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ABSTRACT

We investigate the effect of ground state correlations due to the zero peint energy of
dipole oscillations on the elastic electron scattering and on dipole sum rules. We describe
the ground state correlations in the framework of the generator coordinate method where
the choice of the generator coordinate states is guided by the Goldhaber-Teller model of the
giant dipole resonance.

In this framework we show that the effect of the ground state correlation is only to change
the amplitude of the relative motion of the protons as a whole against the neutrons as a
whole. This effect can make a large change in the inverse energy weighted photoabsorption
cross section, as suggested by experiment, with only a small change in the form factor for
elastic electron scattering.

Since our model can be considered as a restricted RPA, the same effect should appear

qualitatively in the more sophisticated calculations.




I- INTRODUCTION

In a very interesting paper Dellafiore and Brink [1] investigate the effect of the residual
neutron-proton interaction on the moments of the photonuclear cross section and on the
elastic scattering form factor.

To give an outline of the work of reference 1 consider the p** moment of the photonuclear

cross section {1]
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where F.o is the nuclear excitation energy and D is the dipole moment operator
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In eq (2), 7 is the relative coordinate between the center of mass of the protons and the

center of mass of the neutrons
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and 74 (i) = 285 (i) is the z-component of the isotopic spin operator.

As is well-known oy and o, are given by
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In egs (4) and (5), S; and Sy are the energy weighted (EWSR) and non-energy weighted
(NEWSR) sum rules respectively.

5i can be evaluated in a model independent way, apart from the uncertainty due to the

charge-exchange forces
0’0:03'(1""5) » (6)

where ofl is the classical sum rule {Thomas-Reiche-Kuhn value}
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g is the reduced mass of the proton-neutron system

_nz_
B=74
and k is the enhancement factor
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In equation {5} Sy can be related to the proton and neutron root mean square radius
plus two-body correlations which are known to have a large effect [1]. In the case that we
approximate the ground state of the nucleus by the intrinsic state of a {non-spurious) Slater
determinant of harmenic oscillator wave functions, which is a very good approximation for

light double closed-shell nuclei, ¢_; becomes equal to
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and ag is the oscillator size parameter which is determined by the elastic electron scattering
form factor.

However the experimental data is not well reproduced by eq (9}, roughly for medium-
heavy nuclei [1,2]
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Instead the experimental data is much better reproduced if in eq (9) we replace hwy by
hwg, where hwp is the energy of the dipole resonance [1,2).

In order o reconcile the elastic electron scattering and the photoabsorption data, Del-
lafiore and Brink [1} poinis out that if |#f°) is a Slater determinant of harmonic oscillator

wave functions it is the ground state of the harmonic oscillator hamiltonian
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[ S AU TRt (11)
which can be written as {3]
H = Fom+ H. + Han

where fgpy is the hamiltonian of the center of mass motion
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where K and P are the coordinate and momentum of the center of mass, H. is the

hamiltonian of the relative motion of the protons as a whole against the neutrons as a whole
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where g is the momentum conjugate to r,
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and Han depends only on the proton-proton and neutron-neutron intrinsic degrees of
freedom.
These considerations imply that the ground state of the hamiltonian eq (11) can be

writien as
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where |¢;) and {¢Z™) are the ground state wave functions of H, and Hzy tespectively.

In this case o_; becomes
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where by is the size parameter of the harmonic oscillator hamiltonian of the relative motion

of the protons and the neutrons, eq (13}
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Eq (16) shows that o_; depends only on |¢7} the wave function of the relative motion of
protons and neutrons.
On the other hand, the elastic electron scattering form factor is
(#)
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The elastic electron scattering form factor depends essentially on Fz(g) since C{g) has
a smooth dependence on g. Since Fy{q) depends only on the distribution of the protons
relative to the center of mass of the protons, it depends only on [¢ZY). On the other
hand, o_; depeads only on the wave function of the relative motion of the profons against
the neutrons, |[¢7). In order to describe, the photoabserption data without affecting the
elastic electron scattering data Dellafiore and Brink suggest that the effect of the residual
neutron-proton interaction is to increase the dipole energy to Awp. In a collective picture,
the residual neutron-preton interaction must give a smaller average separation between the
proton and neutren center of mass. This has the effect of decreasing o without any major
change on the elastic electron scattering form factar,

To show this we replace, following reference 1, £, in eq (13) by
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leaving Hen and Hzy unchanged. This replacement only changes the wave function of
the relative motion of the protons as a whole against the neutrons as a whole and it modifies

the o_; sum rule to
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On the other hand the elastic electron scattering form factor changes to

F'(q) = Fz{q) C'(q) (22)
where
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The relationship between F'(g) and F(gq) is *
F'{q)=F(qg) e-%%ﬁ’(’li—bﬁ) , (24)

which shows that the change depends only very smoothly on g [1].

Thus Dellafiore and Brink show that by an appropriate change of the amplitude of the
zero point motion of the dipole mode they could explain the photoabsorption data and
the elastic scattering data. This change comes from the effect of ground state correlations
introduced by the residual neutron-proton interaction.

In this paper we are going to present a microscopic dynamical model for the effect sug-
gested in reference 1. Qur model is based on the generator coordinate method where the
choice of generator coordinate wave functions is guided by the Goldhaber-Teller model of
the giant dipole resonance which is known to be a good description of dipole oscillations
especially for light nuclei [4). In the framework of the model we are going to show that
the only effect of the ground state correlations is to change the amplitude of the zero point
motion of the dipole mode as suggested in reference 1.

There exists in the literature papers which use the same model of our paper to describe

the properties of the dipole resonance in light double closed shell nuclei [4,5]. However since
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for the effect proposed in reference 1, our formulation and treatment of the model differ

considerably from those papers.

harmonic oscillator hamiltonian and wave functions. However the picture of the nucleus that
they imply should have a more general validity. First the micrescopic approach used in the
description of nuclear vibrations is the RPA. As it is well known, the generator coordinate
method is equivalent to the RPA if we take as generator wave functions the family of all
Slater determinants not orthogonal to the Hartree-Fock Slater determinant and make the
small amplitude approximation [6]. The choice made inour paper can be seen as a restricted
RPA, appropriate to the description of dipole oscillations in light double closed sheit nuclei,
Another important ingredient in the argument of reference 1 is also of general validity, It
is the existence of a canonical transformation to proton and neutron intrinsic degrees of
freedom, degrees of freedom of the refative motion between protons and neutrons and center
of mass degrees of freedom.

Our paper is organized as follows: in section [I we discuss the choice of the genera.
tor wave functions appropriate to the description of the Goldhaber-Teller mode and the
properties of the collective subspace generated by this choice. To investigate the properties
of the correlated ground state we diagonalize the hamiltonian, in the small amplitude ap-
proximation, in the collective subspace. In section HI we evaluate the dipole sum rules and
the elastic electron scattering form factor paying special attention to the effects of ground

state correlations and in section IV we present cur concluding remarks.

Il - THE MICROSCOPIC GOLDHABER-TELLER MODEL

In the original paper of Goldhaber and Teller {T] they suggested that the dipole state is

a harmonic vibration of the protons as a whole relative to the neutrons as a whole. In other
words it is assumed that the equilibrium spherically symmetric proton and neutron densities
gets displaced rigidly in opposite directions. In what follows we will present a microscopic
approach to describe dipole oscillations in the framework of the generator coordinate method
where the choice of the generator wave functions is guided by the Goldhaber-Teller model
(G-T model) of the giant dipole resonance.

We discuss the choice of the generator wave functions appropriate to the description
of the G-T mode and the properties of the collective subspace selected by this choice. To
investigate the properties of the correlated ground state we diagenalize the hamiltoniar:, in

the small amplitude approximation, in the collective subspace.

II-1 The Generator Wave Function

In a microscopic description of the G-T mode we consider all the many-body wave
functions such that the protons and the neutrons are rigidly displaced from equiltbrium
in opposite directions. Besides we allow the protons and the neutrons to have a net mo-
mentum is opposite directions. A family of many-body wave functions which have these

properties can be parametrized as follows,

-

1,8 = (57814 (25)
In eq (25} # and 7 are canonical operators
ff'k: ﬁJ] =i 6kj

and they are the relative coordinate and momentumn of the protons as a whole relative to
the neuirons as a whole, as shown in egs (3) and (14). In the case of 2 N = Z puclei they

are equal to
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[#0} is a reference state and as was explained before it is a Slater determinant of harmonic
oscillator wave functions which is the ground state of the harmonic osciflator hamiltonian.

Thus, it can be written as in (15} which shows that it is the vacuum of the boson operators,

5 Lofey

b = 7 ([1;; +ip; bo) (27)
[Bh A:-} = 6;_1

bilgo) = 0 (28)

To verify that the states (25) actually describe the motion of the nucleus in the G-T
mode notice that since the operators  and 7 are one-body operators, the states |4, E)
are, by Thouless theorem, Slater determinants . Therefore its one-body denstty can be easily

caleulated,
90 = (-9
@ = o, (+§~) (29)

where po, (7) and pg, (&) are the equilibrium proton and neutron one-body densities

respectively. We can also easily show that

@AfiAaR =5 @R = -
(@RI a8 = § (6 B\Blad = -7 (30)

11

Eqs (29) and (30) show clearly that the states |@, ) describe the motion of the nucleus in

the GT mode.

The property that |¢o) is the vacuum of b allow us to rewrite the states |, ﬁ),
eq (25), in a more convenient way. Using eqs (27) we have

I 321
;;[klz

|&,8)=e (31)
where we have introduced the coherent states [Z}, defined by [8 9]
.y
|Z) ==t " |do) (32)

The coherent states have the following properties, which will be helpfut in later develop-

ments 8]
blZ) = ziZ) (33)
(712 = o (34)
[ (@) 120212y = 12 (35)
where du(Z) is given by
dup(Z) = 1] du(z)
ezl
du(2) = —— dRZ:dmZ;

II-2 The Eigenvalue Problem in the Collective Subspace

The GHW ansatz is [9]
1N = [ 1E)N2yZ) (36)
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where f(Z) is an entire function of 2+ [9]. The subspace of the Hilbert space selected by
the ansatz (36) is Lhe collective subspace and a projection operator in this collective subspace
is given by 9],
§ = [ du(Z)2)2) (37)
That § isa projection operator can be easily seen using eqs (33-35).
We could as well use an orthornormal representation for §. To do so we can write the
coherent state (32) as

2 e s (B () ()
Ti1 H2,03 \/’Tl' \/H_QI \fTEI

where the states |n;nang) are orthornormal.states given by

Iy 122 mg) (38)

|{n}} = |m nyna)
1
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Using eq (38}, the projection operator & can be written as

§ = [ du(Z2NENZI = T linhi{n)] (40)

Other useful representation is the coordinate representation

= T () e (7)o (B) mans) (1)
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where ¢, " is the harmonic oscillator wave function of order n. The states [}, which are

eigenstates of the operator J:",

P =7 (42)
are notmalized to
{FIF) =6 (F - 7" (43)

and the projection operator § can be written as
S'=jd3FE:F‘)(F| : (44)
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The transformations between the various representations considered above can be easily
obtained and the one which well be needed below is the transformation between the coherent

state representation and the coordinate representation [8]

- 5 e Q) @) ()

M0 = ¥ Gin (7)) e (B) Ty e (B
= A(Z,n) Ai(Z2,m2) A1 (Za,73) . (45)

where
1 \" {—l(zﬂ+§)+\/§%z}
= * d 46
A(Z,7) (\/Ebo) e (46)
The eigenvalue problem in the collective subspace is given by -

Sﬁs"lfn) = Enlfﬂ) 1 (47)

which using the coherent state representation, eq {36} becomes
[(2112 5. (2") 4, (2) = B, £.(2) (48)

In the small amplitude approximation (Z|H|Z Y is given by [9]

ANZY = (A2Y (Bt 2 (0 (20 + 2) +2a7z)) @
where
Bo = (dolHldo)
A = {dolbs HEF g0} — (ol Hldo) (50)
B = (dolH 53%|60) = (|8 H|d0)

When we use Hartree-Fock wave functions, the absence of linear terms in (49) is due to

its stationarity property. In our case since we use harmonic oscillator wave functions, the
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absence of linear terms is due to the fact that |¢,) and .I:I.are scalar under rotations and
b and b;" are vector operators. These properties are also responsible for the absence of
cross quadratic terms and for the independence of the coefficients of the diagonal quadratic
terms with the orientation.

Using the property, eq (33)

blZ) = z1Z) {51)
we can rewrite the equation {49) as
3 . . .
(ZIH|ZY = <Z|EU + % > (B (B2 +5) + 245 h:) |z'> (52)
=1

Therefore in the small amplitude approximation SHS is equal to
senom 13 . .
§HS=§ (E(,+ 52 (B (572 +82) +24 b;bi)) 5 (53)
i=t
The hamiltonian (53) can be diagonalized by a canonical transformation, to new boson

operators [9]

o
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B = Xbr-vh (54)

Imposing that the transformation (59) diagenalizes {53) we have.
e 3 3 soa) s
SHS=S Eu+§£—§A+ZEB‘-B,' N

where
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X+Y = 5—v (A+B) (55)

€

and X and Y aresuch that X,(X +¥) and X — Y are greater than zero
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" The equation for the correlated ground state is
Bigg) =0
Since |¢¢) is in & it can be written as

: i95) = [ du(Z) 1.2)12)

and eq (56) leads to the following equation for fo(Z)

FAZ)Y = fol Z1) fol Z2) Fo(Zs)

d
X mfo(zi) -YZ: fl(Z)=0

The solution of the equation (58) is

1

vXx

L)

fo(zi)

where the normalization of fo{Z;) was chosen such that |¢5} is normalized to one.

Using equation (59) the cotrelated ground state [¢) is

o 1 RS Dk g
19 = 535 [ du(Zre’ T E 13

Performing the integral in the complex plane in eq (60) we have
1 & XTH?

-I¢3)=ﬁﬂ = {fa)

Using eqs (27) we can write the hamiltonian (53) as

§a5=3{m-2as 2 1 Larerir)
- P T T oM, T R

where the correlated mass Mp and frequency wg are given by

E!
Mr = A-BIR
hop = VA - B?
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The hamiltonian {62), which is the hamiltonian in the collective subspace §, is analogous
to the hamiltoniar eq {20), suggested by Dellafiore and Brink, for the relative motion of the
protons and neutrons. However there is one important difference in the fact that the effect
of correlations not only changes the frequency but also the inertial mass. The change of the
inertial mass comes from the presence of exchange forms. To verify this point we can rewrite
the expressions for A and B, egs (50), using the property that |¢g) is the vacuum of the

boson operators b; as

A = bﬁg(qgom H #5|¢0) — (g0l 1)
(1]

= 263(‘9’501}33 ﬁﬁs%%) - (¢nlﬁ|¢‘o) (64)
2+ Bt .
R B
= (ol H|g0) — b3(¢0lp} H + H b} o) (65)

Therefore Mp and wg, egs (63) are equal to

fj2
M z
BT (ol o [ 70) | o)
mon = ((dal [Fan [, 7]] dodieol [pos [F1, 0]} 160)) " (66)

Using the value of the EWSR given by eq (6), Mg is easily seen to be equal to

i
= 67
Mp T 5 (67)

where ky is the enhancement factor, defined in eq (8) where the exact ground state |¢g}
is replaced by the independent particle ground state |¢o). Eq (67} shows that the effect
of the residual neutron-proton interactions is to decrease the value of the inertial mass by
(14 ko).

Since the correlated size parameter, bg, is given by

(68)

we see that its value dépends on two opposite effects. One is that the residual neutron-proton
interaction increases the value of wp with respect to wy the other is that the residual
neutron-proton interaction decreases the value of My with respect to the reduced mass, p.
Before we finish this section we would like to comment on the question of spurious center of
mass motion. The state |¢g) is non-spurious that is, is given by the product of an intrinsic
wave function and a wave function of the center of mass motion which is the ground state of
the hamiltonian (12). Since the operators © and 7 in eq (25} do not change the center of
mass wave function we see that the states in § are also non spurious. Therefore the center

of mass wave function does not have any influence on the results.

IIT - DTPOLE SUM RULES AND THE ELASTIC ELECTRCN SCATTERING

FORM FACTOR

To discuss the dipole sum rules we would like first to find the collective coordinate
representation of the correlated ground state.
Using the transformation property between the coherent state representation and the

collective coordinate representation eqs 45 and 46 we have
{766} = L(ri) L (r2} i (7s) (69)

where

Ii(rs) = ]dﬂ(z'.) ¥

{H(zvd) ez s ()

This integral can be easily evaluated following reference 8, with the result

2

1 -l;:—r"—z
Lr) = —————— " WX¥V) (71)
il Jrbo(X +Y)
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Therefore
(7145) = bo (r) | (72)
R

R
"= M = AT (¥3)

and o} is the ground state harmonic oscillator wave function.

where

The collective coordinate representation of the uncorrelated ground state is

(1) = do (z") (74)

and comparing with the expression for the correlated ground state we see that the effect of
the correlations is only to char'l'ge the size parameter of the oscillator wave function of the
relative motion or which is the same the amplitude of the dipole zero point motion.

To evaluate the dipole sum rules we would like to show first that the NEWSR and EWSR

are exhausted in the collective subspace 4], provided
Slba) = o) (75)
The energy weighted sum rule is given by
v = 3 9nllD, U7, Do) (76)

Using the property that the ground state belongs to the collective subspace &, eq (75),
and that

5,0=0 (77)

51 can be written as

Si = GbollD,1H8, Dillvo)
= 3 (B - B (1D (78)
n¥D
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where the superscript®) means that the energies and the states are given by the diagonal-
ization of the hamiltonian H in the collective subspace, 5.

In the same way using equations (75) and {77} we can show

So = (wolDPlbe) = (ol D S Dlao)
= 3 DI (79)
nEd

. Now we are ready to evaluate the dipole sum rules.

The EWSR is given by
Si = FslD, [, Blli4G) -
= SURID, 553, Dilige) (30)
= L () el [385.5)] 10

Using the expression (62) for the hamiltonian in the collective subspace we obtain

A 2 52 A 2 52
={Z ={=) — 81
51 (4) 2Mn (4) Zp(l+k0) (1)
Using eq {4} we have
Og = O'SF(I + ko) (82)

The value of S given by equation (81) is identical to the value that we obtain if we use
in eq (80) the uncorrelated ground state |¢,) instead of the correlated one [¢§).

In the case of the NEWSR. we have
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A 2z
= (2} wie

- 3(§)% @)
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fin
The above result gives for ¢_; the value

. oo of (14 ko)
c}‘_l = —— = ———
hwp fwn

(84)
which differs from the uncorrelaied value given by eq (9).

"The results shown above indicates that the effect of ground state correlations is such that
51 is unchanged whereas Sy suffers a large change. This is in agreement to the known fact

that correlations are much more important in Sy than in S {10].

To evaluate the elastic scattering form factor, eq (18), notice that eqs (15) and (60} show

that
15} = 6™ ge™) (85)
where
195) = 165)147) (56
with .
65 = s [ e FET g "

Therefore we see that, as suggested in ref 1, the correlation changes only the wave function
of the proton-nevtron relative motion. As shown in eq (72) this change amounts only to the

replacement of the uncorrelated size parameter, by, by the correlated one, bp eq (73).
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Thus the elastic scatfering form factor is giveﬁ by an expression identical to the one suggested
by Brink and Dellafiore, '
F(q) = Fz(q) C'(q)

where

My

C'q) = ($5°e™ R T7|g5")
o L

Our discussion up to know have shown that in the framework of our model the ground -
state correlations is a change of scale in the wave function of the relative motion of the
" protons and the neutrons. This change of scale is accomplished’by the action of the dilatation

operator.

To verify this point we should notice that the canonical transformation, eq {54}, is a

unitary transformation

E‘_ - e—em{x+¥)§= 3; & In{X+¥} 5. (88)

whose generator 1s the dilatation operator S'c

[
oy
1

& = L(h+s

)

Ly (e-E) (89)
k=1

Using eq (56) for the correlated ground state and the unitary transformation (88) we

]

see that the relationship between the correlated and uncorrelated ground state is

ilﬁf,) — e—iln(X+Y).§cl¢u)
$In(X+Y} - (-2
= S EER (o0)

Eq (90} is easily seen to be equal to eq (61). The easiest way is fo recognize that
%fag'?’ .;_ B and % (5:' b + b 32’) are the generators of the group Sp(l, R) and that [do)
is a lowest weight state and use the desintangle formula for this group [11].
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NUMERICAL RESULTS

In our calculations we used the Skyrme force SIII [4]. In Table I we present the genera)
properties of the dipole resonance in *Q and *°Ca. In Table Il we present the value
of o_; calculated according to our model (2nd column) compared to the experimental
value [12] (third colummn). From those data we see that the effect of correlations goes in the
right direction. Actually it overshoots the experimental value by about 10%.

In parentheses are the values of the evaluation of o_, according to the Hartree-Fock
independent particle model {first column) ard the RPA (2nd column) [12]. Those values are
very similar to the ones calculated in our paper. This indicate that the harmonic oscillator
wave functions are a véty good approximation for the Hartree-Fock wave functions and that

the effect of correlations is basically the one described in our paper.

CONCLUDING REMARKS

In our paper we have presented a dynamical mechanism for the effect suggested in
reference 1.

In the framework of the GCM we have shown that the effect of the ground state cor-
relations is only to change the amplitude of the zero point motion of the protons relative
to the neutrons. This effect makes a large change in ¢_;, with only a small change in
the elastic scattering form factor, as suggested by experiment. This change of amplitude
amounts to the replacement on the wave function of the relative motion of the uncorrelated
size parameter by, by the correlated one bp. Furthermore we have shown that the net effect
of the correlations is due to two opposite effects: one is that the residual neutron-proton
interaction increases the value of the energy of the dipole resonance with respect to the inde-

pendent particle value, the other is that it decreases the value of the dipole mass parameter

23

with respect to the reduced mass. Both the theoretical framework and the numerical results
indicate that this simple mechanism should be the main effect in the more sophisticated
calculations.

Although the subject addressed in this paper is not new, its interest has been rencwed
by the new generation of (e,e'p) data in light nuclei [13]. The (e,e'p) experiments on 2C
and ®0 have produced new data on GDR longitudinal and transverse form factors f13].
The simplicity and qualitative success of the model encourage its use to investigate the effect
of correlations on the longitudinal and transverse form factor. This has already been done in
an approach slightly different from ours [17]. Also we can assess the importance of two-body
currents (exchange currents) in the calculation of the transverse form factor. An indication of
its importance comes from the enhancemnent factor and from the new generation of medium
energy (v,N) data [14,15].

Before we finish I would Iike to point out that our model states have good angular
momentum, in particular the correlated ground state, eq {99). This comes from the property

that S isan eigenspace of the angular momentum operator, that is,
[/ 8] =0 k=1,2,3

However since f:,':’ is the 10 component of a isovector, it can be casily seen that 5 is

not an eigenspace of the isospin operator
T, S1#0  k=1,2

As a consequence [¢5) does not have a good isospin quantum number. This violation of
isospin has a purely kinematical origin, that is, comes from the ansatz eq (15) and not from

the dynamics. To restore this broken-symmetry one can use projection techniques [16].
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TABLE CAPTIONS

Table I

Table 1.

General properties of the dipole resonance. In our calculations we used the Skyrme
force SIII. The numbers in parenthesis are the experimental values. See text for

details.

Values of ¢.,. First column is the value according to the independent parti-
cle model with harmonic oscillator wave functions. Second column is the value
calculated in our model and the third column is the experimental value (ref. 12).
The values in parenthesis are the Hartree-Fock {first column) and RPA {second

column J.values {ref, 12). .
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TABLE I
ag {r?)e ko kg Mgfp
(fm) (fm) (MeV)
150) 1.76 2.71 0.33 24.5 0.75
(2.67)> (22-23)°
0Ca 1.97 3.48 0.37 20.5 0.73
(3.49)® (19-21)4

a) H.A. Bentz, Z. Naturforsch. A24 (1969), 858
b) R.F. Frosch et al, Phys. Rev. 174 {1968), 1380
¢} M.N. Thompson and J.E.E. Baglin, Phys. Lett. B25 (1967), 256

d) J. Ahrens et al, Nucl. Phys. A251 {1975), 479
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TABLE II

iy o o=
{mb) {mb) (mb)
Y 17.9 13.0 14.5
{18.1) (13.3)
*°Ca 55.9 40.0 455
(54.7) (34.2)
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