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Abstract

A new pseudoclassical model to describe a Weyl particle is proposed. Differ-
ent ways of its guantization are presented. All they lead to the theory of Weyl
particle, namely the massless Dirac equation and the Weyl condition are re-
produced. In contrast with a model discussed formerly, which admits onty the
Pirac quantization without gauge fixing, this one admits also a quasi-canonical

quantization, with fixation of almost all gauge freedom on the classical level.

Typeset using REVTEX

In recent years numerous classical models of relativistic particles and superparticles have
been discussed intensively in different contexts. First, the interest in such models wasr
initiated by the close relationship with problems in string theory and gravity, but now it
is clear that it is an important problem itself whether there exist classical model for any
relativistic particie whose quantization reproduces, in a sense, the corresponding field theory,
or one particle sector in the corresponding quantum field theory. In this paper we propose
a new pseudoclassical model, whose gquantization reproduces the quantum theory of Weyl
particles. The story of the question is the following. As known, first, a pseudoclassical action
of spin one half relativistic part;cle was proposed by Berezin and Marinov [1] and just after

that was discussed and investigated in papers [2-6]. The action has the form
o 1 1. . 2 € o B 5 . i H
5= [) [—% (2% — iy ) — 3™ - imp®y —1 (1})“1;':!‘ - gbﬁybs)} dr, ey

where ©#, e are even and ¥, y are odd variables, dependent on a parameter 7 € [0,1}, g =
0,3, 7. = diag(1 — 1 — 1 — 1). Because of the reparametrization invariance of the action,
the Hamiltonian of the model is equal to zero on the constraints surface. In the papers
[7-10] devoted to the quantization of the model, they tried to avoid this difficulty, using
the so called Dirac method of quantization of theories with first-class constraints [11}. In
this method one treats the first-class constraints in the sense of restrictions on state vectors.
Unfortunately, in general case, this scheme of quantization creates many questions, e.g. with
Hilbert space construction, what is Schrédinger equation and so on. A consistent, but more
complicated technically way is to work in the physical sector, namely, first, on the classical
level, to impose gauge conditions to all first class-constraints to reduce the theory to one
with second-class conséraints only, and then quantize by means of the Dirac brackets {we will
call such 2 method as canonical quantization). First canonical quantization for a relativistic
spin one half particle was done in [12}. The quantum mechanics constructed there admits
the limit m = 0. As a result one gets the quantum theory of massless particle, which is
described by the Dirac equation with m =0, but without any additional restrictions on the

four-spinor ¥{z), see for example {13,14],




By U(z)=0, [y Y = (2)

It turns out that t.he variable $° can be omitted from the action {1) at m = 0. The
quantization of such a medified action reproduces the physical sectar in the limit m = 0 of
the massive quantum mechanics. Unfortunately, such a quantum theory, describes massless
spin one half particle with the all possible values of helicity (right and left neutrinos). As
it is known, the right {left} neutrino is described by a four-spinor,which obeys, besides the

Dirac equation (2), the Weyl condition as well,
(° ~a)U(=) =0, a=1(=1), +°=ir"'y. (3)

There were several attempts to modify the action (1} at m = 0 s that in course of quan-
tization one can get a quantum mechanics with wave functions obeying both equations (2)
and (3} at the same time. So, in the work [10] they proposed the following action (we are

using our notations for this action),
1 L ; 2 ., 7 a
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where g, ,a = 1,2 are Lagrange multipliers, A = bbb 3, QF = e,
Quantization by means of the Dirac method gives both equations (2) and (3} as restric-
tions on states vectors. Namely, the theory has, in particular, second class-constraints
Py +ith, = 0, where P, are momenta, conjugated to *, and first-class constraints 72 = 0,
‘n';tu’J“ =0, m,Q* =0, A — af2 = 0, where m, are momenta, conjugated to z#. Calculating
the Dirac brackets with respect to the secand class constraints enly, one can find in the course
of quantization the following realization for essential variables #, = —i8, , #* = %‘y“ , in
the x — representation. Applying the first-class constraints operators to the state vector,

according to Dirac, one gets only two independent equations
.o ;o
bt U{(z) = 0, (A - 5) W) =0,

which are just equations (2) and (3). As we mentioned before, this way of quantization

is not well grounded. Moreover, attempts to quantize this action canonically fail, since as
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soon as one chooses any gauge condition linear in 1, the combination A vanishes and only
Dirac equation remains after quantization. Another possibility was discussed in [15). They

considered the theory with the action

s=] 1 { L [5:“ (g — ﬁ‘ie#"mf,,%%)xr - iwf;“} dr . (5)
0 2e 3 E
A formal quantization of the theory following the Dirac method leads to the equation
W0u7* (7" — @) B{x} = O for state vectors, which is not equivalent to the both equations
(2}, (3). The canonical quantization gives Dirac equation (2), but without any additional
restrictions for helicity. That is in the agreement with the fact that classically actions (5)
and (1) are equivalent at m = 0 [15].

In this paper we propose 2 new pseudoclassical action to the describe the Weyl particle
which is a covariant generalization of an action [16). It admits both quasi-canonical quanii-
zation {we are fixing gauge freedom which corresponds to two types of gauge transformations
of existing three ones, see bellow) and the Dirac quantization. Both of them lead to the

theory of Weyl particle. The new action has the form

ol ; 2 .
5= [—— (8- i — et + 20) - z'zmb“J dr | )
0 2e 2
where z#, e , ¢*, x have the same meaning as in (1), the variables b* form an even
four-vector, and « is an even constant.

There are three types of gauge transformations under which the action (6) is invariant:

reparametrization
bk = 74 | Se= i(eg) , 6b* = i(bﬂg} , PR =g, dx = 4 (x€) » {7)
dr dr dr
with an even parameter ¢(+); supertransformation
S = ipte, Se=iye, BB =0, Jwﬂzggz“e, Sy =¢,
2 o= gf i!rbﬂx — EMWJ‘TbV"bD.(}b( + ?_;bl‘ R {8)

with an odd parameter e(r); and an additional (in comparasion with the action (1)) gauge

transformation

b ]
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5,,11!);1 — %C“”“byzp'l,b<ﬂ , JX =0, . (9)

with an even parameter «(7). The equations of motion have the form

iS _ d i s 1 88 1, ia

T = ] =0 g =0 = (e = o) <0,
58 P

-5_? = ;—zpi,b“ = s W = 21@[)# - E‘Z'D (zg#p)( +2£upuqb',1{,)() =0. (10)

Going over to the hamiltonian formulation, we introduce the canonical momenta:

_aL 1 8L
i
&.L o.L aL
P = = = r‘ = —7 _ ——— =
Sl > 0, P, o W, B, B 0 {11)
It follows from {11) that there exist primary constraints
oM =p, o"=p, 8M=P, +iyp,, o) =P, . (12)

We construct the total Hamiltonian #() according to the standard procedure {we are using

the notations of the book [12]), H® = H + 1,1 | and get for the H:
H = —§n2 + ity — (cwpc'rr'“i,[)’]gb‘ + %ﬂ'y) b . {13}

From the conditions of the conservation of the primary constraints in time r, ®() =

{fb(‘), H(”} = 0, we find secondary constraints
o =at, o = w0 = T, = cupm Y +izm, (14)

and determine A, which correspond to the primary constraint ‘I?;(,l]. Thus, the Hamilto-
nian H appears to be proportional to the constraints, as one could expect in the case
of a reparametrization invariant theory. No more secondary constraints arise from the
Dirac procedure, and the lagrangian multipliers, corresponding to the primary constraints
@5" , ‘I‘gl) ,‘IJ,(,U, remain undetermined. One can go over from the initial set of constraints
The new

{20 8} to the equivalent one (1) |3}, where @) = @@ ok SO

set of constraints can be explicitly divided in a set of the first-class constraints, which is
(@i]}, lel’{f.(z)) and in a set of second-class constraints, '13;(31). Thus, we are dealing with a
theory with first-class constraints. Our goal is to guantize this theory. First we will try
to impose as much as possible supplementary gauge conditions to perform caneonical quan-
tization. It turns out to be possible to impose supplementary gauge conditions to all the
first-class constraints, excluding the constraint 3? that corresponds to a fixation of gauge
freedom which corresponds to two type gauge transformation (7) and (8). As a result we will
have only a set of first-class constraints, which is reduction of fI!;(f] to the rest of constraints.
These constraints we suppose to use to specify the physical states. All other constraints will
be of second-class and will be used to form Dirac brackets for canonical quantization. Thus,

let us impose the gauge conditions ®% = (), where
@f:e-{-(ﬂ'&l.} (I'z?::)(: q’aap‘—"b.ur ‘I’f=Io—CT, @?=¢°, (15)

where { = —sign my. (The gauge zo— {7 = 0 was first proposed in papers [12] as a conjugated
gauge condition to the constraint 72 = m? in the case of scalar and spinning particles.
In contrast with the gauge zg = 7, which together with the continuous reparametrization
symmetry breaks the time reflection symmetry and therefore fixes the variables (, the former
gauge breaks only the continuous symmetry, so that the variable ¢ remains in the theary
to describe states of particles { = +1 and states of antiparticles { = —1. Namely this
circumstance allowed one to get Klein-Gordon and Dirac equations as Schrodinger ones in
course of the canonical quantization). The requirement of consistency of the constraint
@C, $Y = 0, leads to the determination of the lagrangian multipliers, which correspond to
the primary constraints 3", @gl) and @3".

To go over to a time-independent set of constraints we introduce the variable =g, 75 =
2o — (7, instead of zg, without changing the rest of the variables. That is 2 canonical trans-
formation in the space of all variables with the generating function W = zonj + 7 |mg] + W,
where W, is the generating function of the identity transformation with respect to all

. i
variables except zo and mp. The transformed Hamiltonian HY is of the form HW =
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HW 4+ oW/ar = H + {®} , where {®} are terms proportional to the constraints and H is

the physical Hamiltonian,
H=w=|r|, m=(7), k=1,2,3. (16)

One can present all the constraints of the theory (including the gauge conditions), after

the canonical transformations, in the following equivalent form: K =0, ¢ =0, T =0,

K=(e—w', P, x, B, ¥, B,, @, Iml-w, ¥°, P},

b= (", Ptign) . To= cumptiyit — %{w , Tp = ~Cwegp i + 522,”: . an

(We are using the notations ¢t = M¥{m)ai, o' = mat, T¥(x)} = & — w=?mm).

Both sets of constraints /' and ¢ are of second-class, only T first-class constraints. The
set K hashthe 50 called special form [12]. In this case if we climinate the ::ariables
e, P, x, By, b*, F,, 2o, Imgl, ¥° and P using the above constraints, the Dirac brackets
for the rest of variahles with respect to all second-class constraints (K, @) reduce to ones with
respect to the constrainbs ¢ only. Thus, one can only consider the variables z°, n;, ¢, $F, P

and two sets of constraints, secand-class one ¢ and first-class one T. Nonzero Dirac brackets

between all the variables have the form:

{mk’wj}D(é) = 5f s {mk’mj}p(d,) = ﬁ [d)kJ..‘wjj.]_ ,

kL ;
kopdi _ Y EL il _ gk
{# ) = (P, = 3 ) (18)

Thus, on this stage we have a theory with only first-class constraints 7. These constraints are
quadratic in the fermionic variables. On the one hand, that circumstance makes it difficult to
impose a conjugated gauge condition, on the other hand, imposing these constraints on states
vectors does not create problems with Hilbert space construction since the corresponding
operators of the constraints have discrete spectra. Thus, we suppose to treat only the
constraints T in sense of the Dirac method. Namely, commutation relations between the
operators &%, #y, z,f)"‘, which are related to the corresponding classical variables, we calculate

by means of Dirac brackets (18), so that the nonzero commutators are

7

R e 1
'[ik, ‘U‘;jl]_ = _i%ﬁ ’ [J;kl,,’ajl]_'- = %Hf (ﬁ') . (19}

We assume also the operator ¢ to have the eigenvalues { = +1 by analogy with the classical
theory, so that {2 = 1. One can construct the realization of the algebra (19), above mentioned
operator equation for ¢ and equations of constraints 3" = 0, P + i = 0in 2 Hilbert space

R, whose elements f € R are four-component columns depending on x,

¢ filx) ,
fa(x)

so that fi(x) and fa(x} are two components columns. Such a realization can be found in a

similar way to one used for spinning patticle with m 3£ 0 [12]. It has the form

. 1 .. ; N “ i [T I 8
=+ W&f’w}-ﬂ , fe=F1, ¥t = §n§ ()T, (=4"= . (20)

¢ -7
where p¥ = ~i8 ; I and I are 2 x 2 and 4 x 4 unit matrices; X = diag (oy &), oF are Pauli

matrices and 7° is zeroth 4-matrix. The operators 7", which correspond to the first-class

constraints (17), have the following form in this realization

5ot - 0« P Aki’Yu ~ 0~
Physical state vectors have to obey the conditions
Tf=0. (22)

Their evolution in “time” 7 is defined by the Schrédinger equation ('Ea/ ar - ) f = 0, which
being written in terms of the physical time %= {7 (see [12]), has the form

a

556—0 sy T= (Iuvx) - (23)

(100 —v°@) f(z) =0, & =

To find a connection of the quantum mechanics constructed with the theory of Weyl

particle iet us do the unitary Foldy-Wouthuysen transformation [17], adapted to the case

m={,




S+ P
flz)=U¥(z), u=""TP g1,
(z) (z) o3 (24)

By straightlorward calculations we get

T =it = 1 (4 - 0) 20y, Ty = Ut = ,;; (+° -a) o,

ur (iﬁu - 'yod)) U =iy"8,. (25)
Thus, after the transformation {24) we get the Dirac equation (2) as a consequence of the
Schrodinger equation (23). Conditions T, ¥(z} = 0, which are cousequences of (22), can be

rewrjtten in the following form for the solutions of Dirac equation

8 (7" —a) ¥(z)=0. (26)
Let us chese @ = 1. Then it follows from (26} that "
u(z)
U{z) = ; (27)
C

where C'is a constant two-component spinor and u(z) a two-component spinor. To provide
a finite norm of the wave function (27), we have to select ' = 0. Thus, on normalized
functions W{z} the equation (26) with a = 1 is equivalent to the Weyl condition (3) for
right neutrino. We have similar situation in the case & = ~1, which corresponds to the
left neutrine. So, the action (6) with & = 1 describes the right neutrino and with o = —1
describes the left neutrino.

One can alse verify that formal Dirac’s quantization of the acticn (6), without any gauge
fixing, leads to the same resuft. In this case we have only one set of second-class constraints
q)f,”, which defines Dirac brackets and commutation relations. For essential operators and

non zeroth commutators we have
SEA . . TR - v 1 v
[""‘.prﬂ-ulf = z{xu:ﬂu}p(ggl)) = 16:: 3 ["'1[)1 ’¢u]+ =1 {¢’#1¢ }D{¢g1)) = _59'“ .

As a realization of these commutation relations one can select in the form ¢* = Ly#, &# =

1, 7, = —id, . According to Dirac, the operators of all the first-class constraints

9

being applied to the state vectors define the physical states. Using the primary first-class
constraints (I’sl‘z)ﬁ in this way, one can see that physical vectors are only functions on z. The
operators of the secondary first-class constraints 2, being applied to the state vectors,
give the equations #2¥(z} =0, #,4*¥(z) =0, T,¥(z)=0. They are equivalent to two
sets of independent equations f,y*¥(z) =0, #,{y* —a}¥(z) =0, which are just Dirac
equation (2) and the condition (26). Therefore, both ways of quantization for the action (6)

give the same result.
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