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In this paper we examine, in a new perspective, the perturbative expansion
of the SO{A )-symmetric A¢? scalar field models. The lattice definition of the
models is used, to allow for direct cemparison with their known non-perturbative
behavior, which has been determined mostly by means of computer simulations.
Perfurbation theory is developed in a way appropriate for the d-dimensional
Euclidean treatment on a finite lattice. The propagators of the models are cal-
culated perturbatively to order ane-loop, and used to probe into their critical
behavior. The mechanism which leads to the divergences in the continuum limit
of the lattice is explicitly displayed. We show that lowest-order perturbation
theory predicts correctly the qualitative critical behavior of the models in the
continuum limit. While the interpretation of the perturbative results directly on
the finite Jattice is more involved, perturbation theory can also be used for the
calculation of physical quantities on finite lattices.

PACS:03.70.4k;11.10.-2

I. INTRODUCTION

In this paper we examine the perturbative treatment of the SO{A)-symmetric
A¢* polynomial models defined on the d-dimensional Fuclidean lattice. The non-
perturbative behavior of these models, as defined by means of the lattice, is reasonably
well-known', specially due to computer simulations, and therefore these models are
a good laboratory for the study of the perturbative expansion. To facilitate the
comparison with the results of computer simulations, it is interesting to develop the
perturbalive treatment from the beginning on finite Euclidean lattices.

It is not easy to pinpoint, in the usual continuum formalism, the basic mathemat-
ical origin of the infinities that plague the perturbative expansion. Using the lattice
definition we will be able to display clearly the mechanism responsible for the diver-
gences, and therefore to understand how the infinities come about when one takes
the limit. This mechanism is related to some very simple but fundamental proper-
ties of the free field theory, namely, the discontinuous character of the dominant field
configurations®. We will also present some results related to the structure of the phase
diagrams of the A¢* models.

We start in Sec. II by presenting the definition of the models, and discussing qual-
itatively some aspects of their non-perturbative behavior. In Sec. III we develop the
formalism of the perturbative expansion in a way appropriate for the lattice theory,
and discuss some important consequences of the basic properties of free scalar fields.
In Sec. IV we present the results of one-loop calculations of the two-point functions
of the models. Our conclusions are contained in Sec. V.

II. DEFINITION OF THE MODELS

The dynamical variables of the models are a set of scalar fields ¢;, 1 = 1... V.
The action defining the classical Euclidean theories in the continuum limit, in d
dimensions, is
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where the scalar-product “dot” notation is defined by 7-& = S, 7 w;, m is the bare
mass, A the bare coupling constant, and we will restrict the discussion to dimensions
d > 3. We will be considering the models defined in a finite cubic box of side L,
and the integral is over the volume of this box. This finite box is needed to allow for
direct comparison with the results of computer simulations, which are by necessity
performed in a finite box. The beundary conditions are chosen to be periedic, so that

the box becomes a d-dimensional flat torus.



In order to define the model on a lattice with A sites in each direction and spacing
a = L/N, weintroduce the dimensionless fields ¢; = a®=2¥24,. and the dimensionless
parameters o = m%a® and X = a*"9A. A lattice realization of the action is obtained
by expressing derivatives in terms of finite forward differences A,p;, and replacing
the integral by a sum over the N¢ sites, denoted symbolically by z,
N ¢ o A
Snle) =30 |5 A M)+ 5 (8- 8) + 1 (€-9)°) (1)
k) r=1
This lattice action is the one usually considered in the literature and employed
in most computer simulations. Using it we can define a quantum theory for these
models. The typical expectation value of an observable O[] is given on the N-lattice
by
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where the notation for the functional-integral measure is
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The continuum-limit Euclidean expectation value is obtained by taking the ¥ — oo
limit, of the lattice expression,
(0) = lim {0),.
The final step in obtaining the expectation values of the quantum theory is to extend
the Euclidean results back into the Minkowski sector by analytic continuation.

In order to put the perturbative calculations in proper perspective, it is necessary to
consider the critical behavior of the models®. There are two free parameters, o and A,
but there are also conditions which must be satisfied in the continuum limit in order
that the models exist as field theoretical models. These conditions are essentially
that all physical observables be finite, and they imply that one must choose some
definite functions «(N) and A(N), as N — co. A fundamental condition is that, in
the continuum limit, the renormalized mass be finite, or that the correlation length
be different from zero. This condition implies a relation between the limiting values
a(oo) = o, and A(oo) = A, which defines the so-called critical curves of the models,

Ao = fulewe).

A relevant non-perturbative aspect of the models is that while A must be positive
to ensure the existence of the ground states and therefore the stability of the models,
o may be negative if A is not zero. In fact, in order that continuum limits to points
other than the Gaussian point (= 0, = 0) may exist, o must be strictly negative
in the limit, a fact which will play an important role in the perturbative analysis.

The relation between « and A in the limit determines whether the symmetry breaks
or not, defining two separate regions or phases in the (e, ) parameter plane. The
curve that separates the two phases in the (o, A) plane is the critical curve A, = f.(a),
which is roughly a straight line starting at the Gaussian point and extending to the
{a < 0, > 0) quadrant. It is possible to estimate the position of this critical curve
from a qualitative analysis of the symmetry-breaking mechanism®, which gives a finear
relation between X and e, and is qualitatively consistent with both the mean-field
and the perturbative results. A typical such (e, A} phase diagram of the models can
be found in Fig. 3 of an earlier paper®.

In the region which is to become the symmetric phase in the continuum limit, one
expects that the expectation values of the field components be small and become
zero in the limit. Also, the renormalized mass parameters of the propagators for each
field component should all be equal, and different from zero. In the region which
is to become the broken-symmetric phase, it is to be expected that the expectation
value of at least one of the field components be different from zero, and that the
renormalized mass parameters of all buf one field component be small, and become
zero in the limit. We will verify the extent to which these expectations are realized
by perturbation theory on the lattice.

ITIT. THE PERTURBATIVE EXPANSION

The main idea of the perturbative theory is to develop an expansion for the com-
plete models around solvable Gaussian models. Since any Gaussian model is exactly
solvable, one is free to choose to expand the theory around any particular Gaussian
ensemble. Presumably, for small values of the coupling constant the exact results are
not too different from the corresponding results of the free theory, and the expansion
can be used to obtain useful approximations to the complete theory for small values
of the coupling constant.

The first step in the development of the perturbative theory is the separation of the
action in two parts,

S:SO';‘SV1

where Sy is a Gaussian action, and we assume from now on that all quantities are
written on a finite lattice. We have for an observable O

4



_ [1glolpleses
Jidglesoesy

We now write this in terms of the measure of the Gaussian theory defined by Sy,

dividing both the denominator and the numerator by [[d@le~5, and thus obtaining

Qe Svy
{0) = L“—>° (2)

{e=Sv)y 7

where the subscript 0 denotes expectation values in the theory defined by Sp,
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The term Sy of the actior is the one containing A, which is presumed small. But
Sy may also contain other parameters, and in order to develop the perturbative
expansion, rather than using A directly as the expansion parameter, it is convenient
to introduce a new parameter ¢ in the following way:

(0e=),
1= "=,

We have therefore f(0) = (), and f(1) = {O). The perturbative expansion consists
of the expansion of f(e) around e = 0, to a certain desired order, and the application
of the resulting expressions at ¢ = 1. Of course, this can only be a good approximation
if Sy is a sinall quantity. Classically, one can make Sy small by decreasing A and
any other parameters that it might contain, but, as we will see shortly, this is not
possible in the continuum limit of the quantum theory, and this fact is at the root of
all difficulties with the perturbative expansion.

In order to understand the origin of the difficulties, one must recall some important
properties of the free theory®. Assuming for this discussion that S, has the generic

form
Ne 1 4 ao

where ag is non-negative, to ensure the stability of the measure, one can calculate®,
for an arbitrary field component, the quantity

{eto = Uo(N d, ap) = Ep P
where the quantities pf and the integers k are defined in the Appendix, no sum over
i is implied, and symmetry requires that oy be independent of i. The summation
convention will net be used in this paper, and, except for the scalar-product “dot”
notation, all sums will be indicated explicitly. :

This oy is the width of the local distribution of values of the i-th component of the -
field. It has a singular behavior on finite lattices for ag = 0, due the the existence of
a zero-mode on the torus. We may write it as

oé(N,d, ag) = o (N, d, ap),

1
Nieyg
1M
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where 3" denotes the sum without the zero-mode p; = 0. One can see here that the
ag — 0 limit of the first term diverges for finite N. But if we make op = mia? =
mg/N? where my is some finite and non-zero real number, then the N — oo limit of
the first term is zero as long as d > 3. It can be verified that in this case o converges,
in each dimension, to finite values of order one in the continuum limit. Numerical

evaluations of the sums give the following large- N asymptotic results:

ol (d = 3) ~ 0.25274,
of¥(d = 4) =~ 0.15493,
of(d = 5) ~ 0.11563,

where the last digit in each result is uncertain due to the numerical errors. The results
above were calaulated for the case my = 0 but, remarkably, it can be verified that
the limiting values are independent of mq. Because o will play an important role in
the perturbative calculations, here it becomes clear that we cannot make ag = 0 on
finite lattices, although it is possible to make oy — 0 in the continuum limit without
introducing divergencies into ad.

One can also show that in the free measure, for a given field component,

and from this it follows that, assuming the general form for Sy

d
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we have for its expectation value

Noi(N,d, ag) [01-1- N+2

{Sv)o = 5 9

3N, d, ao)).] N
This means that, as long as the factor in brackets is not zero in the limit®, (.S'V)B
diverges as N9 in the continuum limit, a result which is directly related to the issue of
the discontinuity of the fields discussed in a previous paper®. Note that this divergence
of Sy is not due to an integration over an infinite volume, since we are considering
here the theory defined in a finite box. This makes it clear that we cannot make Sy
small by just changing the values of & and A, except if we make them equal to zero
in the limit, converging to the Gaussian point.

If we consider the denominator of Eq. (2), it is now clear that we will have, in the

continuum lmit,

<E—Sv )0 — 0,

and, for € # 0, the perturbative expansion of the exponential will contain terms that
diverge in the continuum limit,

<e-<Sv>0 ~ T - C(Sv)g +..., (Sv>u — 00,

We can see now that the limit of Eq. (2) for large N is of the form 0/0. It nevertheless
exists, as long as the theory is non-perturbatively well-defined. The denominator of
Eq. (2) can be understood as the ratio of the measures of the free and interacting

theories,

[lagleseesv

(%)= gl

and the conclusion is, therefore, that in the continuum limit these two measures are
related in a singular way. For any finite N-lattice,.(Sv)o is finite, one can make the
parameters sufficiently small, and thus improve the approximation of the full theory
by its perturbative expansion. But in the continuum limit the only way to avoid the

(4)

divergences is to make a — 0, A — 0.
We argue that this behavior of {Sv}q is the fundamental cause of all infinities that

appear in the perturbative expansion. However, since in Eq. (2) we have the ratio of
two quantities involving Sy, it is possible that some or all of these N i divergences will
cancel out. Also, the singularity in the relation between the two measures in Eq. (4)
in the continuum limit indicates that even if all such strongly divergent term do cancel

7

out, there may still be other divergences left over when one writes ohservables of the

- full theory in terms of observables of the free theory. These are probably not strong

power-law divergences, but weaker ones, possibly logarithmic.

If the theory is to be perturbatively renormalizable, all the strongly divergent terms
must cancel out order by order in the perturbative expansion. The theory will be
perturbatively finite, or perturbatively renormalizable in a strong sense, if and only
if all divergent terms, strong and weak, cancel out order by order in the expansion.

_Even if this is not the case, the theory may still be perturbatively renormalizable

in a weaker sense if one is able to reparametrize the theory so that the remaining
weak divergences are absorbed into its bare constants. We will see that the models
considered here are in fact one-loop finite in what concerns the propagators.

Notwithstanding all this, it is reasonable to think that in each phase the observables
{O) of the full theory are some smooth functions of its parameters, and therefore that
f{€) is a smooth function of ¢, so that there should be a convergent expansion for it
around € = 0. At least, if the function is differentiable to a certain order, there should
be an approximation up to that order. In this paper we will examine only the A and
Al terms, for which we get

fle)=FO)+ef/(0} 4 ...,
f(0)=(O)o,
f1(0) =—[{O8v}o — (OYo{Sv o] .-

Making € = 1 we get

(O} = (O)o — [{(OSv)o — (O)o{Sv}ol - (5)

This is the approximation for {(3) up to order A. We will use it in Sec. IV to calculate
perturbatively some particular observables. Here we see that it is indeed possible that
the divergences in {?5v)o will cancel those in (Sy)q.

We must now return to the issue of the separation of the action into Sy and Sy.
This will depend on whether one is in the symmetric or broken-symmetric phases
or, more precisely, on whether or not {#) = 0. In any case Sy must satisfy two
conditions: it must be quadratic on the fields, and it must be stable, meaning that
it must correspond to a well-behaved free theory with a finite mass, whose Euclidean
action is bounded from below.

The stability issue must be examined carefully here. It can be shown that, in any
continuum limit of the theory that does not approach the Gaussian point, o will



always become negative®. We cannot, therefore, include the a term in Sy, because
this quadratic action would become unbounded from below, and the corresponding
measure would be ill-defined. The alternative of leaving only the derivative term in
Sp and simply including the o term in Sy is also unsuitable, because the massless free
theory thus produced has a zero-mode that may lead to spurious infrared divergences
in the expanston.

Let us consider first the symmetric phase. In order to avoid infrared trouble, we
introduce a new parameter ap > 0, and choose the form of Eq. (3) for the free part
of the action. The potential term Sy will be the remainder of the original action. In
this phase the corresponding Sv is therefore ‘

Nd

Sv =2 |22 5+ 369

As long as if is positive, we are free to choose ap at will. Tt is reasonable to choose
op = mi/N?, with a fixed and finite mg, so that $; will correspond to a well-behaved
free theory in the continuum limit. In particular, making mg = mp seems to be a
natural and convenient choice. Since we can choose at will the Gaussian ensemble
we are to expand about, it is clearly convenient to make it as similar as possibie to
the ensemble of the complete theory. The choice oy = ap ensures that the second
moment of the two ensembles are identical. We will see later that this choice of ay is
in fact needed in order to make the perturbative propagator well-behaved.

In the broken-symmetric phase we have (i7) # 0, and in order to develop the
perturbative expansion in a simple way we rewrite the model in terms of a shifted
field ', with

where we chose the coordinate system in the internal manifold so that the direction of
symmetry breakdown is the direction of the component . In computer simulations
this condition can be satisfied exactly, since one may eliminate the drifting of the
direction of symmetry breakdown by making global rotations of the fields at periodic
intervals. This amounts, in fact, to the complete elimination from the ensemble of the
theory of the zero-modes of all but the A** field component. One can also consider
excluding these zero modes from the Gaussian ensemble to be used in the perturbative
theory, but it turns out that doing so does not significantly change the results.

Under this change of variables from ¢ to ¢ the derivative term of the action in
Eq. (1) remains unaltered and, dropping field-independent terms, which cancel off in
the ratios of functional integrals defining the observables, we have,

4
Swly] = Z ZAM A +“+2)‘” (¢~ @) + Mo?pl?

=1

to ot 0 g (7 9) ol + 3 (9.

We introduce now the constant ap > 0, and separate the action in the free part

N 1l . . T f o -
=S[00 80)+26-9)],
b r=1
and the potential part
Nd

+a020l % + do (@ - @) @l + 2 (- 93')2] :

This is the separation of the action to be used in the broken-symmetric phase. Note
that, since in this phase one component of the field will be singled out by the sym-
metry breakdown mechanism, it is likely that o will have to be chosen differently for
different components of the field, so that we may have the condition ag = ag for all
field components.

IV. ONE-LOOP CALCULATIONS

We examine first the propagator in the symmetric phase, that is, we calculate the
propagator under the assumption that {#) = 0. This should be a good approxima-
tion to the complete result in the region which becomes the symmetric phase in the
continuum limit, where (@) is small. To order zero-loop we have for the dimensionless
propagator

R

(‘P!("I" wily ZfN( P Tan

where the lattice mode functions f¥(x — y) are defined in the Appendix, the renor-
malized mass parameter is ap = o, and the residue of the pole of the corresponding
dimensional propagator is B = 1. We calculate now the propagator to the first non-
classical order, that is, to order one loop. Due to the symmetry, it is enough to pick
an arbitrary field component for the calculation, We have now, using Eq. (5},

10



(o)) ~ aaleny),

g(z,y) = (pi(@)ei(y))g — [(wil2)eiy) Sv)g — (pil@)edy))o (Sv)ol-

The expectation values appearing here involve only Gaussian integrals, and are given

by

1
pE+ a0

b

1 X
o(z,5) = 4. e =
(‘Pl(‘r)(pi(y))ﬁ = g()(:l':,y),

(819 = N 25 N3N, d, 0) + NN + 23N, d, o),

(ela)pily)Sv)o =N =2 N*o3(N, d, 0)go(2y)
Nd
+(a — a0) 3 gol, 2)90(2, )

AN+ 2)T NN, , a0)gol, )

Nd

HN + AR (N, d,0) Y 9oz, 2)g0(2, ¥)-

In these calculations all the strong divergences, consisting of terms proportional to
N, cancel out, a fact that corresponds to the usual cancellation of vacuum bubbles.
Given all this we can write for the propagator

1 ag — a — (N + 2)Aad(N, d, o)
pi+ao (o} + ao)”

1 &
gi(z,y) = mzf;’v(?’“y)
%

If we now choose ap such that this propagator has a simple pole at p} = —ap, we

discover that we must have
ag = o + (N + 2)02(N, d, o),

and that the propagator can then be written as

H

i
pi+oar’

1 &
a(z,y) = FV"}fo(w -y
k

which corresponds to the momentum-space propagator

o1 1
Gilp) = NiE T on
P

where the renormalized mass mp is given by ag = o = m4L?/N2.

Superficially, this expression for the renormalized mass can be understood as the
sum of an order-zero term ¢ with an order-)A correction, but in truth this is mis-
leading, since when one takes into account the quantum fluctuations by including
the one-loop term, « becomes in fact negative, and the first-order term cannot be
understood as a small correction to the classical result, where o must be positive.
Note also that the residue of the pole of the dimensional propagator corresponding
to the expression above is equal to one, showing that to this order there is no need
for field renormalization. This is qualitatively consistent with the situation observed
non-perturbatively in the few preliminary computer simulations tried so far. Note
also that there are no divergences left in the results, showing that the propagators
are one-loop finite.

‘We have to this order, therefore, the propagator of a free theory, with a renormalized
mass. A closer examination of the renormalized mass parameter will give us some
insight into the symmetry breaking mechanism of the models. Note that we do not
really have an explicit expression for ap, but rather a self-consistent equation, due to
the facts that we were led the choice aq = ag, and that 52 depends on oy,

ap=oa+ (J"f + 2)/\0‘3(1\’, d, aR).

In order to examine the behavior of this ap in both the finite lattices and the contin-
uum limit, we first rewrite it in terms of &,

(N+2)A.

ag = o+ (N +2)Mef(N,d, o) + Nian

In this expression the main dependencies on ap are made explicit, since, whether or
not ag is zero, off is a finite non-zero number, either on the finite lattices or in the
continuum limit. We may now write this as

M-_-g_ - (6)

ok — an [a+ (N + 2MoP(N, d,an)] -

In the continuum limit the third term vanishes and we get

12



ap = a+ (N +2)Aaf (oo, d),

where of}(c0,d) is no longer dependent on ag or mp. Since in a second-order phase
transition ap is zero at the transition, this gives at once an equation for the critical
curve of the models,

o+ (N +2)2ei{oo,d) = 0.

The fact that we must also have ap > 0 establishes the range of validity of the
calculation to be that region of the parameter plane where

o+ (N +2)2(c0,d) > 0,

which is therefore the symmetric phase.
In order to further analyze the situation on the finite lattices, we write the roots of

Eq. (6), getting

a+ (N + DAeR(N,d, ag)
ap = 2

id [a+ N+ 2D (N, dyam)]” | A +2))

2 nd

Although 2 is still a function of @g in this expression, for the analysis it is enough
to know that it is a finite and positive number, for any values of eg and N. As long
as N is finite, one can see here that the negative sign for the square root leads to a
negative ag, and must therefore be discarded, leaving as the only possibility

a + (N +2)Aof (N, d, ar)
p= 2

at+ (N +2Dref(N,dyer)]” | (VM +2)
+ 5 + T

(7

Here we can see that as long as NV is finite we cannot have ap = 0, because the
value of the square root is positive and larger than the other term. This result is in
accordance with the well-known fact that there is no phase transition on finite lattices
with periodic boundary conditions. Note that for finite N the expression above for
ag can be calculated at any point (e, A) of the parameter plane where the theory is
stable.

13

* Intheregion where [0 4+ (N + 2)Aof2(N, d, ag)] is positive ar approaches this quan-

tity in the continuum limit, while where [ + (A + 2)A62(N, d, )] is negative, if this
is at all possible, g approaches zero. Whether or not Eq. (7) is a good approxima-
tion on finite lattices will depend on whether or not {#) is close to zero for the given
values of (a, A). Of course, a precise determination of ag for given values of (@, A) on
a finite lattice will have to rely on a numerical solution of Eq. (6), taking into account
the dependence of of of o,

Since on the one hand there is no true phase transition on finite lattices, and on
the other hand there is some amount of spontaneous magnetization at least in some
regions of the parameter plane, we expect that at any point {c, A) of the plane we
will in fact have (@) # 0 on finite lattices, whether it is small or not. Therefore, it
is to be expected that a calculation of the propagator assuming that (@) 5 0 will be
a better representation of the exact results on finite lattices, specially in the region
which becomes the broken-symmetric phase in the continuum limit.

We calculate next, therefore, the propagator in the broken-symmetric phase, as-
suming now that {w;} = ¢ for £ A, but that (pa) # 0. In this case we must
calculate the propagator of the A** component separately from the others, which are
all equivalent due to the remaining SO{A — 1) symmetry. The calculations are oth-
erwise similar to the ones in the symmetric phase. Again the N? divergences cancel
off, and we end up, for all but the A"** component, with

(%(m)ﬁf’:(y» g gl,i#ﬁf(m: y)'l

Grizn (T y)=“"l“-NdeN($—y) % J
T N FiFao  (p+oo)

Here we encounter a difficultty, because the choice of o which causes this to display
a simple pole is ay = 0, which we cannot impese on a finite lattice. We may, however,
make o approach zero in the continuum limit, and then we get (A — 1) massless
Goldstone bosons, as the Goldstone theorem requires for a symmetry breakdown from
SO{N} to SO(N —1). Presumably, on a finite lattice the Goldstone bosons are not
cornpletely massless, but have a small mass that tends to zero in the continuum limit.
On such a finite lattice, however, we are unable to draw any definite conclusions from
the result above.

If we calculate now the propagator for the A** field component we get

(pw(z)en(y)) — len (@) (pa(y)) = qa(=,v),

14



gz, y) = NdeN [T'}__+ao+a+(N+2),\ 2(N,d, ag)
fiton (o} + ar)’

which has a simple pole as long as we choose
0 ==2[a+ (N + 23N, d, )] ,

so that the momentum-space propagator reduces to

1

Gix(p) = Ndp Tan'

where the renormalized mass my is again given by ap = o = m{ L2/ N2, In this case
we have for the self-consistent equation for ag

ok + 2ax [a + (N +2)Aef} (N, d, aR)] + 3(_-’%)&_ =10 (8)
In the continuum limit we now have
r==2[a+ (N + 2)Aof(co, d)], (9)

and hence the condition ap = ) gives the same equation as before for the critical
curve. In this broken-symmetric calculation, the range of validity of the results is the
one defined by

(N + 2)of(o0,d) <0,
the complerent of the one encountered in the symmetric-phase calculation.

In order to analyze the situation on finite lattices, we write the roots of the self-
consistent Eq. (8),

o= o+ (N + 2N (N, d, ap)]

\/[a+ W + 2)AoZ(N, d,ap)]" - ijf’fi

In this case if [a + (N + 2)Aof (N, d, ap)] is positive both signs for the square root
give a negative ap and must be discarded. Therefore, the result only applies if

+ (N + 2)Aa(N, d, ap) < 0.
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Besides, in order that the argument of the square root be non-negative, we must also

" have

N+2)A

e+ (W -+ 2)A02(N, 4, o:R)] i

Whenever these conditions are satisfied, one has two possible values for ag, neither
one of which can be zero on finite lattices,

—[a+ W + 272N, d, ap)

2 2N +2)2

+\/[a + (N +2)X02(N, d, an)| N4

and

— [a+ W + 2202V, d, am)]

SUEDLY

2 (10)

—\/ e+ (W + 2)A0(N, 4, aR)]2 -
We can see now that in the continuum limit the first possibility approaches the finite,
non-zero result in Eq. (9), while the second possibility approaches zero. Therefore, we
must conclude that the first possibility represents the mass of the A** field component.
The interpretation of the second possibility is more delicate. Since it has the expected
qualitative behavior for the mass of the Goldstone bosons in the continutm limit, it
is tempting to interpret it as the mass parameter for these bosons on the finite lattice,
but since it comes out of the calculation of the massive mode, while the calculation of
the massless modes was inconclusive for finite lattices, this interpretation cannot be
correct. The alternative interpretation is that this second solution corresponds to the
unstable symmetric solution which exists even in the broken-symmetric phase. This
corresponds, classically, to the unstable situation where the fields are at the local
maximum of the potential at g = 0.

V. CONCLUSIONS

In the process of developing perturbation theory on a finite Euclidean lattice, we
have discovered that the emergence of divergences in the continuum limit is closely
related to the discontinuous character of the dominant field configurations in the
functional integral®>. This establishes a clear distinction between true divergences in
the theory, such as the divergence of the expectation value of the potential part of
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the action, and artifacts of the perturbative expaflsion, which are not truly relevant
for the definition of the theory.

We have seen that in the Euclidean perturbative formalism one must take the
stability of the ensembles involved carefully into consideration, and that the results
of the perturbative calculations of the propagators of the models improve greatly
by the imposition of the self-consistence condition ap = an. The zero-modes of the
models play then a very important role in the mechanism of the SO{N) — SO(N ~1)
symmetry breakdown. In particular the singular behavior of the quantity o2 = (@?)
is important for the analysis of the phase transitions on the lattice.

For a phase transition to be possible it is necessary that o2 be finite even for ag=0.
The fact that this is not possible on finite lattices, but only in the continuum limit,
is related to the well-known fact that there is no phase transition on finite periodic
lattices. It is also interesting to note that the fact that ol is never finite for d = 1
and d == 2 is related in a similar way to another well-known fact, namely that there
can be no phase transition in these dimensions.

Perturbative calculations performed on finite lattices may be very useful as tools
for the confirmation and control of computer simulations. They may also be useful to
extend the results of these simulations. For example, the A"-dependence encountered
in the results seems to be either exact or a very good approximation, a fact also
confirmed by mean-field calculations®. Therefore, simulations performed with one
symmetry group may give relevant information for all symmetry groups.

In the calculations presented here we have shown that the propagators are finite
to order one-loop, and it would be interesting to try the corresponding two-loop
calculations, which could be important, for example, for the determination of the
critical exponents of the transitions. In particular, improvements on the detailed
knowledge of ar on finite lattices would give us further insight into the mechanism
of the approach to the continuum, and of the nature of the phase transition. These
calculations, which are considerably more complex than the ones presented here, are
in progress.

It would be very interesting to compare some of the perturbative results presented
here with correspounding non-perturbative results obtained from precise Monte Carlo
simulations of the models. This would determine, in a quantitative way, how well
perturbation theory works in these models, and may give us hints about the circum-
stances under which we may trust the perturbative results. In particular it would be
interesting to examine the slopes of the constant-ap curves near the e-axis, which are
important because they can guide us to the understanding of the possible continuum-
limit flows of the theory. Also, one may be able to clarify the interpretation of the

result in Eq. (10).
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The few preliminary simulations which were tried so far were qualitatively consis-
tent with the results presented here, but lacked sufficient statistics and fast enough
convergence to thermal equilibrium to allow for precise comparison. In particular, it
turns out that it is quite difficult to run precise Monte Carlo simulations near the
(Gaussian point, due to the shallowness of the potential there, which causes very slow
relaxation of the initial configuration. Further work on the technical issues involved,
aiming at better simulations, is in progress.
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APPENDIX: FOURIER TRANSFORMS

We discuss here the issue of transformation to momentum space for a finite lattice
with periodic boundary conditions. In the continuum, the appropriate mode functions
for transformation to momentum space in a finite cubic box are the usual complex
phases,

2k - 2mkyxy
— et )

fr(a) = exp(:
where p(k) = 2x (ky,..., k) /L, and &, = 0,%1,£2,£3,... with v = 1,...,d labels
the discrete modes of the Laplacian. They satisfy the orthonormality and complete-
ness conditions

" " dea I =19 5
fo xlfu a fp (o) for(z) = L 8xas - - Orgss
) _Z: o —Z F(z) fola') = L84z, '),

With the use of these mode functions, the expression for the mode-transformed con-
tinuum free-field Green’s function in a box is

G(p) = (8:(p)d:p)) .

21:,2_{_:,.-‘,-‘,‘2’
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where the discrete squared momenta are given in terms of the modes by

p?(k) = (2%)2 (B +...+#k).

Note that this Green’s function has the same form as the infinite-space propagator,
the only difference being that the continuous-valued momenta are exchanged for an

infinite but discrete set. . .
On the lattice, the eigenfunctions of the finite-differenced Laplacian are given by

2k 2mkang
N, —_
fp(;c)—exp(z N + ...+ N ,

where p(k) is the same as before, z(n) = a (n1,...,74) and the integers may b.e chosen
to have values in the finite sets n, =1,...,N, and k, = 1,..., N. The lattice mode
functions satisfy the orthonormality and completeness conditions

S@) (@) = N4k - Srai
1
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The momentum-space transformation for the field, and its inverse, are written as

~ 1 e N

éi(p) = ﬁzfp (z) dil=),
nd .

¢i($)=zf,ﬂv($) ¢5£(P)1

where the sums always consist of N? terms, as denoted symbolically by the super-

scripts.  On the lattice, p? are not the exact eigenvalues of the finite-differenced

Laplacian. Instead, the eigenvalues are given by p?/a® where

wk
deefl) )

For large N, all the lattice quantities converge to the corresponding continuum quan-
s . El .
tities. For the transformed field ¢;(p) the momentum-space lattice Green’s function

is a function of p?/a? rather than p?,
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Gn(p) = (61(p)dilp)) = @ T

Note that this Green's function has the same form as the Green’s function in a box
given above, but with the infinite set of discrete momenta exchanged for a finite set
of corresponding lattice quantities.
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