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Abstract

The existence of a non-trivial vacuum has influences on bound states. We
calculate its effects on heavy pseudoscalar mesons parametrizing the non-
perturbative properties by gluon condensates and using a non-relativistic
approximation. We derive an effective hamiltonian taking into account the
interaction with the gluonic vacuum. The background gauge formalism used
preserves gauge invariance. Non-perturbative effects are shown to be more
important in higher excited states.

1 Introduction

The concept of wave functions is well defined in non-relativistic quantum
mechanics. The non-relativistic approximation is justified if one is interested
in bound systems composed only of heavy quarks (flavors ¢ and b}, ie. an
expansion in inverse powers of the quark masses is convergent. It is prob-
ably easier to study the confinement mechanism in such systems. Also to
understand the J/T suppression one needs the accurate wave functions. We
will obtain the eigenfunctions and eigenvalues of an effective hamiltonian de-
rived from QCD. It includes non-perturbative effects: the interaction among
quarks and vacuum. The picture we adopt for the vacuum is that of random
gluon fields leading to condensation. As we will see, the vacuum interaction
is very similar to the interactions of elecirons with external fields. Compar-
isons with quantum electrodynamics are therefore very useful because in this
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case one knows how to perform a Foldy-Wouthuysen transformation on the
Dirac equation in the presence of external fields and also the famons Zeeman
and Stark effects. Also the one-gluon exchange for perturbative gluons in
QCD is very similar to the one-photon exchange in QED which, within an
instantaneous approximation, leads to the Coulomb potential and the higher
order spin-dependent terms {Breit-Fermi hamiltonian).

Those similarities are no suprise once QCD was inspired in QED and
constructed as a gauge invariant field theory, The differences, however, are
very important. QCD is non-abelian and consequently presents asymptotic
freedom. One expects also chiral symmetry and confinement as properties
of the theory. The non-abelian character of the theory prevents the use
of perturbative methods in the low energy limit. To describe bound states
one must therefore go beyond perturbation theory. It is usually accepted
that lattice calculations are the best tool we have, but so far one did not
solve some fundamental problems[1]. An alternative is the use of QCD sum
rules[2]. This somewhat more phenomenological method is based on the dual
descriptions of correlations functions. They are calculated in terms of quark
and gluon degrees of freedom using perturbation theory in the presence of
a non-trivial vacuum and compared to the same correlation functions ob-
tained with hadron degrees of freedom which, can themselves be extracted
from experiments. Matrix elements of operators in the presence of the non-
trivial vacuum, which otherwise in perturbation theory would vanish, are
parametrized by quark and gluon condensates. Beyond the success of this
approach, motivation for the existence of condensates comes from Nambu-
Jona-Lasinio type models for the spontaneous breaking of chiral symmetry[3]
and from the trace anomaly of QCD[4]. Sum rules, however, are suitable only
for the calculation of the lowest state of each specific hadron.

Another possibility is the use of phenomenological models where gluonic
degrees of freedom are eliminated. An example of these are bag like models{5]
where it is assumed that in the interior of the bag there is a perturbative
phase (small coupling constant) and the external phase exerts a pressure
which counterbalances that of the quarks. Another class is composed by non-
relativistic potential models[6]. In this case gluons are eliminated in favour
of a confining potential. Spin splittings, as in bag like models, originate from
perturbative one-gluon exchange. This “one-gluon exchange” {namely, the
Coulomb potential} can also be corrected by the running of the coupling
constant known from QCD. There are some unsolved points on the nature of

2




the confining potential, if it is scalar or vector[7]. There are some problems
with splittings[8], for instance the recently measured[9] 1Py state for ¢z does
not fit in any potential model. Despite of these shortcomings, potential
models are very successful to reproduce the most part of the experimenial
spectra. The agreement is particularly good for heavy mesons {cC and bb)
where the non-relativistic approximation is expected to be adequate. In this
case, however, there are several non-equivalent forms for the potential (linear,
Richardson, logarithmic, ...) which are equally good in reproducing data of
mesons of radii between 0.3 and 1.0 fm.

Although our approach in this work is similar to that used by Leutwyler
and Voloshin[10], we do not resort to the perturbative approach. Non-
perturbative effects are parametrized by gluon condensates which are then
used in the calculation of matrix elements of an effective hamiltonian. The
hamiltoniar is obtained from QCD separating gluons in background and
quantum gluons. We neglect cubic and quartic terms in quantum (or hard)
gluons and integrate them out. We use gauge invariant basis states to pre-
serve gauge invariance while making approximations. Due to the structure of
the vacuum non-usual singlet states may exist and contribute in hamiltonian
matrix elements, The basis states are introduced in the next section. In
section 3 we present the effective hamiltonian, first in the time-axial gauge
and neglecting hard gluons. After that we use the Coulomb background
gauge and take into account also hard gluons. In section 4 we present and
discuss the results for heavy pseudoscalar mesons. Section 5 is devoted to
final remarks where we summarize our results and conclude.

2 Gauge Invariance and Basis States

It is usually assumed that physical states are singlet in color. For heavy
mesons where the non-relativistic approximation is adequate one represents
quark fields only by the two upper components and antiquark fields by the
two lower components. Quark and antiquark must be connected by a color
transport matrix[11] along a determined path if one demands gauge invari-
ance also on the states. Choosing only straight paths we obtain a complete
and orthogonal basis [12}. For simplicity and to illustrate the method we
will restrict ourselves to psendoscalar mesons. The simplest gauge invariant
pseudoscalar state is of the form

| 21)s = = Y2 ult(@)Tus(, 300k (30) 1 ) W
\/6 abja
where u!®(#;) creates one quark of color ¢ in #; with spin a. v does the
same for an antiquark. We will refer to it as a singlet state since, at zero
separation, the quarks are in a color singlet state.
The color transport matrix is:

Ta,b
Tu(f2, 81) = Peap(ig [ da*Au(e))a 2)
*14

Here P denotes ordering along a straight line path from & to £5. These
basis states are orthogonal due to the straight path chosen and the {anti-)
commutation relations of the quark and antiguark creation operators.

As we mentioned before, due to the non-trivial structure of the vacuum
new aspects appear in the theory. We call background fields those respon-
sible for the gluon condensation. Quark and antiquark can couple to the
background fields, i.e. they “fluctuate” with the vacuum fields to form color
singlet states. In this case quark and antiquark at zero separation are in a
color octet state. Following QED we define chromo-electric and -magnetic
fields from the potentials. Since the background field B transforms as a
pseudovector and E as a vector, the following pscudoscalar states can be
formed:

|21)5 = 3 Lol (@)en - BT(E2, E1)us(30) | 2) 3)
aff
and
RIFEDY %UL(%)E_" (Z2 — #1)T(Z2, £1)va(F1) | ) (4)

the summation over colour indices being implied.

As will be clear later, it is irrelevant to the order we are calculating
at which point on the string the electric and magnetic background fields
are inserted. The differences are expectation values of higher dimension
condensates which we neglect. The above states are mutually orthogonal
and normalized if we assume that
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and < B »>=< B >= 0. The matrix elements of the effective hamilto-
nian in this basis will, in lowest order, only reflect the non-trivial gluonic
yacuum structure via the condensate value, denoted by the parameter ¢.
Note that Lorentz invariance of the ground state | > forces one to assume
that the chromoelectric background field is either antihermitian or that the
“F_states” have negative norm. In effect, the two possibilities both lead to a
nonhermitian hamiltonian matrix, whose cigenvalues in general are not real.

The pseudoscalar meson 7 is then assumed to be well represented as a
linear combination of the above basis states:
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3 Effective Hamiltonian

We start with the QCD lagrangian:

£la) =~ FL 4§ + 4T ) =~ iy ")

and separate the gluonic fields in background|13] (A) and quantum (@)
fields.

Vi=Ap+Q, (8)

The background fields are assumed to satisfy:
D,Fp =0 (9)

3.1 Drastic Approximation: No quantum fields.

For the sake of simplicity we first study this case where the quantum fields
are fully neglected, i.e., all gluonic fields are background fields. We choose to

work in the time-axial gauge which is defined by setting A =10 Then the
QCD lagrangian becomes:

L= [ @rl(AA - BB + ¢! (inuDy — )i (10)

The hamiltonian in this gauge is given by:

1
H= [ d3r[§(ar£1r§ + BB+ g¥lyenT A
+ Phyolin vi +m)d] (11)

I
where T' = %-.
The canonical commutation relations for quantization are:

[A(7, 1), 77 (7, 0)]
{o(7,0), 4" (7, 1)}
From the original equations of motion a constraint has still to be satisfied,

which must at least be imposed on the physical states. This is the Gauss law
of QCD.

i6; 887 — )

87— ) (12)

(VB! — g!T' — gf ™ B AY) | Phys) =0 (13)

We apply the Foldy-Wouthuysen transformation to the hamiltonian (11)
using the field formalist[14] where, to separate large and small components,
we use the operator:

S = —zim f Brlgyt (7, Oy T (7 VAN D) + P (F iy vid(® 0] (14)

A transformed state is given by:

| 91) =€ | %) (15)
and the Schrédinger equation for the transformed state is:
Al s 8 s
=¢ —i—Je™" Y= H { 16
S _ s —ig)et | ) = H 1 9) (16)
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The transformed hamiltonian can be written as:

iz

H =H+iS, H] + E[S’ S, H]] +... (17)

We expand only to terms of order 1/m. The resulting hamiltonian is:

(iv + gT'A)?  gd-B
2m 2m

- 'Y} (18)

o= f Er{€(F, 1) + 91 (7, nlm

The original non-diagonal terms of order mY in the hamiltonian were elim-
inated. Now the lowest order non-diagonal term is the last one, proportional
to 1/m. Usually, following the Foldy-Wouthuysen procedure one can perform
a new trapnsformation using the odd operator in the new hamiltonian to go
still one order lower{14]. This is not possible in this case. Separating the
gluon fields in soft and hard gluons, the soft gluons saturate the vacuum av-
erage (5). They are responsible for the non-vanishing gluon condensate. The
expectation value < EE >, F being the electric field, due to Lorentz invari-
ance is proportional to < FF > with a negative sign. It means, E is not an
hermitian operator and it is not possible to define a unitary transformation
to eliminate the non-diagonal term of order 1/m in the hamiltonian. It is a
non-perturbative effect and can be significant in transitions where such term
already at this order becomes important. '

We take terms only up to order 1/m. We can therefore neglect the small
components. Particles are represented by spinors with only two upper com-
ponents different from zero, and anti-particles with only two lower compo-
nents. In this approximation we work with two independent two-dimensional
subspaces. We wish to diagonalize the Schrédinger equation:

2 m=Hln (19)

which is very similar to the Dirac equation in the presence of external
potentials. .

Although we assume < F >= 0 (it vanishes e.g. not to break global
color and Lorentz invariance), linear terms in the background fields have to
be retained because they couple octet to singlet states. The time derivative
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of the meson state has two contributions: the time derivative .o'f the wave
function and the time derivative of the state itself. In the time axial gauge

.8 9 [Et
Ty = Tuwg— #
il = Tugg [, 4" Au)
= Tug [ doid
59 fi! T’ Ai{z)
= - ang(El) . (52 - :'E;) (20)

Using the symmetries of the pseudoscalar states we can assume (&), F2) =
(%1 — #2). Evaluating matrix elements and using relative coordinates we
have three coupled equations:

242,21 .
[(m )+ TEE o+ ;—nl-;) - ivﬂws(m) (21)

= _%$2¢E(w) + Eyg(z) + %Tﬁs(w)
[(ma +mg)e® — ﬁc%ﬁﬂmi]%(ﬂ?) = %ﬁz%(m) + Ex*ys(z)

[ 4ma) = 5 n(e) - T bs(e) = Bia(e)

where g is the reduced mass. Note that while the coupling of the B
states is hermitian, the E states lead to a non-hermiticity of the effective
hamiltonian. We solved these equations numerically and found no bound
state. We know from phenomenclogy that the Coulomb potential is very
important in the description of heavy mesons. It comes from the hard one
gluon exchange. We show in the next section how to include hard gluons in
our approach.

3.2 Hamiltonian in the Coulomb Background Gauge

To take hard gluons into account we find it useful to work in the Coanlomb
background gauge. It is defined by:

D:iQ =0 (22)
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where D@, = 0,Q, + 94, X @y = 8,0 + gf% ApQye and

We expand the lagrangian only to second order in the quantum fields and
will subsequently integrate them out in favour of an effective interaction.

For the background fields we use a modified Schwinger gauge[15]

A = _%F;m«f R S (23)
and assume that the field-strengths corresponding to the background
fields are constant (or have sufficiently low momenta that they can be re-
garded as essentially constant over the extent of the meson). Although ghost
terms are necessary in this gauge, they do not contribute to quadratic or-
der in the quantum fields. Our truncation of the interaction terms for the
quantum fields eliminates all radiative corrections. To really have asymp-
totic freedom one would have to go beyond this approximation, calculating
perturbative corrections before eliminating hard gluens. As a consequence
of this truncation the correct perturbative behaviour at very small distances
is not reproduced: the logarithmic corrections to the Coulomb potential are
absent in this approximation and would have to be included “by hand” with
a running coupling constant. These corrections do not seem dramatically
important for describing heavy quarkonia[16] and we feel that their inclusion
would only serve to unnecessarily complicate things.
After elimination of the quantum gluonic fields by their equations of mo-
tion the effective lagrangian in terms of the background and heavy quark
fields becomes:[17]

Log = [ dwdli + oT"fu)p — i
4 1 [ dtedyg ! (@T @D Y T )
- L [ dtadtegl (o) + oin @D, 0%, ) + 97k, )]
v L[ daatyatad a2 + 0ik (DI DI
g (y, ) DY B (2, )1, (@) + 07%(2) (24)

In (24) we have omitted a part of the Lagrangian only depending on the
background field A, which is regarded as a classical field. The appearance
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of the propagator D is the result of expressing the @y field in terms of its
source:

Q3(e) = [ dyD"(2, i) (25)
with
38 = — gt T + 295" FooQui (26)
and satisfies:
(D;D;)* D" (2, y) = 664 (= — y) (27)

Similarly the propagator D is the result of eliminating the spatial com-
ponents ¢; and satisfies:

jd‘*zM{‘jbﬁ;?f,(z,y) = §°5%z —~ y)bix (28)
with Mg’ defined by:
MPw,2) = 8z — 2)[(DuDy) 8 — 20f " F)-
8z — o)

2
9" rdea pdch e
—_Z Foepe b 7

ﬂ_f f 0+ 70 |3:"—Zl (29)

The other currents appearing in the effective lagrangian (24) are:

3, = ¥ @) (0) (30)
and 1
8, = g 1R [ S B )

Finally, the propagator G enters when the lagrange multiplier of the gauge
fixing condition for the quantum fields {22) is eliminated in turn. Its equation
of motion is:

[ dieDiE Bz, )G (@) = #5(z ~ 3) (32)

These rather formidable integro-differential equations for the Green func-
tions can be formally solved order by order in the background field A. Since
we will only retain terms of the hamiltonian matrix proportional to the lowest
dimensional condensate < g*FF >, we only keep terms up to second order
in the background fields in this gauge (23).
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In order to obtain a tractable hamiltonian, however, further approxima-
tions are necessary. We first make a nonrelativistic reduction keeping only
terms up to O(1/m). We will also neglect all retardation effects in the effec-
tive interaction. Because the interaction is then no longer time dependent,
this additional approximation makes the hamiltonian time independent, even
in the presence of the background fields (which are themselves time indepen-
dent in this gauge (23) ), and greatly simplifies the interpretation of results.
The resulting hamiltonian is:

R
am 2m
i tdy . g5 B, -
bt o I 08B oyt
2m 2m
2 3 20 2 2
_& [ Prdtuul prgt E9 ey L _ 9(B/8 ~ BY)
5 fd zd yuzT“uzvyT“vy(2ﬂ)setu F—f [3 _ 7 ]
P / Pad? f“bcﬂl}yiwi‘ulT“uwvyT“v;
{f-7l
4 D2
g°B f s p (& y) t e t
—=— | d’zd’y T e
5127{' x 1 |'U. Uy U U
3
wg /d3 d3 frpag = ( Xy) abc b
Gy ed yut T*(5 17— _,l)k g f Fw'uyT

3
g Fag = (3" X y) a b
_ﬁf&*md:}yvxf’ (& x m)kvlf bCFISOuLT uy

(33)

The correction to the Coulomb potential from the 1/g%terms in (33} is
infrared divergent. Our short distance expansion in powers of the backround
field clearly cannot be correct at small momentum transfers. Note however
that since these terms are already of order < FF > we may, in the order we
are working in, replace the background fields there by their vacuum expec-
tation values. The modification of the Coulomb potential is then seen to be
just the first term in the expansion of an effective hard gluon propagator of
the form

L= ta-Z 4 (34)

D(¢°) ¢ ot
(¢°) PR 7
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where v is a dimensionfull constant essentially proportional to the gluon
condensate (apart from logarithmic corrections). This modified form of the
effective gluon propagator has recently been found as a nonperturbative
solution of the Dyson Schwinger equations[18] of pure QCD and this ex-
pansion of the gluon polarization is also suggested by the operator product
expansion[19]. In this case we therefore replace the expansion in the back-
ground fields by the “whole” effective propagator (34) and thus obtain an
effective Coulomb potential, the fourier-transform of (34}, which is:

V() = " eosur (35)

In a short distance expansion thls potential differs from the coulombic
one by a constant and a mass independent harmonic force.

4 Masses and Wave Functions of Pseudoscalar
Mesons

We will now diagonalize the hamiltonian (33) in the basis defined in section
2, suited for pseudoscalar mesons and invariant under a change of gauge for
the background fields 4. A numerical diagonalization is feasible since only a
few octet states are relevant. As in the time-axial case, after commuting the
color transport matrices through the derivative operators of the hamiltonian
, one is left with an effective hamiltonian in the meson sector, which to order
A? x F? has an interaction that only depends on the relative coordinate
Iy — T2

oy O AE) — AE) S | PlAE) - A@) g7 B
2u # 2 24

48" cospr  for singlet states

g (*)——(ax 7. E+{ i3

+s . for octet states

(36)

whose matrix elements can be evaluated in the above basis, setting the
color transport matrix T' = 1.

To obtain the masses of the psendoscalar mesons one has to diagonalize
the hamiltonian. Evaluating the matrix elements one arrives at the following
set of coupled equations:
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VBS(r)
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|
|
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which was brought into this dimensionless form using the definitions:

12u(E — M [6 %in
r= w—d}x; 8:——W—“( ); Cping = ;—;;2;1&,; al,=- 89

6 e
(38)
M is the sum of the heavy quark masses, u is the reduced mass, a, is the
strong coupling constant and the wave functions were redefined by:

Ys(e) = 25() 5 Ve(@)= 3E() 5 wale)=3Bl)  (39)

One has to resort to numerical methods to solve the set of coupled equa-
tions obtained. An expansion of the wave functions in a given basis, for
instance the harmonic oscillator basis, was found not very appropriate in
this case. The solutions don’t converge with increasing the oscillator basis.

We solved the coupled equations for bound states only, i.e. states of fi-
nite norm whose wave functions vanish rapidly enough at large distances.
The electric states have negative norm. Equivalently we can use positively
normalized states and a non-hermitian hamillonian. Non-hermitian hamil-
tonians need not have a complete set of eigenstates. As we will show, higher
excited states have a larger contribution from octet states. The norm of a

state will be negative if the eleciric component dominates and such state

would have to be considered. However we did not find any such states - they
are probably unbound.

The parameters in this approach are the heavy quark masses m,. and m;,
the gluon condensate value and the strong conpling constant. It is interesting
to note, however, that these parameters are not exactly the same as used in
other approaches. Beyond renormalization effects due to the non-relativistic
reduction|20] there are other finite renormalizations. The “physical” mass
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in the works of Leutwyler and Voloshin!® (or other models based only on
singlet states) is already defined with the self-interaction induced by the soft
gluons. In our case, where pertutbation theory is not used and therefore
octet states are not only intermediate states, this interaction enters explic-
itly among basis states and should not be included in the definition of the
quark mass. However this mass renormalization is finite, since it only comes
from soft gluons with restricted momenta. Within our formalism we cannot
calculate this shift in the mass of the quarks explicitly and therefore have
to live with the fact that the mass-parameter in the model cannot be di-
rectly compared with that of other non-relativistic calculations. Due to the
interplay between perturbative and non-perturbative effects the one gluon
propagator is modified. This leads to finite vertices renormalizations and
therefore to a different coupling constant. In second order perturbation the-
ory, the low momentum component of the one gluon exchange renormalizes
the definition of the gluon condénsate in first order in a,. In fact, the use
of intermediate Coulomb octet wave functions already implies renormaliza-
tion to all orders in the strong coupling constant. This is a point missed in
the Leutwyler-Voloshin model - comparisons to the condensate value used in
QCD sum rules should be done with this renormalized condensate and not
with the “bare” condensate used in the model[17).

The wave functions and masses for several values of the parameters are
shown in figures 1-6. Note that the states ' and 75’ appear as bound states
only if the strong coupling constant is larger than some critical value. As
mentioned before, renormalization effects give margin for speculation on the
parameters and changing them to unusual values causes the appearence of a
second bound state. This second bound state is predicted by all model cal-
culations, but not surely observed in experiments. For bottom quarks, even
the pseudoscalar ground state has not been observed and we can not deter-
mine the parameters. The wave function of the ground state is practically
a pure singlet state, in agreement with usual suppositions. This is not the
case of the first radial excitation. Although small, octet components are not
negligible. The calculation of the experimentally more accessible 1~ states
is in progress, In this case the inclusion of octet states enlarges the basis far
more than for pseudoscalars and the pumerical solution is more involved.

14




0.0 1.0 2.0 3.0
r (fm)

Figure 1: Wave functions of the ground state of the pseudoscalar m, (Bbb).
S(r), E(r), B(r) correspond respectively to the singlet, electric and magnetic
wave functions redefined in equation (39). The parameters used are: mp =
4780, o, = 0.32 and ¢ = (360MeV)2. With such parameters the mass of this
state is M = 9460MeV and there is no bound excited state.
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Figure 2: The same as figure 1 but with parameters: m; = 5090, o, = 0.62,
¢ = (191MeV)%. M obtained is the same. The use of these unsual values
for the parameters is discussed in the text.

8{r)
— E)
—=- B}

r tm)

Figure 3: Wave functions of the first excited state of 7. The parameters are
the same as in figure 2. M = 10360MeV/
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0.0 1.0 . 2.0 3.0

Figure 4: Wave functions of the ground state of the pseudoscalar 7, (cz)
S(r), E(r), B(r) correspond respectively to the singlet, electric and macgnetir:
wave functions redefined in equation (39). The parameters used are: m,_ =
1550, o = 0.64 and ¢ = (191MeV)2. With such parameters the mass of ’:ﬁis
state is M = 2980MeV and there is no bound excited state.
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Figure 5: The same as figure 4 but with parameters: m, = 1850, a, = 1.05,
¢ = (120MeV)?%. The mass M obiained is the same. The use of these unsual
values for the parameters is discussed in the text.

— s
— EM
o B

0.0 20 a9 &0
¢ {fm)

Figure 6: Wave functions of the first excited state of 7),. The parameters are
the same as in figure 5. M = 3680MeV
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5 Conclusions

We have presented an approach especially well suited to heavy quarkonia. It
is based on a gluonic ground state composed of random background fields
leading to gluon condensation, a consequence of the trace anomaly of QCD.
It is expected that in such a medium color-charged objects cannot propagate.
This eliminates the need for explicitly introducing a confining potential. We
take account of this ground state by splitting the interaction into a well
known perturbative part and a soft background part.

An effective hamiltonian was derived in a short distance and 1/m ex-
pansion, considering only the dimension four gluon condensate < F? > and
terms to order 1/m. We showed that the perturbative one-gluon exchange is
already modified by the background fields in this order, with additional spin
dependent terms emerging. Gauge invariance is a fundamental ingredient of
any effective theory aspiring to be a good approximation to QUCD. We have
explicitly shown how to derive a gauge invariant eflective interaction from
the background fields. It was essential to construct a gauge invariant ba-
sis for colour singlet states. Completeness forces us to include states where
quarks in octet configuration are coupled with the background fields to color
singlet states. Recently, in a different context such octet states were also
evocated[21].

We saw that the interaction with chromo-electric background fields is
large for heavy quarkonia. We therefore did not resort to perturbation theory
for diagonalizing the effective hamiltonian. The coupling to octet states leads
to a non-local flavor and energy dependent interaction in the singlet channel.
Tts description by a local potential is therefore questionable.

One has previously attempted to include the effects from the background
fields in heavy quarkonia as a perturbation to the Coulomb interaction. To
justify this treatment it was necessary to strongly diminish the contribu-
tion from the background fields by introducing finite lenght correlations|22],
which effectively can also be thought of as including higher dimensional con-
densates. In this work we showed that most of these effects are absorbed in
a renormalization of the parameters of the model.

We examined the 0~ spectra of heavy quarkonia. We found that the
inclusion of background fields influences the low lying states by at most
~ 100MeV. This medification of the Coulomb spectrum is in the right di-
rection and of the same order as that of the usual linear confining potential.
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.However, we only obtained one or two bound states in our approach, what
is not in disagreement with experimental observation. Extrapolating these
results one could say that what confining potentials simulate in phenomeno-
logical potential models are vacuum effects. Sure one must yet show that
colored states do not propagale in the non-trivial vacuum, but to do it one
can not simply parametrize the vacuum by condensates. (ne must resort to
models of the vacuum. Befote one can say definitively whether a phenomeno-
logical potential is still necessary one will however have to calculate heavy
mesons with other spin-parities and resonances. To reproduce the experi-
mental spectra it will probably be necessary to go to the next order in the
approximations, taking (1/m?) corrections and correlations (or higher order
condensates) into account. Work on this line is in progress.
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