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Abstract

A consistent procedure of canonical quantization of pseudoclassical model
for spin one relativistic particle is considered. Two approaches to treat the
quantization for the massless case are discussed, the limit of the massive
case and independent quantization of a modified action. Quantum mechanies
constructed for the massive case proves to be equivalent to the Proca theory
and for massless case to the Maxwe]l theory. Results obtained are compared

with ones for the case of spinning (spin one half) particle.
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I. INTRODUCTION

Classical and pseudoclassical models of relativistic particles and their quantization are
discussed lately in different contexts. Qne of the reason is on these simple examples to learn

how to solve some problems which arise also in string theory, gravity and so on. On the other

hand it is interesting itself to find out whether there exist classical models for any relativistic

particles (with any spin), whose quantization reproduces, in a sense, the corresponding field
theory or one particle sector of the corresponding quantum field theory.

A classical action of a scalar relativistic particle one can find, for example, in the Landau
text book [1]. An action of spin one half relativistic particle, with spinning degrees of free-
dom, describing by anticommuting (grassmannian or odd) variables, was first proposed by
Berezin and Marinov [2] and just after that discussed and investigated in papers [3-7]. Gen-
eralization of this model for particles with arbiirary spin was proposed in [8,9}. The actions
of the models obey different kinds of gauge symmetry, in particular, of repa,ra.metrizatioﬁ
invariance and special supertransformations. Due to the reparametrizations in all the cases
Hamiltonian equal zero on the constraint surface. In the papers [10-12], devoted to the
quantization of these models, they tried to avoid these difficulties, using the so called Dirac
method of quantization of theories with first-class constraints [13], in which one considers
the first-class constraints in the sense of restrictions on the state vectors. Unfortunately, in
general case, this scheme of quantization creates many questions, e.g. with Hilbert space
construction, what is Schrédinger equation and so on. A consistent, but more complicated
technically way is to work in the physical sector, namely, first, on the classical level, one
has to impose gauge conditions to all the first class-constraints to reduce the theory to one
with second-class constraints only, and then quantize by means of the Dirac brackets (we
will call such a method as ca,nonica.l. quantization}. First canonical the quantiza._l;ion for a
relativistic spin one half particle was done in [14]. In this paper we are going to use this
approach to quantize a relativistic particle spin one. We consider a pseudoclassical model of

relativistic spin one particle both massive and massless with an action, which is conventional



generalization of Berezin-Marinov action, mentioned above, with a Chern-Simons term. We
impose gauge conditions to all the first class cohstra,ints, except to one first-class constraint,
which is quadratic in fermionic variables. In virtue of the structure of this constraint it
is difficult, and probably impossible without a reduction of the number of degrees of free-
dom, to impose a conjugated gauge condition, on the other hand, treating this constraint
in the sense of restrictions of quantum states does not create problems with Hilbert space
construction. Thus, we quantize the theory quasicanonically by means of Dirac brackets
with respect to all ather consﬁraints and gauge conditions. We demonstrate that quantum
mechanics constructed is equivalent to one-particle sector of the quantum theory of Proca
vector field. The quantization of the massless case is considered in two ways, as the limit
from the massive case and independently starting from the massless Lagrangians without

the variable 1°. For convenience, a comparison with spin one half case is given.

IL. PSEUDOLASSICAL MODELS OF SPINNING PARTICLES,

A generalization of the pseudoclassical action of spin one-half relativistic particle to the

case of arbitrary spin N/2 can be written in the form

S = /01 [—2—18— (2% — i y,)* — %mz —imyixa
+ 3o (il B0+ ) = itz (2.1)

where 2#, e and f, are even and ¥?, y, are odd variables ( fas is antisymumetric), dependent
on a parameter 7 € [0, 1], which plays a role of time in this theory, p = 0,3; a,b=T,N; n =
(#.5)=0,3,5 9 = diag(l~1—1—1); fm, = diag(l—1 —1~1—1). Spinning degrees of
freedom are described by odd (grassmannian) variables ¥# and %; odd ¥, and even e play
an auxiliary role to make the action repa,ra,rnetrizatidn and super gauge-invariant as well as
to make it possible consider both cases m # 0 and m = 0 on the same foot. The summand
%K,ab J2 fasdr, with even coefficients Ky plays the role of a Chern-Simons term and can be

added only in case NV = 2 without breaking of the rotational gauge symmetry [12]. Thus,

Kap == Ke€gpbn,2 With an even constant & and two dimensional Levi-Civita symbol €4,

The are three types of gauge transformations under which the action (21) is invariant:

reparametrizations
bok = 6, o= 0 (et) , Sfur= - (ful) W =E, Bram S (xa) ) (22)
. b dT ¥ [ df o 1 a (/3 1 e ] dT a H
supertransformations

brF =dke,, fe=ixeta, Sfus =0, Oxo=é— furts,

Bt = o (i) e, S0 = Zeo, (2.3)
2e 2
and O(N) rotations
bxt = 0, fe = U? Efab - f:ab + ta.cfcb - tbcfcus ‘ﬁb: = tﬂbd’;! 6X"" = t“bXb ? (24)

with even parameters £(7), t.4(7) = ~14,(7), and odd parameters (7).

Equations of motion have the form

68 d 1l
65 _dl .. . = 2.
bz, dr [e @ ”/)‘TX")] 0, (25)
8 1 .. . 2 M
= ga W) - =0, (2:6)
68 1. n
6fab=§ 3E¢ﬂd7 ¢b}_+nab)=0, NEZI (2'7)
&5 _ i (&* — ighlxs) P2 — imap® =0, (2.8)
8x. e
2 =21 (9 = fatt) ~ Lxe (6 i) = 0, (29)
ap .
6,-5 o is _ 5 - EL_ — 2 10
55 <ot )= oo

Calculating the total angular momentum M,,,, corresponding to the action (2.1), we get

Mpw = L_uu + S,uu ] . (2.11)

L;W =TpPy — TpPy Sy.u = i(’,[’ay'ﬂbnu - ";bavipa.u) -

The spatial part of 5, forms a tree-dimensional spin vector s = (s%)
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Sk 26’“315[.1 an s 5 = zekﬁ'ﬂbai"’,bag ’ (212)

where e is tree-dimensional Levi-Civita symbol and there is no summation over a in the
last formula (2.12). To demonstrate that this vector really behaves like a spin one should
introduce an interaction with an external electromagnetic field A(z) into the model and
consider the non-relativistic approximation. Unfortunately, in general case it is impossible
to introduce such an interaction in the action (2.1) in the same manner as for the spin one
half [4,6,7]. Namely, if one adds the terms

— gat AT+ ige Pt (2.13)
with arbitrary external field A%, Fe2t = 8, A" — 8, A®™, to the integrand (Lagrangian) of
the expression (2.1), this Lagrangian becomes inadmissible, i.e. the corresponding lagrangian
equations become inconsistent for & > 1. One can check this by straightforward calculations.
However, if the external field is constant (F, = const), the terms (2.13) can be added to
the Lagrangian; the equations of motion remain consistent, but the super gauge symmetry
(2.3) of the action disappears, namely equations of motion have now only one solution for
¥, X = 0. So, let us introduce the interaction with a constant magnetic fleld Fg§* ==
0, Fft = —¢;;xB%, where B are components of a magnetic field B, that is enough for
our purposes. Besides, we restore the velocity of light ¢ in the equations of motion by the

prescription m — mc, g — g/c and impose two gauge conditions
szo/cztﬁ fab=03 (214)

to fix the gauge freedom, which corresponds to the reparametrizations and O(N} rotations.

Thus, we get in the case of consideration

2
l éf_li _mQCQ 229Fea:t,¢,u,¢‘)v=e (215)
e? \ di

d {1dzx, b et 9%° : €0 ent 12

=\ == | =TES —Fa 2.16
7 (e dt) Jw g Y=l Ve (216)

d:cﬂ p

- Bt —mepi =0, ¢5=0, x.=0, (2.17)
"/)an'ﬁbb = K'nba N > 2. (218)

In the limit ¢ — oo (B/e- fixed) it follows from the éqﬁation {2.15) that ¢ can be every-where
replaced by 1/m. Then we obtain from {2.16)
dﬁx dx ds g
Moz =3 [dt B], E=EiSXB}. (2.19)
It follows from the equations (2.17) that ¢ = 9} = const , and therefore the constraint
(2.18) takes the form i) = —ikas/2 . Using this, one can calculate sksf = 2(ighf)?2 =

£%(1 — 6ap)0i,2/2 , 50 that

2
s? = (E Si‘) = KNz - (2.20)

Thus, one can interpret the equations (2.19) as describing the non-relativistic motion of a
charged particle with the total spin momentum s, (s® = s?8x2), and with the total magnetic

momentum gs/me in a constant magnetic field.

III. HAMILTONIAN FORMULATION, CONSTRAINTS. GAUGES
CONDITIONS.

Going over to the hamiltonian formulation, we introduce the canonical momenta:

dL i, aL

p# a.'],‘“ e(:c,u - i":bugxc;) ¥ Pe = % =0 ,

d,.L oL 5L
P,,=""-_ =0, an — "" —_— g an y Pu=—-20_ 3.1
" aXa a'f,b;‘ z.qb fab afab ( )

It follows from (3.1) that there exist primary constraints @) = 0,

o) = B,
1 _
o _ | ¥ =P
Q«'gt)n = Pﬂn+i¢’an bl
25 = Pr, -

We construct the Hamiltonian H) according to the standard procedure (we are using the

notations of the hook [14]),



&Ly s qg= (m7e!XJ¢1f) 1

aq

HY = H 42,80 H= (%‘L‘_riq_ L)
G

and get for the H :

H= "g(pz - m2) +i(pt + mw:)xu - %fab (3 [¥ans V‘)l?]_ + Jecab) . (3'2)

From the conditions of the conservation of the primary constraints ®(") in the time 7, $() =

{tp(’), H{l)} = 0, we find secondary constraints $(2) = 0,

o) = papt + my?,
$i2) = @&2) = p?—m? (3.3)

7

Qgi)b i {11"’)'1!’1 ? ¢£ﬂ,. + Kab o

fl

and determine A, which correspond to the primary constraint ‘Iléf,)n Thus, the Hamiltonian

H appears to be proportional to the constraints, as one could expect in the case of a

reparametrization invariant theory,
e . 1
H= 7@;” +i0{y, — 5 Fur® (3.4)

No more secondary constraints arise from the Dirac procedure, and the Lagrange’s multipli-
ers, corresponding to the primary constraints Qﬁ), <I>g1] and (IJ‘(I}ZJ,,, remain undetermined. One
can go over from the initial set of constraints (${), $()) to the equivalent one (&1}, $(2)),

where

$2) = @ ~ )
=0 Yan—Pan=tan+ 581 .

The new set of constraints can be explicitly divided in a set of the first-class constraints,
which is {‘I'ilg, @3},},,, ®), and in a set of second- class constraints, which is ‘IJ:(;},L So, we
are dealing with a theory with first-class constraints. Qur goal is to quantize this theory.
We choose the following way. We will impose supplementary gauge conditions to all the
first-class constraints, excluding the constraint (—Iv):(;i)b As a result we will have only a set of

first-class constraints, which is reduction of Qgﬁ),, to the rest of constraints. These constraints

we suppose to use to specify the physical states according to Dirac [13]. All other constraints

- will be of second-class and will be used to form Dirac brackets.

Thus, let us impose preliminary the following gauge conditions:

‘I’ﬁ;XaﬂO, ngb:fuf?:l}:

‘I’gzﬂf”O“CT:U; q)g‘“;if)g:[},

(3.5)

where { = —sign po (The gauge xo— (7 = 0 was first proposed in papers [14] as a conjugated
gauge condition to the constraint p? = m? in the case of scalar and spinning particles.
In contrast with the gauge zo = r, which together with the continuous reparametrization
symmetry breaks the time reflection symmetry and therefore fixes the variables ¢, the former
gauge breaks only the continuous symmetry, so that the variable ¢ remains in the theory
to describe states of particles ( = +1 and states of antiparticles ¢ = —1. Namely this
circumstance allowed one to get Klein-Gordon and Dirac equations as Schrddinger ones
in course of the canonical quantization. To break the supergauge symmetry the gauge
condition 4* = 0 was used in [14]. In [15] the general class of gauge conditions of the
form ay® 4+ Bp® = 0 was investigated in case of D—dimensional spinning particles.) The

requirement of consistency of the constraint ¢, #$ = 0, gives one more gauge condition
¥ =e+(p’ =0, (3.6)

and the same requirements for the gauge condition (3.5), (3.6} lead to the determination of
the lagrangian multipliers, which correspond to the primary constraints ®{", ®{" and ®{.

To go over to a time-independent set of constraints, we introduce the variable =), =f =
zo — (T, instead of zy without changing the rest of the variables. This is a canonical
transformation in the space of all variables with the generating function W = zoph + 7 |ph| +
Wi, where Wy is the generating function of the identity transformation with respect to
all variables except o, pg. The tra.nsformed- Hamiltonian H®' is of the form H{ =
HO 4 0W/8r = H + {®} , where {®} are terms proportional to the constraints and H is

the physical Hamiltonian,



H=w= (pz + m2)1/2 , P={m) . (3.7

We can present all the constraints of the theory (including the gauge conditions), after

the canonical transformation, in the following equivalent form: K =0, ¢ =0, T'= 0,

Xe » e_w_lv g H fa 3 '4')2}

K= ° ’ (3.8)
ch.1P51 Ile_wapfaby-PaO;
pd); +m1¢b£ 1

g=1" (3.9)

P+ iy, [:1,2,3,5;

Tw=1 ([%bf,» !,l');;]_ + ['4’21 q'[)f]_) — Kab - (310)

The both sets of constraints K and ¢ are of second-class, only T are now first-class con-
straints. The set K has the so called special form [14], in this case, if we eliminate the
variables x, Py,, ¢, P, z'o, Ipo|, fas, Py, and ¢ from the consideration, using these
constraints, the Dirac brackets for the rest of variables with respect to all the second-class
constraints (K, ¢) reduce to ones with respect to the constraints ¢ only. Thus, we can only
consider the variables #', p;, {, ¥l, Pu, [ = (1,5) and two sets of constraints, second-class
one ¢ and first-class one 7. Often further we will use the transversal /' and the longitu-
dinal 11)2 parts of ¥}, because of * these variables are convenient to treat both cases m # 0
and m = 0 on the same foot. The first constraint (3.9) is, in fact, a relation between P! and
P8, ) = —my? | whereas it are not constrained. Nonzero Dirac brackets between all the
variables have the form

!Here and further we are using the following notations

o
@'t =Ti(p)al o = Li(p)a’ ,d' = pyaf,

Ii(p) + Li(p) = &, Li(p) = p7%pip; , pP=Ip| -

ek = = k] s (o [ 0] - m [ ) R CR 1)
{xi, d)il}Dw) = ’:b pJ + oy ;¢a ’ {miad’s}bw) Wl T;gp" 2 ’
{ :-llu ¢£J—}D( = ubH‘ ) {¢£’¢b}p(¢) = _%%605 ) {xk$Pj}D(¢) = 6.;: '

To simplify the problem of quantization one ean go over to new variables, whose Dirac
brackets are more simple. Namely, let us introduce # and X*_ analogous to the case of

spin one half particles [15], according to the formulas

k_ .k 5 il
Xk=g w+m[¢ Lwsl o, b=yl ——p.
Y ¢ i gl i, H s__l [

o =X 90,9(,]_, vt =0t Yi=—C0. (3.12)

Using the brackets (3.11), one gets
koo _ &k k Xk
{X ,pJ}D(¢)_5,, {x*, X:}D()m{ L0k oy =0
k )
{ .6 } gy = "5k - (3.13)

Variables X*, p;, ¢, 0%, are independent with respect to the second-class constraints (3.9).
Thus, on this stage we stay only with the first-class constraints (3.10}, which being written

in the new variables 6%, have the form
Tap =1 [0%,68] - Kap - (3.14)

It is useful to adduce the expression for angular momentum M, in terms of the independent

variables,
Mo; = zop; — zipe = Xop; — Xjpa — ﬁ%‘j 6,6}, mo=(ry mo=—(w,
M = aups = 2y § (P58~ DA + 2o (pud — pidht) 8
= Xip; — Xipe +1 [05,09] . (8.15)

One can check by straightforward calculations that M, together with p, form the Poincare

algebra in sense of Dirac brackets with respect to the constraints ¢,

10



{Mp, MAp}D(qb) = Moy — N Mon + g Myun TaMyp

{p,u, MVA}D(@ = —HuwPa + TP » {pn,pu}D(¢) =0.

IV. QUANTIZATION

In the previous section we have imposed the gauge conditions to all the first-class con-
straints except the set of constraint (3.10). These constraints are quadratic in the fermionic
variables. On the one hand, that circumstance makes it difficult to impose a conjugated
gauge condition, on the other hand, imposing these constraints on states vectors does not
creates problems with Hilbert space construction since the corresponding operators of con-
straints have a discrete spectrum. Thus, we suppose to treat only the constraints T,; in sense
of the Dirac method. Namely, commutation relations between the operators X*, #, ¢, 8%,
which are related to the corresponding classical variables, we calculate by means of Dirac

brackets (3.13}, so that the nonzero commutators are

(X555 =i {x% ) =m,

D)
[éf;,ég’] =i{0* 6 }D(m 5,,% (4.1)

We assume also the operator { to have the eigenvalues ¢ = -:1 by analogy with the classical

theory, so that
t=1. (4.2)

Suppose R is a Hilbert space of vectors f € R, where one can realize the relations (4.1),

(4.2). Then physical vectors have to obey the conditions
i [05,6F] f=raf . (4.3)
Besides, they have to obey the Schrédinger equation

(z%—H) F=0, (4.4)

11

with the quantum Hamiltonian B constructed according to the classical physical one (3.7),
. 1/2
A=6= (ﬁ2+m2)/ . (4.5)
Going over to the physical time 2® = (r (see [14]) one can transfer (4.4) to the form

(i% - :fa) f=0. (4.6)

Hermitian operators of angular momentum Af v ¢an be constructed according to the classical

expression (3.15),

Mo; = Xop; — : [}Zj:ﬁo] ﬁ [53.19"] ;
M ka.r ka +14 [Bm 93] - (47)

In fact, all the formulas we adduced until this moment where written for arbitrary M.
However, a realization of the relations (4.1) and (4.2) has to be considered separately for
each N. In this paper we suppose to emphasize the case of spin one, which corresponds to
N = 2. At the same time we believe that it is instructive to compare this case with the
case N = 1, which can be quantized completely canonically [14]. Thus, below we consider

construction of state spaces separately in two cases N = 1 and N = 2.

A. Spin one half

In this case ¥ = 1 and the first-class constraint Ty; are absent. We can construct the
realization of the algebra (4.1) in the Hilbert space R, whose elements f € R are four-

component columns,
fi(x)
fa(x)

so that fi(x) and fo(x) are two components columns. We seek all the operators in the

f=

block-diagonal form, namely

(=10, me=—itd, R*=XM, § =03k, (4.8)

12



where 4% is the zero gamma matrix, I and T are 2 x 2 and 4 X 4 unit matrices, TF =
diag(c*, o), where o* are Pauli matrices. We interpret f1.(z) = fi(z) as the wave function

of a particle and f_(z) = o2 f3(z) as that of an antiparticle and define accordingly the scalar

product in R,

.8)= [[Fo+aip]ax= [ froax, c=. (4.9)

The operators X*, B, 0%, B are self-conjugate with respect to this scalar product. It

follows from (4.6) that

a \
"G le =Gkt

Thus, in this case the equations for the wave functions of a particle and antiparticle have
the same form as it has to be in the absence of an external electromagnetic field,

The operators of angular momentum (4.7) and the spin operator & have the following

form in the realization in question
. - | .
M,‘j = X.-pj - ij,' - —G;j;,E (410)
Mo; = Rop; — Xjpo— 25 4 ‘i“—f'kiﬁkzl )
i i 2n, 20(db + m)
a1
= zekﬂyﬁ!z‘[)’ =_xk
As it is known, the square of the Pauli-Lubanski vector We = 1/26””‘\"112{,,,\36, is a Casimir
operator for the Poincare algebra. For this realization and in the centre mass system

Wo=0, W= m”*’ s+, W= - (W) = _gmz.

The latter confirms that the system in question has spin one half.

Now one can see that the quantum mechanics constructed is completely equivalent to
the standard Dirac theory, namely it is connected with the latter by the unitary Foldy-
Wouthuysen transformation (16]. Doing this transformation in the equation (4.6}, we are

coming to the standard Dirac equation (see [14]),

f=yv, y=_2tm+ip

S G rmyn (O-mp¥=0.

13

Besides, applying the same transformation to the operators (4.10), we get the operators of

the angular mementum in the Dirac theory [15],

. A | i
um%u=am—&m—?w,aw=y%%L.

B. Spin one

The relations (4.1) (4.2) for X*, p; and ¢ we can realize in a Hilbert space R, Whose

elements are two-component columns f € R,

f= fl(X) : f((X)eLz, C“_*“112a
fa(x)

in the following natural way [14):

The scalar product in R,..; we select in the form

(,9)= [ Ui+ gifildx. (4.11)

The commutation relations (4.1} for 6%, a = 1, 2, we realize in a Hilbert space Rpin,
which is a Fock space constructed by means of tree kinds of Fermi annihilation and creation

operators by, bf, k=1, 2, 3,
Hk

[bk}

Fortt), ob=10r-u), w12
=6, [ebil= [ 8], =0.

Due to the Fermi statistics of these operators the space Rpin is finite-dimensional space of

vectors ¥ € Rypin, With basis vectors v o) () ()

v =10>, B0>=0,k=1,23,
1
o= gtos L@ =) seribf 8110 >, v = cebt o BE0 >, (4.13)

14



which are eigen for the operator # = Tk bl by,
A =ne™ | n=0,1,2,3. (4.14)

The total Hilbert space R is the direct product of R, and Rapin.

Calculating the operators of angular momentum Mu», spin & and square of Pauli-

Lubanski vector in the realization, we get
Mi; = Xip; — R+ s (st ~ bibf)

Htoj = Koy — - [R;. 0],

5 ] (Bubab? — bipitt) (4.15)

Po
t i@ m
sk 1 s . N
S"'i = 561:3'{ (bj’b; - b?'b_,) ] I/V2 = —mzn (3 - n) - ] (4.16)
The operator & commutes with H, P, and Mu,, that means that states with a fixes n form

invariant subspaces. In this realization the equation (4.3) imposes only restrictions on the

vectors v from R,,.,,

fw:(fc-kg)v,

they have to be eigenstates of the operator . That implies that x takes on the values —3/2,
—1/2, 1/2, 3/2. Due to (4.16) theories with x = +1/2 describe particles with spin one,
whereas theories with & = +£3/2 describe spinless particles. The canonical quantization of
the latter case was described in [14], thus, we consider here only the former case. First, let
us take £ = —~1/2. In this case n = 1 and a general form of the time dependent state vector

feRis
f=o{frz) . (4.17)
Due to (4.6) each component f*{x) obeys the Klein- Gordon equation,
(D+m?) fHz) =0, 0=8,0". (4.18)

We interpret ff)(z) = f¥(z) as the wave function of a particle and fEy(@) = F§(2) as the

wave function of antiparticle with spin one. According to (4.11) the scalar product of two

state vectors has the following form

15

(f.8)= [ [frgk+ab bl ax = [ flgahgix, c=%. (4.19)

- Now one can find a correspondence between the quantum mechanics constructed and the
classical Proca field, which describe particles of spin one in the field theory. To this end we

construct a vector field A,(z) from the functions f*{z) in the following way
1 N
Aulz) = Z=£(5) (fi(=) + f3=)) (4.20)

with polarization vectors Ef‘k)(p), having the form

)y — POPE  plkye gk, PiPE 4.21
‘fU (p) mw ’ ‘f: (p) 61. + m(m+w) H ( )
E@Ir =0, EPEKPE) = —nu+ BB p=—tw. (22)

One can check, using (4.18) and (4.20), that the field A,(z) obeys the equations
(O+m?) Au(z)=0, 84%z)=0, (4.23)

which are just equations for the Proca field [17]. Moreover, one can find the action of the
generators (4.7) on the field A,(z), calculating their action on the vector (4.17) and using

the representation (4.20),
MopAu(z) = (2abs ~ 2pa) Aul2) ~ i (1apAs(®) — npphal(z)) , Po = —ide.  (4.24)

That result reproduces the transformation properties of a vector field under the Lorentz
rotations with éz* = w*z,,

i

3 Mg Au(z)? (4.25)

A, (z) =

It is also instructive to point out a correspondence between the quantum mechanics con-
structed and one particle sector of the quantum theory of the Proca field. In this quantum

theory the Proca field appears to be the operator
A d i ipx *
Ay = [ 22— [ e (p) € (p) + €7df () " (P)]
/2w {27)

16



where ar(p), a}{p), di(p), di(p), k =1, 2, 3 are two kinds of Bose, annihilation and
creation operators, py = w, and the polarization vectors {L")(p) obey just the conditions

(4.22}. If we choose for them real expressions (4.21), then the relations hold

Au(2) =< 0| A (2)|fy > + < foldu(2)i0 >,

5 >= [dpftplat o>, Fitp) = | T @)

z0=0
|fo >= f dpf3(P)df (P)0 >, fh(p) = f (27:1)!1({3/2’8_@%1) @) somo

so that A,{z} is the classical Proca field (4.20). In fact, by such a choice of the polar-
ization vectors, we have a direct correspondence between the wave functions of particles

and antiparticles f("c) in the quantum mechanics and the states |f1,2 > in the quantum field

theory.
Finally, let us consider the case x = 1/2, which also describes a particle spin one. In this

case n =2 and a general form of the time dependent state vector f € R is
f=o{"f*z). (4.26)

On can check by straightforward calculations that fE(z) from the eq. {4.26) obeys the same

" | equations and appears in the same form in all the constructions as f¥(z) from the eq. (4.17).

Moreover, the action of the generators M,w on the basis vectors v,m and v‘;z) 1s equal. That
| provides equal transformation properties for the field (4.18) constructed by f* (z) in both

'] cases. All that testifies that both theories with k = +1/2 describe spin one particles.

V. MASSLESS CASE. QUANTUM MECHANICS OF PHOTON,

Here we are going to discuss the problem of quantization of massless particles spin one half
i and spin one. In this connection, one can consider the imit m = 0 of the above constructed
- quantum mechanics and compare it with an independent quantization of classical action,
‘| describing massless particles at the beginning. As to the limit, one can remark that all

. {formulas are nonsingular in the mass and admit such a limit. On the classical level, after
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the gauge fixing, it is possible to use, on the surface of the second-class constraints, the
variables 2, p;, (, %t % or the variables X*, p;, ¢, ¢, the Dirac brackets of the latter
do not contain mass at all and expressions of the former via the latter are nonsingular in
the mass. The first set of the variables at 7 = 0 splits into two {anti) commuting one with
another groups =, p;, i, and 5. The Poincare generators are only expressed via the
first group of variables and comunute with % Instead of the Casimir operator W2, which

vanishes at m = 0, appears a new one, helicity A,
A =gt (5.1)

It turns out that at m = 0 the variable % can be omitted from the action (2.1). The
quantization of such modified action reproduces the physical sector (in particular, quantum
mechanics of the transversal photons) of the limit of the massive quantum mechanics. Below
we adduce details of the limit m = 0 for two cases: of spin one half and spin one, taking
into account general properties mentioned above, and emphasizing mainly differences from

the massive case.

A, Massless particle spin one half

As we have mentioned above, the Dirac brackets for the variables X*, p;, ¢, 6* do not
depend on the mass, that means that realization (4.1}, (4.2) remains in the limit m = 0. It
is clear that the realization does not depend on the presence of the operator /5. In the limit
we have 1% = ip~1ppepuhtpit = A , where A is the helicity operator. The Schrédinger
equation (4.6) with m = 0 gives the Dirac equation with m = 0 after the corresponding
FW transformation. The total Hilbert space forms now a reducible representation of the
Poincare group (right and left neutrinos}. It follows from the described structure of the
quantum mechanics that in the limit m = 0 one does not need the variable 3° at the theory.
Indeed, one can take the action (2.1) at m = 0 and omit %° in the beginning. In such

a theory, after the same gauge fixing (in particular, 1% = 0}, we have only the variables
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wt, pi, €, YL on the constraint surface. Their Dirac brackets and the expressions of the
Poincare generators coincide with the corresponding expressions of the massive theory at
m = 0. The same realization is available, If one introduces the operator iﬁ“ﬁkekmﬁuiﬁfl,
which is in fact the operator 4% of the massive case, then the theory literally coincides with
the limit of the massive case. In this connection one can remark that the dimensionality of
the Hilbert space i the discussed realization does not depend on the presence of the variable

#* at m = 0 and coincide with dimensionality of the massive case.

B. Quantum mechanics of photon

Now let us turn to the massless case N = 2, which, according to our expectations has
to describe a photon. First, we consider the limit m = 0 of the massive spin one case with
k = —1/2. According to our interpretation, states with { = +1 correspond to particles
and with & = —1 to antiparticles. Because of our aim is a photon, which is neutral, we
may restrict ourselves to consider the limit of massive quantum mechanics of neutral spin
one particle. To get such a quantum mechanics one needs to replace the gauge condition
z¢ = (7 by the one zo = 7, the latter fixes, besides the reparametrization gauge freedom,
the discrete variable ¢ ({ = 1) as well [14]. Thus, the operator { disappears from the
consideration and elements of the R, are merely functions f(x) from Ly with the scalar
product (f,g) = f f*gdx. The realization for X =3, pi, 6* remains the same as at m # 0.

The operator of helicity and its square have the form
A =i pegbt b, AP =at(2-at), At =btey .

The total Hilbert space splits into the two invariant subspaces, with A2 =1, A= %1 and
with A = 0. The first subspace can be created by the operators &, #;, Pit = 6L, whereas
the second one by the operators %, i, 6 = —p~18'. We treat the subspace with A* =1 as
the Hilbert space of transversal photons with helicity A = £1. The subspace with A = 0 we

treat as the Hilbert space of longitudinal photons with helicity 0. To exclude the longitudinal
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photons from the consideration one needs to impose a supplementary condition A% = 1. On
the other hand, to get a theory, containing only the transversal photons, one can start from

the action (2.1) N = 2, m = 0, without, the variables 5,
(o @ = ) + 5 o s 21~ it e
A 9e aXa 5 ab |Wapy Wyl apty .

In this case one can have the same realization for the operators &%, p;, 1}3};‘- as in quantum
mechanics with 2 at m == 0. Instead of the operator #i in the condition (4.3} appears the

operator 7L,

ALE = (k+1)f . (5.2)

Its eigenvalues nt

can be only 0, 1, 2, so that « takes now on the values 0, £1. The cases
n' =0, 2; & = %1 correspond to the spinless particles; the case n* = 1; & = 0 corresponds
to the limit m = 0 of the quantum theory with the action (2.1) with £ = —1/2, sector
A? =1, and reproduces the quantum mechanics of the transversal photons.

Finally, we can demonstrate that the quantum mechanics of the transversal photons
reproduces in a sense the classical Maxwell theory and is equivalent to one-particle sector

of quantum theory of Maxwell field. To this end let us rewrite the representation (4.17) in

the form
£ = oM fii(z) + o M ()

where the transversal and longitudinal components are defined by means of the correspond-
ing projectors, I (p), Li(p). After the limit 7 = 0 one can interpret f*L(z) as the wave
function of transversal photons. To construct the classical electromagnetic field we have to
use the wave functions f*L(z) in the same way we had used the wave functions f*I(z} in
the previous section to construct the Proca field. Namely, we define a vector field A,(z) in
the following way

L

Au(w) = 755

‘EELJ:)J.. {fki(m)_l_fki.*(w)] , (53)
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where ¢4 are transversal components of the polarization vectors (4.21),
ERL = ETIE(D) - (5.4)

Due to the equation (4.18) and the structure of the polarization vectors {5.4), the field (5.3)

7 obeys the Maxwell equations in the Coulomb gauge,
024, (z) =0, 84(x)=0, Aofz)=0.

Leb us turn to the quantum theory of the Maxwell field. In the Coulomb gauge the

operator of the vector potential has the form

"’xc;r(p)] 6,(3)(13) 1 A=12, m= lpl »

fik(:r) = f—\/ﬁ [e*iprcl\(p) +e

where ¢} (p) , ex(p) are creation and annihilation operators of transversal photons and

ef‘)(p) are two polarization vectors, which are selected here to be real,
; ' Y
et (p)el () = b, ellpe=0.
Classical vector potential Ai(z) can be constructed as

Ag(z) =< 0| Ax(2)|] > + < flAu(2)[0 >, (5.5)

AEN0>=0, |f>= [ FOE)etE0 >, E)= [ (23)3/2ﬂ'i""eiA)(P)f’“*(w) :

so that Ag(z) are three-dimensional components of the classical Maxwell field (5.3). The last
formulas establish a correspondence between the wave functions f*L(z) of the transversal
photons in the quantum mechanics and states | f > of the photons in quantum electrodynam-
ics. One can verify, similar to the massive case, that the actions of the Poincare generators

on the fields (5.4) and (5.5) coincide in the both theories.
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