon equation in this field,
[(ia — gAY —m? + ie] D{z,y) = -6 (=~ ), {3.1)

where 2 = (:c", °= 0,_3), Minkowski tensor 7, = diag(1 — 1 — 1 — 1), and infinitesimal
term ie selects the causal solution.
Consider a lagrangian form of the path integral representation for D¢ (z,y) [13], modified

by inserting of a §- function, similar to the nonrelativistic case,

D° = D (2our, 2in) = %f“ deof Dej Dwf Dz M(e) 542(1) — 2pu)
0 ep Tin
. #2 e , . .
X exp zfd-r —— ——m’ — gt A(z) + mé| ; , {3.2)
2e 2
where 2#(v), e(r), w(r) are trajectories of integration, parameterized by some parameter

7 € [0,1]; and subjected the boundary conditions (0} = 2, €(0) = eg; the measure M(e)

can formally be written as

Mle) = po exp{%fepzdf} . (3.3)

The propagator D° can be only presented via a path integral over velocities, in the form
similar to (2.13). First we integrate over 7 and then use the arisen §-function §(¢) o remove

the functional integration over e,

e %[ﬂ"" @/Mﬂ Dz M(eo) §(2(1) — Tou)

e

Then, after the replacement



T — 2, — 7AR

Jo

-z, Az = Tout — Lin , (3.4)

we get the expression

=2 f deo [ﬁi (eom + —-)] f Dz M(1) 8*(2(1))
X exp {z' f dr [_Ez — g(y/eot + Az)A(\/agz + zin + mz)]} , (3.5)

where the trajectories @ obey already zero boundary conditions, (0) = 0.

As in nonrelativistic case, we replace the integration over the trajectories = by one over

velocities v, according to eq. (2.11). Thus,

2fm deo [_i (eom +k)] [ Do My s ([vdr) (3.6)
Xe"”{ifd"r [‘;‘9(\@3”’3"«‘ (\/—f )dr! +$m+‘f'Am)]} .

One can formally find the Jacobian J, switching off the potential A, {z) in (3.6) and using

the expression for the free causal Green’s function Dz,

c < 1 °°deo i Am2
P4 = Do) = o [ e |5 (o + SZ)]

So, we get formally

1 4 . 2? -1
I= [[ Dv M(1) § (f'ud'r) exp {z[d‘r (_?) }] . (3.7)
Gathering these results, we may write
e __ 1 oo dEg i 2 Aﬂ’.!z
D= 2(217)2./; & exp [2 (egm + me—o—-)J Aqleq), (3-8)
2
Ayfeg) = f‘Dv & (/.'vd-r) exp {ifd’r [—% — g {+/eov + Az)
x A (\/EE [T o()ar + o+ mz)]} , (3.9)
where the new measure Dv has the form
2 -1
Do = Do [f Do 6 Uudf) exp {i/d-r (—%) H . (3.10)
It is clear that A,(e;) =1at A= 0.

Thus, we got a representation for the propagator (3.1) by means of a path integral over

velocities of similar kind as in nonrelativistic case.

B. Spinning particle propagator in external electromagnetic field

The propagator of a spinning particle in an external electromagnetic field Au(z) is the
causal Green’s function 5°(z,y) of the Dirac equation in this field,
[v* (8. — gA,) —m] S(z,y) = “64(“’ -y), (3.11)
[¥* 5 7*] =29 .
Consider a lagrangian form of the path integral representation for, transformed by 7=

voy'y%y? function §°(z,y) = S§°(z,y)7°, (see [13]), modified as in the two previous cases by

inserting of a §-function,

5 = g {Tout, Tin) = exp {z‘y 3?9"}./ deofdxnf Def0 Dx./zm Dm/D?r,fD‘.-rx

Dyp M(e) 8 (2(1) — 2w ) exp {zf {ms—e - g
aypt
[=4

— gz A(=
xj:b(l)wtﬂ):ﬂ géd(=)

tiegF,(x)p " +i ( , (3.12)

=0

- m'gbs) X — iy’),,tﬁ" + 1.8 + ”xJ.C] dr + 1;’),1(1)1,b"(0)}

where

™, "fn]J,. =29™", m,n =0,3,5 75 "=djag(1—1—1—1—1);

" are auxiliary grassmannian (odd) variables, anticommuting by definition with the +-
matrices; 2(7}, e(7), 7.(7) are bosonic trajectories of integration; ¥"(7), x(r), wy(r) are
odd trajectories of integration; and boundary conditions z(0) = zin, (0} = eo, ¥"{0) +
(1) = 87, x(0) = xo take place; the measure M(e) is defined in (3.3) and

-1
v [[b(o)+¢(1)=o Dy exp {j: q'b"&nd'r}] ’ (3-13)

is the measure in the integration over ).
“We are going to demonstrate that the propagator of a spinning parficle can also be
expressed through a bosonic path integral over velocities of coordinates =. To this end one
needs to fulfil several functional integrations. First, one can integrate over =, and w,, and

then use arisen §-functions to remove the functional integration over e and ¥,

10



s [ a0 [ - - o
§°= —exp {z’y 83“}./; deg ‘/;i“ Dz -/:,-o(o)+w(1)=ow M(ep) 8 (=(1) — Zout)

L .9
X f (% - mv,bs) drexp {‘l.f [—;—% - %Oma — gz Alz)

tigeoFu ()" — i dr + $a(1)¥"(O)}],_, » (3.14)

Then, it is convenient to replace the integration over 9 by one over related odd velocities w,
1 ’ gt X 1 :

P(r) = 5‘/5(7 — M w(r)dr’ + 56 , w(t)=(7), e(r) =sign7. (3.13)

There are not more any restrictions on w; because of (3.15) the boundary conditions for ¢
are obeyed automatically. The corresponding Jacobian does not depend on variables and

cancels with the same one from the measure (3.13). Thus?®,

§=tems [ deo [ D [ Do Moo 8a(2) — 20

2 “P1*7 Bon

Ty u M 5 5 . & €o 2 A
P [;(ew +4d )—m(ew +48 )]exp i ——2—80-E»m — g2 A(z)
e (w'e — ") P {z) (ew” + ) + lwnew“}} ) (3.18)

4 2 =0

where the measure Dw is
-1
Pw = Dw [[ Dwexp {—%w"swn}] . (3.17)

One can prove, that for a function f(#) in the Grassmann algebra, the following identity

holds
8 .
exp {z"y"%} = f ( 2 exp {ia7"} .
4 .
- Z Z Jar- ﬂk 3? Z I(Cn'Y ) (3.18)
k=0 nyng Tk = U £=0

where (, are some odd variables. Taking (3.18) into account in (3.16), we get

2Here and further we ate using condensed notations, wew = [ drdr'w({r)e(r — Tw(r'), tA(z) =

JdriA(=z) and so on.

11

5o 1 pee
5= ——/; dey ‘/;in Dz M(eq) 8 (2{1) — Zowt) (3.19)

L 8¢ O 5 1 a2
x [ ( 6pu+%) ( 7 + 17 )] exp{; [_.2?0_;_0m2
—g2A(z)+ %EF ”(m)aaé aag ] } K [m’P, g%] exp {I'Cp']’#}

?

p=0, {=0
where p,(7) are odd sources for w”(7) and
O 1
R [z,p, B_C] = wa exp{—gw"Tnk(z]g)wk +I,,w"} ) {(3.20)
eog O

I, = Pu. - "2"‘6_@1;'»#('7")5 » Is = ps

with
Au(zlg)
Toi(zlg) = 0 s Awl|g) = e — 5 e:ng,(z)e . (3.21)
£

Integral in (3.20) is goussian one. It can be easily done [26], taking into account its original
definition [13],

& [ o 3e] = B e (L] 1) (3.2)

nk A‘lm v
[T*‘(-.-;Ig)] | ¢ (Olg)) 0_1 . (3.23)

The ratio DetT(z|g)/DetT(z]0) in (3.22) can be replaced by DetA{z|g)/DetA(2]0) due
to the structure (3.21} of the matrix T'(z|g), and the latter can be presented in a convenient
form, which allows one to avoid problems with calculations of determinants of matrices with

continuous indices. Namely, let us differentiate the well known formala
DetA{z|g) = exp {Tr ln A(xz|g)}
with respect to g. So we get the equation
. %Det/&(ﬂg) = DetA(z|g) Tr A"(z|g)£@% = —epgDetA(z|g) Tt G(z|g)F(x),

12



with

1
Uy —_ = -1 Lo :
| G*(2lg) = ¢ [A(=lg)] "¢ . - (3.24)
This equation can be solved in the form

DetA(x 9 .
DetAEmggi = P {*En fo dy' Tr G(z|g')F (w)} . (3.25)

Besides, the representation (3.19} contains only first derivatives with respect to pn(7),

acting on R at p, = 0. This circumstance allows one to replace in (3.19) the expression

(3.22) by

il O [DetA(z|g) 1/2

R[ P ac] - [DetA(w[O)] (3.26)
-lruc 3{ eg 2

wor {nan " - (P, o}

Substituting (3.25,3.26) into (3.19), and performing functional differentiation with respect
to p,,, we get

e 1 pe z# 8
S = ~5 A deg j;m Dz M(ep) 6* (2(1) — 2ou) [;}—Kw(m)gé: —'im-f}

] o&? 1
e i -2 omt piae) 452 [ af e Glalgypie)

280 2
e 8 8
P @K E) g o i) N (3:21
where
Koo = + €09 (G(=|9)F(2)),,, - (3.28)

The differentiation over { in (3.27) can be fulfilled explicitly, using eq.(3.18),
5= [0 ” deo j Dz M(e0) 6* (2(1)  ous) (e, 0)
X exp {z [—;—eu - %mz - ng(:n)J} , (3.29)
B2, 0) = [m + (2e0) 3K (z) (1 - 20P(2)K (2)) 7 + im™ (F(z)K(2)),, o*
) (K (e)) o+ m B (PR, (PR ™ ]
X exp {—%9 fog dg’ Tr g(:nlg")F(a:)} , {3.30)

13

wheré

o= Tl 7], (FEKE)™ = 35 (F(@)K (), (331)

and £ i Levi-Civita symbol.

The ¢q.(3.30) gives a representation for Dirac propagator as a path integral over bosonic
trajectories of a functional, which spinor structure is found explicitly, namely, its decompo-
sition in all independent y-structures is given. The functional &(x,ep) can be called spin
factor, and namely it distinguishes Dirac propagator from the scalar one. One needs to
stress that spin factor is gauge invariant, because of its dependence of Fy,.{z) only.

Making the replacement (3.4) in (3.29) and going over to the integration over velocities
v, according (2.11), and using the expression (3.7) for the corresponding Jacobian, one can

present Dirac propagator via path integral over velocities only,

§° = 2(;“—”)2 [ %‘ exp [_% (eom2 + Ae—f)] Aofeo) (3.32)
Aofes) = [ Do s ( / vd'r) 3(ve [ () + 2+ raz,e)
exp {z [ [_”2—2 ~ ¢(/eav + Az)A (\/a fo T o(r)dr + zin + rAz)} } , (3.33)

where the new measure Dv has the form (3.10)

C. Scalar particle propagator in non-Abelian external field

In the same manner one can present relativistic particle propagators in non-Abelian
external field. Here we restrict ourselves with a consideration of a scalar particle propagator
in an external electromagnetic 4,{z) and non-Abelian B,(z) fields. Such a propagator is

the causal Green’s function D%(z,y) of the Klein-Gordon equation in the fields,
[(8 — gA(z) — B*(z)T.)* —~ m?] D*(z,y) = —8*(= — ),

where T are generators of a corresponding group. Choosing for simplicity SU(2) as the
group, we have T, = %cra, where o, are Pauli matrices. The propagator I can be presented

via bosonic and grassmannian path integrals [9,12],

14



D = D@y Tin) = exp {w"ﬂﬂ }f den/ Def Dm/ -/;b(o)+¢(1)—e 'Dq5

x M(e) exp {i [—;’—: - Emz - g8 A(z) — #B(2)T, — iduds + w,é] + ¢a(1)¢a(l})}

-1
D¢ = D¢ [ Lioprorios PHSP {m}] :

where 8, are auxiliary odd variables, anticommuting by definition with the o-matrices; ¢,(r)

, (3.34)
=0 '

are odd trajectories of integration and 7, = —iespfbodhe. All grassmannian integrals can be

done similar to the spinning particle case and final result presented in the form

= %"/:0 deg ::m Dz M(eq) &(z)exp {i [—:—; - Emz — ga’;A(z)J} ) (3.35)
B(z) = [1 + Tr R(«)G(=|1)#(z) — -;—L,,b(:z:)eﬂbcTc] exp {—% j;l di T g(z|/\)R(w)} , (3.36)
G(zIA) = %EQ'I(zfA)e , Q=|A) =€l — %ER(:B)S s Rap(z) = £B%(2)ecar ,

Lop(z) = Ry(2) — [R(“’)g(‘”ll)R(z)}ub y

where I is unit matsix in the group space. The isospinor factor (3.36) in {3.35) is presented
by its decomposition in the generators T, of the SU(2) group. Explicit description of the
spinor and isospinor structure of Dirac propagator in both Abelian and non-Abelian external
fields is more complicated problem which, nevertheless, can be solved in the frame of the
same approach.

Propagator D° can be written in terms of path integral over velocities as in spinning
particle case. The result has the form (3.32,3.33), where spinor factor (2, e,) has to be

replaced by the isospinor factor &(z) (3.36).

IV. GAUSSIAN AND QUASI-GAUSSIAN PATH INTEGRALS OVER

VELOCITIES

In the previous sections we demonstrated that all the propagators both in nonrelativistic
and relativistic quantum mechanics can be only presented by means of bosonic path integrals

over velocities of space-time coordinates. All these integrals have the following structure

15

[pve ( / vd’r) Fl], (1)

where

Dy = Dy [ Do & (fvd-r) exp {ifdr (J’;)H_l , (4.2)

v =(v"), v’ = Nuv*v”y pv =00 —1,

with some functional F{v]. In relativistic case n = 4, and 9,, is Minkowski tensor; in
nonrelativistic case n = 3, and 7,, is reducing to —§;;.

Ways of deing path integrals of general form are unknown at present time, only Gaussian
path integrals, treated in certain sense, can be taken directly. That is also valid with regards
to the integrals in question {4.1). However, if we restrict ourselves with a limited class
of functionals Flv]|, which are called quasi-Gaussian and are defined below, then one can
formulate some universal rules of their calculation and handling them. Similar idea has
been realized in the field theory [17,18]. The restriction with quasi-Gaussian functionals
corresponds, in fact, to a perturbation theory, with Gaussian path integral as a zero order
approximation.

Introduce Gaussian functional Fglv, 1],

Fglo,I] = exp {—%fdrdr'v"(r)l}w(g, 7 W (') -—ifd'rfp(r)v"(r)} , {4.3)

where v#(r) are the velocities and I,{r)} are corresponding sources to them. A functional

Fglv, I we call quasi-Gaussian if
Fglv,I) = Fv)Fglv, 1], (4.4)
where F(v]is a functional, which can he expanded in the functional series of v,
Flo] = 3 fdn o @By (1o m) 0 (1) 0" (72) (45)
n=0
In (4.3) the matrix L,.{g,7,7') supposes to have the following form

L.(q,7, "J) = 7 8(7 — T’) + QMH”(T? T’) . {4.6)
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Define the path integral over velocities v of the Gaussian functional as

f‘Dv & (f'vd'r) Fglv, 1 | (4.7)

_ | Det L{g) det I(g) -2 i , -y
= [m exp{ﬁfd"’d""I("')K(T,T)I(-r)} ,

where

K(r, )= L g,7,7") - QT(r)I"(9)Q(),

Ug) = [arar' L g,nr), Q)= [dr'L(g, ). (4.8)

The formula (4.7) can be considered as infinitedimensional generalization of the straight-
forward calculations result in the frame of the discretization procedure, connected with the
original definition of path integrals for propagators discussed in the previous sections. In
course of doing of finitedimensional integrals it is implied a supplementary definition of
arisen improper Gaussian integrals by means of the analytical continuation in the matrix
elements of the nonsingular matrix L.

To avoid problems with calculations of determinants of matrices with continuous indices

we can use the formula

Det L(g

ﬁe—tﬁ = exp {j: dg'Tr L_l(g')M} , (4.9)

which may be derived similar to one (3.25). Taking into account that det I(0) = —1, we

can rewrite the path integral of the Gaussian functional in the following form

va " (/ vdr) Felv, 1] (4.10)
= [~ det I(g}]_llz exp {%dedT’I(T)K(T,T')I(T') - %fﬂg dg'Tr L'l(g')M} .

The path integral of the quasi-Gaussian functional we define through one of the Gaussian

functional

[ove (/'vdf) Flv,I]= F (35%) [ooe (f vdr) Fsiv, 1]

= = det I(g)]" 2 F (z;—I) exp {% [ drdr' H()R (r, 7)1 - % [ g L-l(g')M} . (4.11)
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One can formulate rules of handling integrals from quasi-Gaussian functionals, using
the formula (4.11}. For example, such integrals are invariant under shifts of integration

variables,

[ove ( [+ u)d-r) Fyglv+u,1] = f Dy & ( / -ud'r) Fyglv, 1] . (4.12)

The validity of this assertion for the Gaussian integral can be verified by a direct calculation.
Then the general formula (4.12) follows from the (4.11). Using the property (4.12), one can

derive an useful generalization of the formula (4.11),
/1}0 & (f vdr — a) Fgfu, I
=[-det {{g))V*F ii exp {ifdrd'r'I(r)K(T (")
&r 2 ’
i, . 1 p9 —1s
—5el (ga —ial™(g) [ Qr)I(r)ar — [ gt 17 )M} , (4.13)

where 4 ia a constant vector. The integral of the total functional derivative over v#(r) ie

equal to zero,

[0 &:(T) 5 ( / vd-r) Foolv, 0] =0. (4.14)

This property may be obtained as a consequence of the functional integral invariance under
the shift of variables, as well as by direct calculations of integral (4.14). Using the latter,
one can derive formulas of integration by parts, which we do not present here. If a quasi-
Gaussian functional depends on a parameter a , then the derivative with respect to this

parameter is commutative with the integral sign,

7]
% [Dvsr ( / vd‘r) Fyolo,T,0) = [ Do 6" ( / vd‘r) o Fyolv,T,a] (4.15)
Finally, the formula for the change of the variables holds:

v)

4
()’

where ¢.(v) is a set of analytical functionals in v , parameterized by 7 . One can prove

f Dy & ( / vd'r) Foglv, 1) = f Do §° ( f dadr) Foclé, 1] Det ‘;ﬁ (4.16)

formulas (4.15,4.16) in the same manner it was done in [18] for the case of the field theory.
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Thus, in quéntum. mechanics, in the frame of perturbation theory, one can define quasi-
Gaussian path integrals over velocities and rules of handling them. This definition is close
to one in field theory [17,18], the analogy is stressed by the circumstance that, as in the
field theory, the integrals over velocities do not contain explicitly any boundary condition
for trajectories of the integration. After the rules of integration are formulated, one can
forget about the origin of the integrals over velocities and fulfil integrations, using the rules

only. In the next Section we demonstrate this technique on some examples.

V. EXAMPLE

Here we are going to calculate the propagator of a scalar particle in an external electro-
magnetic field, using representation (3.8) and rules of integrations, presented in the previous
sections. We consider a combination of a constant komogeneous field and a plane wave field.

The potentials for this field may be taken in the form
1 4
Ay (z) = oyl + fulnz) , (5.1)

where I, is the field strength tensor of the constant homogeneous field with nonzero in-

variants
1 L 1 * T
f:EF,wF £0, g:—ZFwF #0,
(F, = $€uanF*?, €uap is totally antisymmetric tensor), in terms of which its eigenvalues

£ and H are expressed

Fun’ = —Eny , Fud” =iy, Ful' =iHeb, , F,b° = —iHi,, (5.2)

1

1
E=[F+a) —F]" , 1= [F+ )+ F)E.
The cigenvectors n, %, £, £ are isotropic and obey the conditions
=il =P =0=0, na=2,86=-2, nl=Al=nf=af=0. (5.3)

The functions Ju (nz) are arbitrary, except for the fact that they are subject to the conditions

19

fu(nz)n” = f, (ne)a* =0. (5.4)
The total field strength tensor for the potential (5.1) is
Fufz) = Fu + VU (nz), Uyu(nz) = n,f)(nz) — n fo(nz) . (5.5)

Since the invariants F , G of the tensor F,, are nonzero, there exists a special reference

frame, where the electric and magnetic fields, corresponding to this temsor, are collinear

with respect to one another and to the spatial part n of the four-vector n. In this reference
frame, the total field F,,, () corresponds to a constant homogeneous and collinear electric
and magnetic fields together with a plane wave, propagating along them; £ ,H, being equal
to the strengths of a constant homogeneous eiectric and magnetic fields, respectively. In

terms of the defined eigenvectors the tensor F,, can be written as
£ TH /- =
= 5 (i — i) + - (Gl — 4.) (5.6)

and the completeness relation holds

1 _ -
Tuv = 5 (ﬁ”nu + M., — fyf,, - l,_,ly) - (5'7)

The latter allows one to express any four-vector u in terms of the eigenvectors (5.2),

w* = nPull) + Ayl 4 gy + oyt ,

1. 1 1. 1
all) = 3™ ul? = Y u® = —Elu , ul® = —Elu . (5.8)

In these concrete calculations it is convenient for us to make a shift of variables in the

formula (3.9), to rewrite it in the following form

Azg? 4 Az
Afep) = exp (25;[;-) f’Dv ) (f’b‘d?’ - '\/‘5)
v? ™ ;
X exp {ifdr [—— — gy/erd (‘/Ef v(r)dr' + z.-,,)] . (5.9)
2 0 ‘
The calculations will be made in two steps: first in a constant homogeneous field only,

and then in the total combination (5.1}, using some resulis of the first problem. Thus, on

the first step the potentials of the electromagnetic field are
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1 -, '
Ap(a:)=~~2- FITVL (510)

Substituting the external field (5.10) into {5.9), one can find

Afeo) = exp (i%—;—z) f Dy 61 ( [ vdr — %) (5.11)
X exp {—% [ drds'u(r)L (8,7, 7)o — [ g‘f 2inF vdr} ,

where

L9, 7,7 = qublr —7) - g;—OF,.,,E(T -7 (5.12)

The path integral {5.11) is the Gaussian one (see (4.13)). To get an answer, one needs to

find the inverse matrix L~'(g,7,7"), which satisfies the equation
[ Hg,m "B (g,7", )" = 8(r = 7).

One can demonstrate, that this equation is equivelent to a differential one,

aiL_l(y, 7,7} — geoF L7 g,y 7) = 8(r — 7}, (5.13)
T

with initial condition
Ld(g’o!rr) + ge;F f L_1(91T”’Tr)d1—" = 6(7’) .

Its solution has the form

EOF

L 'Yg,7, 7}y =8(r—7") + 920" exp {geo(r — ') F} [E(T — 7'} ~ tanh (ge;F)] . (5.14)

Using (5.14), one can find all ingredients of the general formula (4.13), taking into account

that a = ~Az/\e,, I{(r) = g /ecminFf2 .
Thus,

K(r,7)=8r—7")+ ge;F exp {geo(r — T')F} [e('r — 7'} — coth (ge;F)] , (5.18)

anh gegF'
ded'r'K(’f', 1") =0, deQ(T) =1g), Hg) = t—ge;gﬁ‘/2_/2 ’

M(r,) = ~2etr =), [ dg TN g = rn(cosh geoF2)
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where the symbol “tr” is being taken over four dimensional indices only. Then

A (eg) = [- det (E‘};f/"—fm)] o (5.16).

i [Az? 1
X exp {% [% + g TowFzin — EA:«: gF coth (ge;F) Az:]} .

Substituting (5.16) into (3.8), we get a final expression for the causal propagator of a scalar

particle in a constant homogeneous electromagnetic field

. 1 oo sinh geo F/2 /2
D out) tn = ey o | = .
(o) = 55 fy [ ot (0 )] (6.17)

X exp {% [Q%u:Fwin — egm® — %Aw gF coth(g%g!i)Az] } .

This result was first derived by Schwinger, using his proper time method [27].
Now we return to the total electromagnetic field (5.1). Let us substitute the potential
(5.1) into (5.9),

Afeo) = exp (i%) [ ( f vdr — ﬁ) (5.18)

X €xp {—%fdrd-r'v(-r)L (g, 7,7 v{+") — if g\ggo 2inF vdr
—igv/ey [ drole)f (nz,-,, e [ m(-r')d-r')} ,

with L{g,7,7") defined in (5.12). One can take the integral {5.18) as quasi-Gaussian, in

accordance with the formula (4.13). So, one can write

Aeo) (5.19)

- exp {gﬁo [ drf (m:.-,, vive, [ n%—jd) 3;‘%—)} B(D)tmo

where

B(I) = exp (z' A"’z) f Do §* ( f wdr — A—\/i) © (5.20)

2ep €g

X exp { -% [arars(n)L(g,mryo(r) —i (g‘é‘% zinF + I(T)) v(r)d‘r} .

The integral can be found similar to (5.11}. As a result we get
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B(I) = exp {% [arar 1)K () 1)~ f I(r)alryir} Alealloo,  (5:21)
where A(eo)|w=o is the expression given by (5.16), K(r,7')is defined in (5.15), and
Az
a(t) = W_;; (1 + coth(geoF/2)) geoF exp(—geoF'r} .
To obtain the action of the operator, involved in (5.19), on the functional B(I), we
decompose the sources I*(r) in the eigenvectors (5.2}, using (5.8)

"(r) = % (n# aI(r) + & nd(r) — & U(r) - F* e1(7)) -

Then, it is possible to write

5 § 5§ . 6 &
Ity 251-11(7) » f 8I(r) tf 821 (7) e 5eI(r) "

Using this, we get

R B
(o  vsic) at
- ] 8 , § . . - & . )
=4 (m"““‘/‘;" A SﬁI(T’)dT) siiiy Y (“"""“‘/Eﬂfo EﬁI(r’)dT) 5eI(r)

[ arar 1 (1,7 1)

= [ dra’ [al(r) nI(x')K (r, ', €) - T(r) L1(e)K (r, ' iH)]

f I(r)a(r)dr = »12; f [a1(r) na(7) + nl(r) fia(r) — &(r) ta(r) — tU(r) Ea(r)] dr ,

where

K (r,r',€) = 8(r — )+ geo€ exp {geol — 7)€} [f(r — 7'} — coth (gezog)] )

2
K.('r, i H) = 8(r — ) + iyezﬁﬂ exp {igeo(t — 7'YH} [e(r — ")+ icot (ge;?{)] .
Now the exponent of the functional B[I]is linear in nI(r), #I(7), £I(r),
£I{r). Thus, one can easy to get a result
Aeo) = exp | 270 [ drdr' (nealr)) K(r,™)f (n2a(")
+ig/e, [ dra(r)f (nea(r)} Aleo)lamo (5.22)

1 — exp (geo€T)

Az, 0) = nzin , n2g{l) = 5T
l—exp(gegg)n 2, nzy(0) = nzi, , 1) £,

naq(r) = nwin +
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where @(7) is the solution [12] of the Lorentz equation in the external electromagnetic field

(5.1). Gathering (5.22) and (5.16), we get

sinh (gep /2 s i
Afey) = [— det ‘“W] exp {5 (92 i Pz

—% (A2 -+ U(eo, 1)) gF coth (geoF/2) (Az + Heo, 1)) + 28(eq)

A 2
+Az gFl(eo, 1) -+ e—w]} , (5.23)
0

where

- B(eg) = enfgf (nza(7)) [gf (nzal(r)) + gFl(e, 7)) d7 , {5.24)

i{ep, ) = &g j; exp {geo(r — VF) gf (raa(v)} dr' .

Substituting (5.23) into (3.8), we arrive to the final expression for the causal propagator of

a scalar particle in the external electromagnetic field (5.1):

. 1 oo sinh geq F/2 -1/2
D (Tour, Tin) = ——-—~2(2T)2 j(; deg {— det (_mgF/2 )] {(5.25)

X exp {% [ga:ou!inn - Egm2 + Az gFl(eg, 1)

~5 (B2 + 1(en, 1)) gF coth (geoF/2) (Az + (e, 1) + 28(c0)]} -

This expression coincides with the one, obtained in |28}, by means of the method of sum-
mation over exact solutions of Klein-Gordon equation in the external field {5.1). A detailed

description of quantum electrodynamical processes in such a field one can find in [12,29].
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