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Abstract

A pseudoclassical model to describe a Weyl particle is proposed. Its canonig?]
quantization leads to the massless Dirac equation and to the Weyl condition
for the wave function. In spite of the classical theory is not Lorentz covariant
the corresponding quantum theory is. That can be treated as an anomaly,

which restore a symmetry broken on the classical level.
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In recent years numerous classical models of relativistic particles and superparticles have

-been discussed intensively in different contexts. First, the interest in such models was

initiated by the close relationship with problems in string theory and gravity, but now it
is clear that it is an important question jtself whether there exist classical models for any
relativistic particle whose quantization reproduces, in a sense, the corresponding field theory
or one patticle sector of the corresponding quantum field theory. In this paper we propose
a pseudoclassical model, whose canonical quantization reproduces the quantum theory of
Weyl particles. The story of the question is the foll?wing. As known, first, a pseudoclassical
action of spin one half relativistic particle was pro;}-osed by Berezin and Marinov [t} and just
after that was discussed and investigated in papets [2-6]. The action has the form

Si= [ [k @ — i — S — ity = (b - )| dr M
where z#, e are even and ¥*, y are odd variables, dependent on a parameter 7 € f0,1, p=
0,3, N = diag(l — 1 —1 — 1). Because of the reparametrization invariance of the action,
the Hamiltonian of the model is equal to zero on the constraints surface. In the papers
{7-10] devoted to the quantization of the model, they tried to avoid this difficulty, using the
s0 c-alled Dirac method of quantization of theories with first-class constraints [14], treating
the first-class constraints in the sense of restrictions on state vectors. Unfortunately, in
general case, this scheme of quantization creates many questions, e.g. with Hilbert space
construction, what is Schrédinger equation and so on. A consistent, but more complicated
technically way is to work in the physical sector, namely, first, on the classical level, to impose
gauge conditions to all first class-constraints to reduce the theory fo one with second-class
constraints only, and then quantize by means of the Dirac brackets {we will call such a
method as canonical quantization). First canonical quantization for a relativistic spin one
half particle was done in {12]. The quantum mechanics constructed there allowes one the
fimit mm = 0 and as a result one gets the quantum theory of massless particle [13], which is

described by the Dirac equa,tiou"'with m=0,
Py =0, Pu=10,, " 'Tu]+ = 27" . (2)
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It turns out that the variable ¥® can be omitted from the action (1} at m = 0. The
quantization of such a modified action reproduces the physical sector of the limit m = 0 of
the massive quantum tnechanics. Unfortunately, such a way of quantization gives a quantum
theory, discribing massless spin oue half particle with the all possible values of helicity (right
and left neutrinos). As it is known, the right (left) neutrino is described by four-spinor, which

obeys, besides the Dirac equation (2}, the Weyl condition as well,
(75‘“) B(x)=0, e=1(-1), ¥ =ir"r"v*. (3)

There were several attempts to modify the action (1) so that in course of quantization one
can get a quantum mechanics with wave functions obeing both equations (2) and (3) at the

same time. So, in the work [10] they modified the action (1) at m = 0 to the following form

5= [ [ (4 4 01Qe — i) — it n (A )] dr @

where g, are Lagrange multipliers and A = ier i /3, QF = P, . The
theory has additional first-class constraints. Quantization by means of the Dirac method in
the realization 1* = i/2y* gives both equations (2) and (3} as restrictions on states vectors.
As we mentioned before, this way of quantization is not well grunded jet. Moreover, attempts
to quantize this model canonically fail, since as soon as one chooses any gauge condition
linear in 1, the function A vanishes and only Dirac equations remains after quantization.

Another possibility was discussed in [16]. They considered the theory with the action
t 2 2.
53 = j {_l [:i:“ _ i(?‘b“ — ﬂf""“l.buu’)plbc))(] —_— ”L,u,}i)u} dr . (5)
0 2e 3
A formal quantization of the theory following the Dirac method leads to the equation
v (v — o) (2} = 0

for state vectors, which is not equivalent to the both equations (2), (3). The canonical
quantization gives Dirac equation {2) bui without any additional restrictions for helicity.
That is in the agreement with the fact that classically actions (5) and (1) at m = 0 are

equivalent [16],

In this paper we propose the following pseudoclassical acction for the Weyl particle
1 1. . io T
S = fa [—-ﬂ:r" — iy - g (E"'"“n,,t,b,,g[)‘- + —2#71”)} — i p” HdT (6)

where ¢ is an even variable, « is an even constant and n* an external given four vector, wich
we select in the form n# = (1, 0, 0, 0). Due to the existence of this vector the action (6)
is not Lorentz covariant (the theory is formulated in an given reference frame), but, as we
will see further, the corresponding quanturm mechanics is Lorentz covariant. The are three

types of gauge transformations under which the action (6) is invariant: reparametrizations
ot = 4, b= (k) B= (o) . 8% =9, Bx= e (xE)
’ dr ’ dr ’ ! dr ’
with an even parameter £{r), supertransformation

, . . I
fzH = iPPe, be=1ixe, bg=0, dx=¢, "= 2—2"6,
3
9 “
2 =& — iy — gt — E%n—,
with an odd parameter ¢(r), and additional (in comparasion with the action (1)) gauge

transformations |

sat = (e“”“n,,y’)pgbc + %?n“) K, 8e=0, Sg=k, bx=0, 69" = ezt

with an even parameter (7). The equations of motion have the form

&5 d [l u} &S 1, &8 1 (” - tor y)
—_—— |- = —_— e = —_— Vi v — = 0 ? ?
bz, dr [e 0. Be et 0, &g e T bobe + 2" @
55 i, o &S o 1

= - = B —1 —— 2 Byps » — 0 .
ox ez.ul'b 0, n 2i E,ZP (ig°"x + 2g¢™*n ¥.)

Going over to the hamiltonian formulation, we introduce the canonical momenta:

ar 1 oL

Po =g = o P =g =0 ®)
L AL . _ 9L _

Pe=gr =0 memgp T e B0

It follows from (8) that there exist primary constraints $0} =0, o =(P,, P, Py, mu+ith,).
We construct the Hamiltonian # M according to the standard procedure (we are using the

notations of the book [12]), H™) = H + Aaéy, where
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H= —%pz +ipa*x+g (f"""‘punuxbpubc + %pm“) : (9)
From the conditions of the conservation of the primary constraints in time, (1) = 1, we find
secondary constraints ®{% = 0, ) = (p2 s Dal® , €Vt + %”-ppn”) , where §* =
if2(7* — ih*) = P +i/2(m* + i3p"), and determine X, which correspond to the primary con-
straints m, +11), = 0. Thus, the Hamiltonian H appears o be proportional to the constraints
and vanishes on the constraints surface. No more secondary constraints arise from the Dirac
procedure. Primary constraints P. , P, , P, and all the secondary ones are firt-class. We
impaose the following gauge conditions ¢ = 0, $F = (x L g, 2" =L, et 1;50) ,
where { = —sign pg. (The gauge xo — {7 = 0 was first proposed in, papers [12] as a conju-
gated gauge condition to the constraint p? = m? in the case of scalar and spining particles,
In constrast with the gauge zo = 7, which together with the continuous reparametrization
symmetry breaks the time reflection symmetry and therefore fixes the variables , the former
gauge breaks only the continuous symmetry, so that the variable { remains in the theory to
describe states of particles ¢ = +1 and states of antiparticles ¢ = —1. Namely this circum-
stance allowed one to get Klein-Gordon and Dirac equations as Schrédinger ones in course of
the canonical quantization. To break the supergauge symmetry the gauge condiction $° == 0
was used in {12]. In [14] the general class of gauge conditions of the form ay? + 8¢° = 0 was
investigaled in case of D—dimensional spining particle). To go over to a time-independent
set of constraints we introduce the variable z, =i = zo — {7, instead of o without changing
the rest of the variables. That is a canonical transformation in the space of all variables
with the generating function W = xoply + 7 |ph| + Wo, where Wy is the generating {unction
of the identity transformation with respect to all variables except o, po. The transformed
Hamiltonian HY is of the form HY = H) 4 aW/dr = H + {®} , where {®) are terms

proportional to the constraints and H is the physical Hamiltonian,
H=w=[pl, p=(p) . (10)

One can present all the constraints of the theory (including the gauge conditions), after the

canonical transformations, in the following equivalent form: K =0, ¢ =0, T =10,
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I{.=( y 9, e"w—l, £, ’J’Uv Px, P_.,, P, 1r0) '

b= (0", mtity) , T = Mpyttyt — Do
(We are using the following notations a** = It{(p)a’, a' = p;ai IE{p) = & —w ?pip; .)
The both sets of constraints K and ¢ are of second-class, only T’ are now first-class con-
straints. The set K has the so called special form {i2]; in this case if we eliminate the
variables x, g, e, z', %0, Py, Py, P., 7 from the consideration, using ilese constraints,
the Dirac brackets for the rest of variables with respect fo all second-class constraints (K, ¢)
reduce to ones with respect to the constraints ¢ only. Thus, one can consider the variables
2t pi, €, I/)", P, and ‘two sets of constraints, second-class one ¢ and first-class one T

only. Nonzero Dirac brackets between all the variables have the form

b =80 {250 = o [0 (1)
{xi’wﬂ}uw) _ _1/):‘2?;‘ , {d,ij.’ t!)jl}D(é) _ “";_;“i‘ () .

Thus, on this stage we have a theory with only one first-class constraint 7. This constraint is
quadratic in the fermionic variables. On the one hand, that circumstance makes it difficult to
impose a conjugated gauge condition, on the other hand, imposing these constraints on states
vectors does not creates problems with Hilbert space construction since the corresponding
operator of constraint has a discrete specirum. Thus, we suppose to treat only the constraint
T in sense of the Dirac method. Namely, commutation relations between the operators
P, 7, which are related to the corresponding classical variables, we calculate by

-1
T,

means of Dirac brackets {11), so that the nonzero commutators are

[#%.5] =85, [a%,47] =—o72 [g*, ), (12)

[i;,,j,n]_ _ #i’f”;ﬁj , [&:’Lvib"fl]*- - %H; () .

We assume also the operator ¢ to have the eigenvalues ( = 1 by analogy with the classical
theory, so that (2 = 1. One can construct the realization of the algebra (12) and operator

equation for ¢ in the Hilbert space R, whose elements f € R are four-component columns,

£




Ji(x)
fa(x)

f=

so that fi{x} and fy(x} are two components columns. We seck all the operators in the

block-diagonal form, namely

s ~ . i i 1 ik oA . 1 N
(=", fe=—iaI, s =21+ ﬁe”‘p,-ﬂ", ub”‘:-iﬂi(p)ﬁk, (13)

where Iis 4 x 4 unit matrix, ¥ = diag(e, o), and o¢* are Pauli matrices. The operator

T, which corresponds to the first-class constraint T, has the form in the realization 7' =

7o' PEF + a. Physical state vectors have to obey the condition »
Tf=0 (14)

and Schrodinger equation (iB/BT - 1}) f = 0, which being written in term of the physical

time z° = {7 (see [12]), has the form
(i%mf&)f=0. (15)

The quantum mechanics constructed appears to be equivalent to the theory of Weyl particle,
namely it is connected with the latter by the unitary Foldy-Wouthuysen transformation {15].

Doing this transformation

_w+ap
w2

we obtain from the equation {14) the Weyl condition (3) and from the equation (15) we obtain

f=uv, U Ui =1,

the Dirac equation (2). Thus, the action {6) with @ = 1 describes right and with o = —1
left neutrino. In spite of the classical action {6} is not Lorentz covariant, the corresponding
quantum theory is explicitly Lorentz covariant since it coincides with the Dirac-Weyl theory
of a massless spin one half particle in the Foldy-Wouthuysen representation. Moreover, if we
take Poincare generators, which correspond to the theories with the covariant actions (4) or

{5), then their action on the state vector of the quautum mechanics in question reproduces

the transformation f)ropert;es of the Dirac field {14]. Besides, they commute with the first-
class constraint T, that means that the Weyl condition is Lorentz-invariant. In classical
theory the constraint surface is not Lorent.z-covalriant. We interprete this situation as the
presence of an anomaly in the quantum mechanics. The presence of anomalies in quantum
mechanics with gauge symmetries (one-dimensional gauge field theory) was remarked by
some authors [17). However, usualy the anomalies either break a classical symmetry or
deform a classical algebra of symmetry [10]. The thodel uader consideration is an example
when anomalies play “positive” role, they restore t!he symmetry broken in classical theory.
In fact, one can say that the classical theory has anomaly.
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