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Abstract

Using the flexibility and constructive definition of the Schwinger
bases, we developed different mapping procedures to enhance different
aspects of the dynamics and of the symmetries of an extended version
of the two-level Lipkin model. The classical iimits of the dynamics are
discussed in connection with the different mappings. Discrete Wigner
Tunctions are also calculaied.
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1 Introduction

Phase space concepts are of fundamental importance in classical mechan-
ics }1] and pervade quantum mechanies through the Weyl-Wigner formalism
[2]. In the latier case the way in which quantum operators are mapped onto
functions of pairs of classical variables while retaining all the quantum con-
tent of the original formulation was clearly established [3]. The Weyl-Wigner
mapping technique has been extensively studied and discussed for the case
of operators exhibifing continuous spectra {4] mainly because of relationship
of the mapped expressions to' their classical counterparts or classical limits.
In this connection the quantum-classical correspondence was first studied in
terms of a series of Poisson brackets envolving pairs of canonical variables by
Moyal [5] ; the quantization was studied through an analysis of the possible
link between the group of canonical transformations of classical mechanics
and the unitary group of quantum mechanics in a pioneer paper by Uhlthorn

[6]. : , .

In recent papers {7, 8] we have presented an alternate framework for
treating the Weyl-Wigner mapping in which:we can handle both continu-
ous and discrete spectra. In this framework the Schwinger unitary operator
bases [9] play an essential role as they are the building blocks for the con-
struction of a generalized mapping kernel connecting quantum operators and
functions of classical variables. The important feature in Schwinger’s de-
scription is that it provides {or a transparent and systematic treatment of
finite discrete spectra. thus allowing for the possibility of including degrees of
freedom without classical analogues. We have shown that it is still possible
to write a Weyl-Wigner transformation and to define an equivalent discrete
phase space for the associated quanium state space in such cases. To this
end it was demonstraled [7] that an operator basis can be construted which
will give directly the meshpoint value of the Weyl-Wigner transform of an
operator by just taking its trace with the corresponding element of the ba-
sis. This basis was shown to be just the double Fourier transform of the
Schwinger’s original symmetrized basis and it has been used to implement
the Weyl-Wigner transform both for a spin 1/2 system and for the standard,
continuous canonical basis. The latter case actually involves subjecting the
diserete transform to an appropriate limiting procedure. Due to its wide
applicability this approach is suitable for describing the time evolution of
physical quantities associated with quantum degrees of freedomn which may



not have classical analogues. In this connection we have given the discrete
phase space representation of the von Neumann-Liouville equation (8].

In the present paper we apply our discrete mapping technique to the study
of the quantum dynamics of a soluble.spin model as well as its classical limit.
The model consists of a slight generalization of the well known Lipkin model
{10], used many times as a testing ground for many-body approximation
techniques. Special attention is given to the role of a discrete symmetry of
the model (the parity symmettry of the standard Lipkin model) in shaping
phase space representatives as well as the classical limit. We also study the
initial value problem for some particular types of initial conditions.

In section 2 we briefly review the relevant steps of our discrete plase
space mapping procedure and collect the expressions relevant for the study
of the initial condition problem. Qur extended version of the Lipkin model
is defined in section 3. Two different realizations of the phase space mapping
are introduced in subsection 3.1 and the corresponding classical limits are
discussed in subsections 3.2 and 3.3. In subsections 3.4 and 3.5 we discuss
constants of motion and initial value problem respectively. Finally, in section
4 we preseni our. conclusions.

2 Brief Review

As has been pointed out previously {7, §}, it is possible to obtain the
mapped representatives of quantum operators O , acting on finite N-dimensi-
onal spaces, through a discrete Weyl-Wigner transformation (hereafter /i =
1 unless explicitly stated)

O(m,n) = %TTEGt(m,n)Q] S _ (1}
Here G(zm,n) is the mod N invariant operator basis {§]
S(j.¢ . i .
Goman) = $5 22 epling(j, M) - 2l 4 l)] . (2
B — 2T N . J .

-where S{(j.!} is the symmetrized. operator

_ o
S(j.0) = UN% exp(ir ). (3)

The Schwinger unitary operators U and V are defined as [9]

Udu) = ug | u) (4)
1y = exp(2 'k) 5)
.= T —
k p(2mi {
V) = ue) (6)
U | v} =| vi4s) (M)
V| ) = ve | o) (8}
e = ex (’) ﬁ- 9
k= exp(2mi=) (9)
and the two sets of eigenvectors are relaled by the Fourler coefficients
exp(2ri&
{wg | o) = _.ﬁ%__l\_f_l (10)
The phase
dlm,m N) = A"],’,\:If - m],’,V - nf,f . (1

where [V is the integral part of x with respect to N, guarantees mod N in-
variance, Using these expressions, it is straightforward to oblain the discrete
Weyl-Wigner transform of any given state. When this state is expressed in
terms of the basis {] ug)}, e

[a) =3 aw |}, ' (12)
}‘.

a simple calculation gives in facl

N oot aplnoid = TG ann) [ ada |} =

1 2., . L
= F ZQXI)[TP(TJU +nl) —img(j, LN r(7.1) 113)
2 J' I .



with

) 1 ) : i
(i, 1) = mga(p“] ﬂpEXP[—WJ(P-I' 5}] - (14)

where the index {p + !} denotes the value of the sum p+ 1 cyclicaly confined
to the adopted range of index values (e.g. pmax + 1 = Puin). Note that the
{r+ %) factor in the exponent must be treated as a phase, not as indicative
of the need of mid-point rules (see e.g. [11]) in calculating Weyl-Wigner
transforms. It should be remarked that the transforms a,,(m,n) constructed
in this way are in general complex-valued. In order to obtain real-valued
transforms the ranges of the dummy variables j,! and p should be chosen to
be symmetric about zero. Thus, for odd N, the ranges should be — %=1 <
iLhhp < -f% This choice corresponds to the usual definition of the continuous
Weyl transform (see e.g. eq.{3.8) of [7]}. In this case one has explicitly
{p+l}=p+1- NIV

P ML - (15)
1t may also be noted that the mod N phase ¢(m, n; V) plays no role in the
above evaluation of Wigner transforms in view of the restrictions imposed on
the ranges of the various interesting discrete variables. Il acquires however
a crucial role when one deals e.g. with transforms of operator products or
commutators, as recalled betow.
The discrete phase space mapped expression for the commutator of two

operators has been shown 1o read {8]

([01.0:2]) (u.0) = Z z Fimon.r.soaboediv e N)

LTS g bocd

. T .
X {exp[zﬁtbc—ad)}—exp[—:ﬁ(br—ad)]} (161
with
Oy (m, 1)05(r, &)

Fim.n,rsabediue,N)= exp[irrd)[m boo.d: N

N

X exp{?w% [a(u — m) + blv —n) + elr —m) + d{s — n)]} (171

and

o

@{a,b,c,d;N):;¢(&+c,b+d;N). {18)

These results allow us to directly apply the mapping technique in partic-
ular to the von Neumann-Liouville time evolution equation for the density
operator. In this way we find that

.8p
% = H,) (19)
is mapped onto
?_dpug;-"]. =3 Ll v, 7,5 N)pulr.s) « (20)

where py(r, s} is the mapped expression of the density operator. which is
the discrete Wigner function associated to p and L{u,v,7,s5; N} is the phase
space discrete equivalent to the Liouville operaior L which is wrilten as

L{uv,r,s;N) = 2 Z

™A abed

h{m.n)
N1

{exp[i—;—(bc —ad)} - exé[—i%{bc — ad)]}

% expliz®{a, b, ¢,d; N)] exp{?x%;{a(u —m)+br—n)te{u—=r)+dir—s}]}.
(21)
BHere hfm.,n)} is the phase space mapped form of the Hamiitonian H.

It is evident [rom (2Q) that the time evolution is a linear process governed
by the mapped Liouville operator.’ The comnmtator of the discrete phase
space representatives of L and p is then a mere composition of sums - over
the sites which define the ‘discrete phase space ~ of elementary products
of the arrays characterizing them. Once the mapped Hamiltonian of the
physical system is given. equation {20} evolves the initial state in time and
the dynamics propagates the original form-of the initial state deusity in the
phase space in such a form as to preserve the symmetries it embodies.

Similarly,we can also have the Heisenberg time evolution equation for an
operator -

.80 (99
?'F_J—i— = —[H.O] . (-'-]



mapped in an analogous form as

; A0(u,v)
a
As a by-product of these equations we can observe that the conserved quan-

tities associated to the physical system governed by the Hamiltonian H can
be obtained by searching for the solutions of

—ZE(u,v,r,s;N)O(r,s) . (23)

Zﬁ(u,v.r, s NYO(r,s) = 0. (24)

In particular this equation is satisfied by the Wigner transform of the densi-
ties associated to each of the eigenstates of H.

3 The extended Lipkin model

We now apply the above scheme to a spin model which extends some-
what the well known Lipkin model of nuclear physics [10). The basic point
of the extension we consider here is to explore features related lo the well
known "parity” symmetry of this model both in the phase-space picture of
the quantum dynamics and in its classical limit. The Hamillonian of our ver-
ston of the Lipkin model is expressed in terms of a triplet of 51/(2) generators
{S] ¥ Sz, S;}} as

f g¢'+gn . Ge — Go ax
soSi [EnR ¢ cn iR (sloshy . (2

H =8zcosa+4Sysina+

This Hamiltonian can be diagonalized numerically within each finite S-
multiplet, which accounts for the soluble character of the associated quantum
dynamical problemn. In addition to this general "rotational” symmetry. when
o = 0 one gets a second constant of motion which can be written as the
"parity” operator o :

P = exp{ixS3) . {26)

This additional symmetry implies that the Hamiltonian matrix reduces, in
the S; representation, to two disjoini pieces involving only even and odd

~1

eigenvalues of Sy respectively (we assume integer S). It should be stressed
that this is a typically quantum feature in the sense that it involves the
discreteness of the spectrum of the action variable S; in an essential way.
The two, in general different, coupling constants g. and g, are introduced to
allow for adjusting the interaction represented by the last term independently
in each of these two subspaces. In the standard Lipkin model g, = ¢., and
although a term equivalent to the 8% term was part of the original formulation
[10], the most often considered case has also f = 0.

When both a and f are zero, a special feature of the energy spectrum
is revealed by the fact that the Hamiltonian then articommutes with the
unitary operator

5

R = exp(igsg)exp(irsg) = E [ —m)i™(=1)%" (m |, {27)
= m=-5
which corresponds to a rotation of the angular momentum quantization frame
by Euler angles {7, 7,0). As a result of this anticommutation property one
finds that from any energy eigenvectors | E;} with eigenvalue E; one can
obtain another eigenvector R | E;) which has eigenvalue —E,. The energy
spectrum is therefore symmetric about zero in this case. Note that this
property no longer holds if f # 0 andjfor o # 0. The parity symmetry is
however broken by o # 0 only.

Following the usual pratice with the Lipkin model, the Hamiltonian H
can be implemented as a many-body problem by considering 25 fermions in

two 25-fold degenerate levels and writing

25
Sﬂ: = SI :t TS.! = Za;‘i]apﬂ:] (28)
p=1
1 25 ) i .
8, = 5 Z(“p,+1“p.+l - a;).—lai’~_1) s (29)

20
where the indices £1 refer to each of the two levels. Other many-body imple-
mentations of this Hamiltonian are of course possible, e.g. using Schwinger
bosonic representation of the 51/(2) generators [12]. These implementations,
together with the fact thal the model is soluble, have often been explored
as a toy testing ground for several many-body approximation schemes. A
different use of spin models like this one has heen, on the other hand, to

8



study connections of quantum solutions to classical limits. In this context,
in particular, the standard Lipkin model is seen as rather frivial, since the
phase space of its classical limit is two-dimensional. This has led in partic-
ular to the consideration of a SI/(3) generalization of the standard Lipkin
model which has a non-integrable classical limit. We remark, however. that
at least several of the usual techniques involved in ohtaining the classical
limits explicitly pre-empt any more detailed evaluation of classical features
that may relate to symmetries like the parity symmetry of the S1/(2) model.
A very clear example of this is the use of SU/(2) (or SU(3) in the "three level”
version of the model} coherent state averages 1o derive classical limits. since
these coherent, states explicitly and inextricably mix the invariant subspaces
of H. We show next how the discrete Wigner mapping Lools reviewed in
the preceding section can be used to avoid such difficulties and keep track of
parity dependent properties all the way to the classical regime.

3.1 Discrete phase-space mappings of the quantum
dynamics

We turn next to the task of studying the phase space mapped version
H(m,n) of the quantum Hamiltonian for the extended Lipkin model. In
order to sel the phase space we choose the common eigenvectors of 82 and
5., {l 8.k} =5 < k £ S as the eigenstates | ug) of the Schwinger
unitary operator U. It order to complete the definitions of U and hence of
the quantum kinematics we choose the eigenvalues so thal

2w
U| S 4= ex])(ﬁrik) .S 0 £30)

with &N = 25 4 | being the total number of states in the basis. Note thai
this definition adopts a symmetric range for the integer & and will lierefore
lead to real Wigner transforms. as stated in section 2.

With this choice of kinematics we can represent the Lipkin Hamiltonian
in the finite phase space through the mapping

5
Sx Himn)=Tr [G'(m.n)H] = Z {uy | Glion,nH | ug) (31

k=—§

Using standard angular momentum algebra we get, after a direct calculation.

9

S x H(m,n) = mcosc + Sy(m, n)sina + %m + [*2;9" +(= 1)"*9‘2q-"°]
x C(m, S)cos(“—’i’i) (32)
where
Clm: 8} = \/(S+ mUS+m+ 1S —m}S§-—m+1), (33}
and

S(m, "}—o—N S (exp 2 N ™ i m — p——)+n]}\/¢(¢+1)—p(p+1)

ip=-5

-?ex;){ [J{m—p+ -)—.:l]}\/q{5+1]-p(]ﬁ—l) (34)

note that, due to Lhe half-integer nature of the last factor of the exponent, this
expression cannot be written in closed form like the term involving (S2 — §32),
where integer factors lead to Kronecker deltas. It is, however, easy to see that
this is a real quantity. Its numerical evaluation is straightforward for finite
N, and the limiting expression for very large N can also be easily obtained
in closed form as discussed in the next subsection and in the Appendix. The
result of the evaluation of these expressions for a sample casé'is shown in figs.
1{a) (eq.(32) with a =0) and 2{a) (eq:(34)). The discrete Wigner transform
of the ground state of the Hamiltoaian shown in fig.1(2) is'shown in fig.5(a).
Once we are given the mapped Hamiltonian, it is trivial to wnte the
Liouville operator for the extended Lipkin model ' :

Llu.v.r.s:N) = Ly(uov.r, 5, N) + La(u,o,m i N) {35)

where

10



s L
Lo(u,v,r.8N) = Z 3 M

zbedm-§mn=—35

x {exp[i%(bc —ad)] - exp[—i%(bc — ad)} exp[in®(a, b, c. d; N]

X exp{?n%{u(u —m) + be—n) +clu— 1)+ d{v — s)}} (36)
is the part corresponding to the Si-dependent term while

S 35
GuvnsM=q; ¥ 3 {EEE ymEom )

abcd=—S m.n=-5

+5i{m, n)sina} x cos(éﬂ%){exp[i%{bc —ad)) — exp{—i%(bc — ad)}}

x explin®(a, b, c.d; N)].ex_p{‘lir%[a(u —m)}+blv—n)+elu—r)+dv—s)}
(37)
describes the interaction term.

Before turning to the discussion of large N limiting situations we cansider
a_m_'alter_uate kinematical scheme which is adapted to the cleavage imposed
 by.the parity symmetry. We still use the states | 5, k) as eigenstates of Lhe
U operator, but modify the full definition of this operator (now denoted as
U,} by setting its eigenvalues as

2. .
U, | S.) = explogive) | S.4) (38)

where the correspondence between k and the integers —5 < v < S is defined
to be

Qo + S for —S<w
g

L <0
o ={ o~ M +1 forl<ve< s (39)

1

This implies that the two domains of vy correspond to eigenvalues k of 83 of
different parities. It is clear moreover that U and U, (and therefore also
V and the operator V, corresponding to U,) are unitarily related via the
transformation which amounts to a relabeling of the {| 5,k)} basis. This
procedure in fact illustrates the use of the freedom in defining the Schwinger
operators U and 'V to adapt the quantum kinematics to possible symmetries
of the problem in hand. Furthermore, implementing the general discrete
mapping procedure with U,, V,, will lead to an alternate discrete phase-space
description which is quantum- mechanically equivalent to that based on U,
V but which explicitly "unshuflles” the definite parity subspaces. Also, since
the unshuffling transformation is not smooth, in the sense that eigenvectors
of U with consecutive eigenvalues may correspond to widely separated U,
eigenvalues, one may expect and indeed finds radical changes in Lhe phase-
space pictures of dynamical objects in the two cases.

Let us consider then as an example the phase-space mapping of the parity-
symmetric Lipkin Hamiltonian H (with « = 0} in this alternate separated
parities scheme. The mapping of functions of 83 only is straightforward since
83 and U, are still commuting operators. One gets

S x [F{8a)]ulme,n) = Flk{my)) . (40)

where k(my) is the function defined in (39).

The mapping of the operators 87 — 8 = 1(S% ++ §2) involves now sums
of exponentials containing half integer factors and which therefore cannot
be reduced Lo simple, closed expressions for finite 5, but still can be easily
performed numerically, Que gets

o [L(sE 2 [
N ox [§(S+ + S))](mn) = o Z

{Z V20(2p + D) (2p + 25 + 1)(2p + 25 4 2) EXP{—U(m—P—L ) =]}
p=-5

5 Dt
+3 \/(21) = 1)(2p = 2)(2p— 25 = 2){2p— 258 - 3)exp{:;l[j(m—p+%).+n]}

p=1



+y Vep - 1) - i + 2o 25— 1) EXP{—[J (m~p+ = )+nl}

r=—8

5 .l
3 V2r(2p + 1)2p + 25)(2p - 25 — 1) exp{ ail(m—p— 21-nl}) . (41)
=1 &

A large NV limit of this expression is also easily obtained and will be discussed
in thre next subsection.

Finally, we can also map the operator S, in the separated parities schem-
This operator is essentially anti-diagonal and therefore strongly nonlocai
the U, representation. The mapping is a straightforward algebraic exercise
which gives

Apms
TrlGi(m, n)S,) = =3

1](2 + Z WelplS—ap+2]p]

p=-5 ,.,-__t_

4x: dmo = 4ri ;
X exp(wwnp - Z exp{—Wnp]\/4 [p| S ~dp2+2|pi

p=-i1

Afm-
424 1}{ X ex])[—-—n{";)—l]\/_fpl—flpz-k"S—|;u{

5.,

poe

£l

ZCXP[——”()P“I \/llpl S—dp2+6]pt-2(S+ 1))

=

6 _...L

s s{ Z f‘hP[m—ﬂ (2p— DI p|S—4p +2A5-1p])
p=-5

13

v 5 expl—w-—n(Zp—I)]\/filnl¢—4p2+6Ip|—°(S+1J} (42)
p=542

Here Ay is the real function defined as (see Appendix)
1 2ri, 1
Ay = "j-\';zj:exp[?](k + 5)] . (43)

As a practical note we mention that in order to evaluate numerically
mapped operators al] algebraic work can be saved by using directly the form
given in equation {14). The above expression will be nevertheless useful
to discuss the large N limit of the mapped S, operator in the following
subsection.

The result of the evaluation of these expressions for the same samnple case
which was taken as an illustration of the mixed parities mappings is shown
in figs. 3(a) and 4{a). The discrete Wigner transform of the ground state of
the Hamiltonian shown in fig. 3(a) is also shown in fig. 5(b).

3.2 Large N limit as classical limit

In this subsection we study the previously constructed mappings in the
large N limit interpreted as a classical limit of the spin model. The basic
procedure to be followed can be encapsulated in the formal limit

g8 S;
S--ou 1 [ s°
where the curly brackels are Lo be interpreted as Poisson brackets (For finite
S the spectra of the $;/5 are contained in the interval {—1,1) and gel denser
as § increases while /S decreases). The Hamiltonian is also scaled by §~'
so that, for g, = g, = g, the limiting proceditre gives direct]y

"] = {si.85} = ety - (44)

Hge = ¢, = g) = sgcosa + & sino + f~3 +glsd — ? . (45)

Using the Poisson brackets of the S; one can nnmedla.te]v obtain classical
equations of motion from which it follows that d ‘-" =10 -

14



We now subject our mapped expressions H{m,n} and H,(m,n} to this
same limiting procedure. Considering first the limit of H{m,n)/5, and using

51!_{130 T = {46)
and
. n
dim 2 =0, (47)

where now sz and ¢ are interpreted as continuous c-number variables with
-values in the range (—1.,1) and {—=, 7) respectively, we get

1 ' .1 .
sii-r?o §H(m,n) =s3cosa+ sl'—-q.lo Efﬁ(m,n)sm a+ ésg +g(1 —sX)cos2p .
{48)

In order to obtain.the limit of the term involving S, we use the formal
correspondence

him S, 2w I

Jim ﬁquexp[—-ﬁ*](m —p+ ;2-)} — bap (49)
which holds when this sum occurs in connection with sufliciently smooth
functions of p as is the case here (see Appendix}, to obtain

N . - .
sil-n;c g.Sl(m.n)smm = /1 — sicosesina . {50)

The resulting limit is therefore just the classical Hamiltonian M written in
terms of the canonical variables s; and ¢» which correspond to the projection
of the unit action vector § on the 3-axis and the associated azimuthal angle
respectively. The result of its numerical evaluation w1 a sample case is shown
in fig. 1(b}.

TFurning next to the U, — V), (separated parity) description. applying the
limiting procedure also to the case g. = g, = g but restricling ourselves first
to the conserved parity Hamiltonian with & = 0, we get

Hf(9e=9o=9:a=0)=.1_.¥2I61—.4y(lcrlfaz)cosﬁéu =2]e ),
) (51)

15

where ni/S — o and %T? — £ are the continuous classical variables in this
case. The resull of the numerical evaluation of this expression in a sample
case is shown in fig. 3(b). 1t should be recalled that the sign of o identifies
the parity sector in this scheme. Reference to eq. (39) also shows that m =0
belongs in fact to the sector of dimensionality S+ 1 in the finite 5 case. It is
worth remarking that one can relate H, to H "canonically” in a formal way
by a transformation associated with the generating function [13])

o) =(1=2]a e -3)., (52)
which gives
_0h
L.;—ap—l 2|0 | (53)
= T (v — 2p)[20(0) - 1}, (54)

where 8(o) is the usual step function defined so that #(0) = 0. Ii is clear
however that this is not a one to one mapping of the two phase-spaces : while
each value of s, is associated with two values of o with opposite signs, each
value of £ (nod 2% ) corresponds to two values of the azimuthal angle ¢ {mod
2x) which differ by =. This Hmitation, which in particular makes the trans-
formation of the parity non-diagonal s, operator (written as /1 — s§ cos @)
completely ambigunous, can, however. be given physical content by remarking
thal there are two distinct limiting realizations of eacl value of s. nainely
invalving Sy eigenstates of opposite parities; al the same time, In the mixed
parities (i.e., U— V) representaiion. objects of definite parity are represented
by phase-space distributions which are periodic functions of the azimuthal
angle with period 7. An example of this is the Hamiltonian H itself when
a = 0. together with the fact that its periodicity with period 7 is broken
when a # 0 (cf. fig. 2). In order to explore this complementarity of the two
phase-space descriptions somewbhat [urther one may consider also HE with
ge £ g. but still with o = 0. We get in this case (assuming odd 5)

of — _ . f b 2
Hfto =0y =1 =2 o [ +500 - 2|a |+

+ {go)Vo — 0% + gl — 8{o)]V—a — e} cos(, (55)

16



which allocates different phase-space domains to each of the now different
dynamical regimes in each of the two parity sectors. These two regimes are
on the other hand hopelessly shuﬂ]eé in the U — V representation. Here the
discrete mapping becomes staggered on account of the interaction term

1
§[(gr+5’o) + (—=1)"{(ge — g NJC{m;’S) (56)

which wildly oscillates between different levels as the classical limit is ap-
proached while still keeping the = periodicity intact when a = 0 (sec fig.
6).

We turn next to the study of the large & limit of the mapped version of
S, in the separated pariiies scheme._lThis is easy to obtain using eq. (42
the preceding subsection. lucluding the 5§71 scaling factor one gets in :.
way ’

1
ETr[G;(m. n)81] 2 28(A sy + bmms + Agmany + bmodgpln) . (57)

where the function Ay can be approximated for large 5 as (see Appendix)

3
—1)F <k<§
e T b=ws
Bi = (58)
RS- S<he
[2k 41| m B
and
i (}
T L=
1 ! 16
9;:(”)1‘;/ d.’t\/:r—a"-cos‘lmm'z{ ;
2 J0 . )
{_1)n‘_(i_’f__|ﬂ Agn|€ s

4n|

(59)
where Ji(x] is a cvlindrical Bessel function. The mapped operator is there-
fore a staggered and increasingly singular function of m and n as S jncreases.
The large 5 approximations used in deriving these analytical expressions cou-
sist in neglecting terms of the order 5! or smaller in the evaluation of the
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n—dependence and approximating sums by integrals (cf. the evaluation of
Ay in the Appendix). The result of the numerical evaluation of this expres-
sion is shown in fig. 4(b).

Since S, has vanishing diagonal matrix elements in the S; representation,

-one must have

- §
dim, E_SQ(") =0 - (60}
Since g(n) is always negative for | n |> 0 and approaches zero rather slowly,
this sum conveérges to zero also rather slowly’as S increases. The difference
between 5;(m.n) evaluated {a) numerically for a finite value of 5 and (b)
from the analytical asymptotic expression truncated at the same finite value
of § are illustrated in fig. 4.

We see therefore that when the parity symmetry is brokea by the §; term,
the mapped Hamilionian does not have a smooth limit when the classical
regime is approached. For any finite value of 5 it still contains. however,
complete information on the quantum dynamics of the model.

3.3 Discussion

We summarize in this subsection our understanding of the general picture
that emerges from the preceding analysis of the Lipkin model. The main
point to be stressed is that our mapping procedure allows for a very large
flexibility in the selection of the kinematical framework in which it is carried
out. As illustrated by the use of the mixed parities (U — V) scheme and
of the separated parities (U, — V,,) scheme, this flexibility can in particular
be explored in such a way as Lo lead to smooth mapped representatives of
the relevant dynamical variables (e.g. the Hamiltonian). Since the different
kinematical schemes are unitarily relaied, they all give equivalent descriptions
al the quantum level. The smoothness requirement is, however, more than
just a matter of convenience when one implements large NV limits as classical
limits of the quantum dvnamics. As we have shown above, useful classical
limits {or the broken parity {a # 0), g = go case in the U — V scheme can
be obtained. but not in the U, — V, scheme, since the S, term becomes
strongly nonlocal i the U, representation. Conversely, when a = 0 but
ge # go 2 smooth classical limit can be obtained in the U, — 'V, but not in
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the mixed parity, U — V scheme. In general, the (discrete) symmetries of
the dynamics seem to provide for one criterion leading to useful kinematic
schemes. Conversely, we may also note that through the use of symmetry
adapted kinematical schemes (such as the U, — V scheme in the case of
the standard form of the Lipkin model, iie. e =0, f = 0 and g, = g,)
the mapped dynamics assumes such a form that the existence of distinct,
uncoupled sectors is explicitly manifest as a partitioning of the phase-space
which holds all the way into the classical limit. In the case we studied above
these phase-space sectors are identified as o < 0 and ¢ > 0 respectively in
the U, — V,, scheme; when the U — V scheme is adopted instead, no such
partitioning survives the classical limit, and the parity symmetry manifests
itself classicaly through the more subtle property of period-halving in the
azimuthal angle . ’

3.4- Constants of motion

In order to look for the conserved quantities in the standard Lipkin model
(9. = g- =9, f = 0, a = 0) we must require, as already meuntioned, that an
equation of the type

13
Y Liw,v.r5N)O(r,s) =0 {61)

rs==5.
must be satisfied.
For the moment, however, let us study a particular family of conserved
quantities, namely those that are function of the angular momentum only.
Hence

z Llw.v,r,s:N)glr) =0 {62)

ra=-3

is the equation we have to solve, In this case, the first term in the mapped

Liouvillian, £;, being proportional to m only, gives no contribution for any -

¢(r). The second term. £;, when applied to ¢(n), gives

I3 : ‘
Z ;2_(u,v,r|s;N)q(r)_= igC(u;S).sin(fhr% lglu+ 1) —glu — D)} . (63)

raz=5
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It is then clear that any funclion depending solely on the angular momentum
which satisfies

glu+1) = qlu—-1) (64)

is a conserved quantity.

In a similar fashion one can show that for a function of the angle vari-
able only, a more entangled equation can be obtained which characterize the
corresponding associated conserved guantities, being a particular family of
solutions of the form

wis) = exp(41rz'tﬁs} , {65)

for any integer . ILis interesting to note that the double period in this kind .
solution is related Lo the second power of the operators §; and §_ appearing
in the Lipkin Hamiltonian which, by their turn, describe the excitation of
pairs of particles between the levels.

3.5 Imitial value problem

Now lel us study the time evolution equation for the standard (g, =
g0 =g, f =0, o = 0) Lipkin model. To this aim, we must have the mapped
expression of the density operator, so that we can solve

N

éam‘—‘(;‘ﬂz Z (il s, u,v) + Lafr, s, u,v)]pulr.osit) {66)

rs=-—5

once the initial Wigner function p,.(r, s;¢ = 0) is given.

The general final expression is written in terms of the mapped Hamilio-
nian defining the mapping of the Liouvillian operator and one hardly could
see the details of the time evelution. In order to clarify how the dynamics
associaled to the standard Lipkin model acts in the discrele phase space ,
we will study two limiting cases again, namely those in which the density
depends only on the angular momentum or the phase variable respectively.
In the first case we have

p=lugi | {67)

being this operator mapped onto



polm.n) =én;, {68}

that is, the density is a constant for the value 7 of the angular momentum
and is independent of the phase variable.

Introducing this expression in {66) we note again that the first contribu-
tion, coming from the mean field term. vanishes for any function depending
only on the angular momentum . The second term, associated to L, gives
then the final expression for the time evolution equation, for small time in-
terval

, v
polu, v, ) =46, + gClu; 5) sm(41rﬁ)(6u‘j_; — bu 1 AL (69)
For the case of a density associated to an angle dependent state

p=ludul (70}

it is easy to see that

olnen) = by (71)

and that the two terms in (66) contribute to the final expression. After a
direct calculation we ohtain

- . d 1 A
pult, v, 8 = 6, —2 ,Ed!ﬂ]](ra!’\_!)m exp{zrﬁ[n{u —m)+div -]}
x {m+ C{m: §)exptami< + inalfl,) - expl~dri + imol} )]} (72)
FA 1 H
which shows the spreading of the density all over the phase space as time
goes on.
4 Conclusions
We have described in detail an application of our discrete phase space

mapping technique, based on the unitary operator bases proposed by Schwin-

ger, to an extended version of the two level Lipkin model. The main point
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to be stressed is that this technique allows for considerable flexibility in its

~implementation as a direct result of the generality and strictly constructive

definition of the Schwinger bases. We made explicit use of this flexibility
for developing different mapping procedures to enhance different aspects of
the dynamics and of the symmetries of the model; the different procedures
are unitarily related in an explicit way, and lead to ‘quite different phase
space representatives, Its usefulness is particularly clear when considering
classical limits of the dynamics, as it allows for reducing the often encountered
staggered behavior of the phase space representatives of quantum objects.
It should also be stressed in this connection that the limiting procedure
which involves increasing the dimensionality of the basic state vector space
is straightforward and algebraically performed in terms of the Schwinger
bases.

As a test of these features we have explicitly evaluated for the Lipkin
model the mapped versions of several objects, including the Hamiltonian and
its associated Liouville-von Neumann dynamical equation. Discrete Wigner
functions for energy eigenstates were also calculated. The main tool involved
in implementing our procedure is the construction of the appropriate opera-
tor basis, Eq.(2), in terms of which the Weyl-Wigner transforms are simply
expressed in terms of the trace operation, Eq.{1). The numerical evaluation
of the resulting expressions is straightforward using present computational
techniques.

5 Appendix

We discuss here in some detail the evaluation of sums of the type
PR S
Zﬁexp{?.mgs,_}' I(R + 5}} =

=5

.’_\kE'

1 9 S (24

= e—— 3
541 TSI & Es (73)

with —8 < k < § in the limit of very large values of §. The Ay are obviously
real numbers. For very large S the sum over cosines can be approximated by
an integral as :

Iy
3



2 ZS:CO (2k+ D - 2 2541

i 2k do 4
2541 *"25+1 7 25+1 =« /OCOS("“) Y

J=1

where we defined the angle 9 as m7/(25 + 1) and supplied the appropriate
Jacobian. We obtain thus -

2

, “ (—ll*m k=0
Ak—'msin}Q%}l j—j= \ (75}
: _ (—1)*+1W <=1
.. Furthermore one has
g 1 1 1 4
lim Z:—_js-m - —t.] —3tz-s+ ~) = -arctgl =1 {76)
so that one has, for sufficiently smooth functions fj,
. | )
sllfgo :;;E:'sAkfk - fa, (17)

i.e., for such functions f;, Ay has a é-function behaviour. "Sufficiently”
smooth here means that f; does not vary appreciably with k [or sufficiently
many values of k away from zero and is sufficiently bounded everywlere so
as to guarantee the dominance of the contributions coming from the vicinity
of k= 0. This explains. in particular, why the é-function prescription gives
useful results when taking the classical limit of the spin model Hamiltonian
in the U — V (mixed parity) scheme. When the S, operator is mapped in
- the U, — 'V, [separated parities} scheme, one obtains contributions which are
proportional to the function Ay and are therefore strongly staggered objects.
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Figure Captions

Fig. 1- {a) Discrete transform of H for § = 15; (b} Classical limit of (a)

Fig.

Fig.
Fig.

Fig.

Fig.

in the mixed-parities (I/ — V) scheme. Parameters are o = [ = 0,
ge = g, = 2 in both cases.

2- (a) Discrete transform of Sy for 8 = 15; (b) Classical limit of {a). In
both cases the mixed-parities ({7 — V') scheme is used. Note the absence
of azimuthal period-halving for this parity non-diagonal operator.

3- Same as Fig. | but using the separated-parities {{" —~ 1’} scheme.

4. {a) Discrete transform of &) for § = 13; (b) Analytical asymptotic
form for large S evaluated at S = 15. The separated-parities ({7, — V3}
scheme is used.

5- Discrete Wigner transform of the ground state wavefunctions of the
Hamiltonian of figs. 1 and 3. {a}: mixed-parities {{/ — 1"} scheme (cf.
Fig.1): (b): separated-parities (I, — V%) scheme (cf. Fig.3).

6- Discrete transform of H for § =15, a= f = 0. g. = 0.5 and g, = 2.
{2): mixed-parities (I/ — V) scheme; (b): separated-parities (L, — 1})
scheme.

~Fig. 1
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