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Abstract

A method of microscopic description was applied to the study of time dependence
of the cluster size distribution in CdS doped Ge(); glassy matrix. It was assumed that
clusters were grown by the condensation flux of CdS particles at the cluster surface and
neglecling the evaporation flux. The rate equation for the number of CdS particles and
clusters were found to obey a complex integro-differential equation, which with the law of
matter conservation, describe the growth process. Evaluation of first order approximation

and the experimentally determined time dependence of the average radius, dilspersion and

volume were found to obey the ¢1/3,#2/% and t laws, respectively.
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I. INTRODUCTION

CdS and CdSe clusters in glassy matrices have become one of the most interesting
topics in the study of low-dimensional materials, because they are not so difficult to ob-
tain it, and have potential applications in non linear optics®™. A large number of reports
on the optical properties of CdS and CdSe clusters have been appeared®”. The size
variation of the clusters in heat treatment have been analysed using the theoretical model
of coarsening, developed almost 30 years ago'® . This theory successfully predicts coars-
ening kinetics and optical properties qualitatively, but not the quantitative determination
of parafneters such as effective diffusion coefficient and interfacial energy. A number of
modifications of the basic theory, taking into account several important factors affecting
coarsening kinetics, have been proposed but none of these has found general acceptance
and none takes account all the factors which can affect coarsening®.

It was pointed out that two stages must be distinguished in the cluster growth process
in a supersaturated solution. In the first stage, occurs the {ormation of the fluctuating
nucleation centers and their growth is directly out of the supersaturated solution. In
the second stage, the clusters are fairly large and the degree of supersaturation becomes
extremely small. The main process is the coalescence, in which larger microcrystals grow
by dissolution of smaller ones.

The exact asymptotic solution of the problem, derived by Lifshitz and Slyozov (LS),
shows that the cluster average volume grows as t and the total number of clusters decreases
as 1”1 power law. Clusters larger than a critical radius |Bgp| are unstable with respect
to the degree of supersaturation and they growth. Clusters smaller than Rgj, are also
unstable, and dissolve back into the matrix. The precipitation rate dominates and the
degree of supersaturation decreases, leading to a time-dependent increase of Rzg. Thus,

as the process progresses, increasingly larger particles have radii below Ryp, causing




then a shrinking, which moves the average radius of stable clusiers to higher values and
decreasing the number of clusters per unit volume!”,

The site distribution of CdS clusters!®" shows the characteristic vanishing of the
distribution above certain values of cluster radius, predicted by the LS model and the
characteristic abrupt increasing to a maximum, near 2/3 of the maximum radius. How-
ever, the size distribution is slightly broader and shows no continuous tail exiending to
vanishing radius. The measurements show a well-defined size cut off at R, below which
no clusters have been found. The R,, values were not the same for all measurements and
aclually grows with heat treatments time as the t/% power law'”. These observations
show a strong evidence that the clusters growth are not a pure COArsening process.

The objetive of this work is the study of the growih process in which the coarsening rate
is overc.omed by the precipitation rate, stabilizing all clusters with respect to dissolution

back into the matrix. The aim is to obtain a better understanding of the growth process

in glassy matrix.

II. A MODEL FOR CONDENSATION CURRENT

Let us now set up a microscopic description of the growth of CdS clusters. As the
number of clusters is constant, we assume that the nucleation of new clusters have ceased
and that the precipitation rate dominates, stabilizing all clusters with respect to disso-
lution back into the matrix. Then, the consistency of this description will be checked
through the evaluation of the assymptotic time dependence of average R® and comparing
it with the experimental data.

To simplify the problem, the anisotropy was neglecied and the spherical shape for
clusters and particles is assumed. The diffusion flux of the dissolved substance per unit

of cluster surface is composed by a condensation flux and an evaporation flux, which is

neglected because precipitation rate dominates.

In the condensation, which occurs at the saturated condition, we can determine the
transport flux of the dissolved substance per unit of cluster surface, following the originally
applied theory of the coloidal flocculation.

The clusters are formed from the condensation of CdS particles overcoming a poten-
tial barrier. This potential is probably produced by the local geometrical relaxation, of
particles needed for the condensation of new substances. Here, we consider the potential

U, which includes the potential barrier. A sketch of U is shown in Figure 1.

INSERT FIGURE 1

The density of current in the direction of clusters having potential U is

Da

J=—V{(Dn) — -

VU (1)

where fi is the density of particles which is dependent on time and on the distance from
the condensation surface, T is the absolute temperature and [ is the diffusion constant.

For spherical symmetry, the density of current has only radial component:

. [8(DR) | DROU
J—_[ ar +kT6r]

Here,evaporation flux is neglected.

The current of substance is then given by T = —47r?J, which from equation (2) one
obtains:
Ie"pgﬂw = —4nr % (D nexp(U/KT)) @)

Assuming that [ is independent of r, from equation (3) one obtains:

I(B,1) = —4rDof(R)nft) (4)
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where f(R) =  R'W(R), n(R) = [Rﬂ /: ﬂ%@ldﬁ]_l, with
A(f) =0, n = lim A, rli_.rgc Ulr)=0, Dy = Jim D. The term 5(R) is the reflection
factor for the process.

Here we assume that the formation of nuclej have ceased, i.e., the nuclei reached
a critical size from which the nucleation rate is negligible. Also, we assume that the
nucleation process is a very fast process. The actual density of particles will be assumed
to be equal to n(f) and the density of particles at the begining of the second stage will be
ng, and nearly equal to the initial density of particles at the begining of the first stage.

Finally, we disregard the fusion process of two or more clusters, since doping concentration

is small and the observed clusters are fairly well separated.

Considering that the clusters are distributed along several sizes, the variation n(t) is

given by:
20 < —wbon() 3 fzen | ®)
k=m

from equation (4), where p, is the density of number of clusters of size Ry, Ry = ok s
the radius of the cluster with k atoms of radius a and m is the critical minimum number
of clusiers. Then the critical minimum radius is Ry = am?f3,

The current over each cluster of radius Ry, is T(Ry,t) = —4r Do f(R)n(t), from equa-
tion {6). The current, over ali clusters of radius Ry is I{Ry,2)pz. The number of cluster of
radius Ry decreases through the radius increasing process by absorption of particles by —
I{Ri,t)piét. The rumber of clusters with radius k increases through the radius increasing
process from the clusters of radius Ry_; by absorption of particles by I(Ry,t)ps6t. The
variation of the clusters of radius Ry will be —[I{Rg,8)px — J(Ri_1,t)ps-1]6t. Then the

time variation of p; is givern by:

O o R — 1R, D) (6)

for k > m. As in the present case > 1, one obtains:

3

a
R, —R = T (N
From (5), {6) and (7) one obtains:
dn >,
"-&? = —417'D01’i‘. E f(Rk)Nk(Rk - Rk-—l) ] (8.3.)
k=m
INe B a® H R, 1)N, _ J(By—1, 1} Nk, (8.b)
8t~ 3(Ri— Ri,) R? RE, ' '
3R%p: . .
where Ny = —— is the number of clusters with k atoms per radius.

In the limit of very small values for the relation (R — R;_,) (large clusters), the

equations (8) becomes:

dn o ;

= —iDanlt) [T fRIN(RR (9-2)
ON(R,1) 4rd® 9 [(R)
=5 = -~z Donlt) BR[ 7 N(R,t)] , (9.b)

where N(R,t)dR is the number of clusters of size between R and R + dR. The limit of

N(R,1) for large values of R must vanish because fusion process of two or more clusters

is disregarded in the present description.

IIl. PARTICLE CONSERVATION

The microscopic description of the CdS clusters growth using equations (9) is open
with respect to the total number of particles. The glassy matrix doped with CdS, conserve
the number of particles. Then, a conservation condition must be found to complete the

desired description.




The number of atoms in each cluster of radius R is given by {47 R%/3)/(47a%/3). The
total densily of clusters of radius R is equal to the number of particles times the density

of clusters of size R, i.e.,, (R/a)’N(R,t)dR. Then the total numbers of particles, ®, at

any instant of the process is given by:

o(t) = n(t)+ [ (5)3 N(R,)dR . (10)

Rm a

The time derivative of this number must vanish. Then, calculating the derivative of

equalion (10) and using equation (9.b), one obtains:

d® dn 4z o L8 [f(R) R
— === — / : : 11
dt di 3 Lon /R..,, R aR [ R? MR )| dft (11)
Integrating by parts equation (11) one obiains:
d9  dn co 4
= ! - A 12
= g FAmDon [ SRIN(RR - = Do [RIRIN(R,OIF, (12)

. dd .
From equation (9.a), and {10), applying the particle conservation o7 0 and regarding
that equation (5} has been set by assuming a critical minimum radius (N (R, t) = 0) we

obtain the condition given by:

m Rf(R)N(R,t) =0 (13)

frae
The analysis of the potential shown in figure 1 shows that Rf(R) increases as R1.
Assuming a square potential barrier of width AR and height ¥, we obtain the limit given
by:
Jim RI(RYN(R,) = Jim R'N(R.0)/ARexp(Vo/kt) (14)
The distribution A(R,t) does not vanishes for larger R.Therefore equation {14) leads to
the condition thal precipitation in big cluslers are innhibited by the increasing of the

potential barrier V4.

-1

The size distribution of clusters predicted by the LS model is given by:

Au? exp{~1(1 — 2u/3)]
N(u) = (v +3)(3]2 — w113

, u<l1ld
(15)
0 , u>1l5

where v = R/{R),(R} is the average value for B. The Cds cluster distribution is very
similar to this distribution except that there is no continuous tail extending to vanishing
radius. "' The continuous tail of equation (15) can be eliminated by replacing the factor
u? by (% ~ Un)? and assuming P(u) = 0 for u < uyn, with u = Raf(R). Here u,, describes
the critical minimum radjus defined when equation (5} was obtained.

Another, important observation in the previous reports is that N (R,1) can be scaled

for time and (R). Therefore, we assume that N(R,1) is of the following form:
. N(B,&) = N(u) N(t) (16)

where N(u) has an implicit dependence on time through wu(t) and N(t) has an explicit

dependence on time.

The total number of clusters in the present model is given by:

N{t) = f “ N(R,1)dR (17)
= - (R, .
The time variation of N(t), using equation {11b} is:

k= =]

dN(1)  4nd® f(R)
s =5 Do |7 N(R,t)]Rm , (18)

Equation (18) vanishes, since N(Rn.t) = 0 and the limit for R — oo also vanishes
from equation (13). Therefore N(#) = Ny, a constant, which is consistent with that is

expected for systems where precipitation rate dominates.




IV. APPROXIMATE SOLUTION

Let us now analyse the time dependence of the average value of R, through a first

order approximation to the solution of equations (9).

The moments of clusters distributions are given by:

o JT RN(R.OAR
) = = MR R (19)

From equations (10) and (19) one obtains:

()= (B + 3 fro—n(2)] (20)

The density of particles n(t) varies slowly because the degree of glassy matrix

supersaturation is small {only small doping amount of CdS particles was introduced)

and the diffusion of these parlicles through the glass network is a slow process. [rom

equation (9.a) and (20} assuming a first order approximation for nf{) one obtains:

{R%), = at (21)

where o = 47 Dynga® /}:f(}i’) N(R,0) dR/N,.

m

Since N(R,1) = N(u) N(1), equation (i9) is given by:

(R)

(Re) = 1 f°° u® N(u)dy (22)

From equations (21) and (22), the average value for R and the dispersion {((AR)®) =
(R?) — (R)? are given by:

E)
|

,Bfl/?’. (23.a)

(AR)? = 32 (23.b)

where 4 and + are parameters.

V. EXPERIMENT AND RESULTS

The samples were prepared in two steps. First, base glass doped with Cd and S
atoms/ions was produced by the melting method. Second, the base glasses were annealed.
A mixture of GeO; (87.7 mol%), NaGeO3 (8.82 mol%), Cd (0.9 mol %} and S {2.59 mol%)
powders was sealed in an evacuated double-covered quartz ampoule (1x1078 Torr)to avoid
the danger of an accidental explosion during the cooling process. Then, it was heated up
600°C for 12 hours while being rocked, and heated up to 1150°C for 8 hours to form
CdS particles by the chemical reaction between Cd and § atoms. After, it was quenched
by cooling in air at room temperature. The electron microscope image of the base glass
obtained shows no CdS cluster with size larger than 4 mm. The resulting ingot was sliced
with a conventional wire saw. Each slice was annealed for various times at 600°C and for
60 min at 500°C, in air.

The micrographs of slices annealed for 30 min at 550°C and 650°C have been also
reexarnined?®.

The micrographs have shown that the CdS clusters have the wurtzite structure and
are fairly well separated.

The size of the clusters was measured along their diameter. Table 1 shows the number
of cIulsters, Ny, the mean radius, (R), and the average volume per(3/47),{R%), obtained
from the micrographs. We observe that Ny remains almost constant, showing that the

above developed description can be used for the analysis of these data.

INSERT TABLE 1

The measured samples were annealed at 500°C by 60 min, 550°C by 30 min, 600°C by
10,30 and 60 min and 650°C by 30 min.

Figure 2 shows that the LS model {dots) gives a good description of the size distribu-
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tion, with excess of clusters at small radius.

INSERT FIGURE 2

This excess can be supressed if it assumes 2 minimum size, R, below of which no cluster
was found'”. Accordingly, the LS distribution is modified by replacing the u? factor by

(= up)? and with P(u) = 0 for v < uy. Then, the modified LS distribution is given by:

(4~ P evpl- 101 - 2u/3)]
u 7/3 — )1/ s Uy <u < 1.5
Py=¢  HIPGR-) .

0 \ w2 1.5and u < uy,

¥

where u = R/{R) and A a conslant. A good adherence with the data was obtained for
A =88 and u,, = 0.3 {solid line).
The histograms of samples annealed at 550° and 650°C by 30 min in Figure 3, clearly

show no continuous tail extending to u = 0, They show a well defined size cut off, below

of which no dusters is measured.

INSERT FIGURE 3

In table 1 we show the scaled time, t,, defined to allow the comparison between the
data obtained at different temperatures. The scaling was performed by assuming the 1173
power law observed for the CdS clusters 77, Figures 4 and 5 show an excellent overall

agreement between data and LS model.

INSERT FIGURES 4 AND 5

The data given in table 1 show that, at 600°C, the number of clusters remain almost
constant with the annealing time. This observation is quite different from the ¢-! power

law predicied by the LS model.

11.

Although the LS model predicts 13 power law for the average radius data, the existence
of a minimum cluster size and the constant number of clusters through different annealing

times, shows that growth of CdS clusters does not follow a pure coarsening process. .

VI. CONCLUSIONS

The growth process of clusters in glassy matrix has been analysed assuming that the
coarsening rate is overcomed by the precipitation rate, stabilizing all clusters with respect
to dissolution back into the matrix.

The growth dynamics is described by the coupled differential equations (9.2) and {9.b).
Fls. the exact solution is very complex, and beyond the scope of the present report, a
first order approximation solution has been given showing that the mean values of radius,
dispersion and volume follow ¢1/3,42/* and { laws, respectively.

Size distribution have been measured for CdS clusters grown in GeO; glassy matrix,
for several temperatures and heating times. It has been observed that the number of
clusters remains almost constant, which satisfyies the condition that the precipitation
rate dominates the growth process.

The mean average radius, dispersion and volume have been evaluated from the his-
tographs and showed good adherence for t1/3,4%/2 and ¢ laws, respectively.

The size distribution has been found to be similar to that predicted by the LS model.
A modification of this distribution suppressing the continuous tai extending to vanishing
radius show good adherence to the data, reinforcing the previous reports.’®7 As a matter
of fact, the absence ofthe continuous tail extending to vanishing radius, has been used as
the remark for the present given cluster growth modelling.

The empirical size distribution given by equation (15), together with the observed time

and (R} scalling of this distribution, show a good adberence with the assumption (16)

12




used in the development of the first order approxiﬁation 42 132 and ¢ laws for mean
radius, dispersion and 'voiume, respectively.

The good adherence between the theorelical modelling and the experimental:observa-
tions suggest that it 1s profitable to exert efforts to solve equations (9). The evaluation
process requires the knowledge of the cluster distribution of sizes N(R,t). Then, an

analysis of the first stage of growih must be given to obtain N(R,1).
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FIGURE CAPTIONS

Figure 1,

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Sketch of the potential energy for spherically assumed CdS particles in the
CdS cluster.

Comparison of the LS (dots) and modified LS {solid line} distribution function
with the experimental histograms generated from Cd$ containing samples
annealed for 60 min at 500°C, 30 min at 550°C, 10 min, 30 .min and 60 min
at 600°C and 30 min at 650°C.,

Histograph of size distribution in samples which are annealed at 550 and
650°C by 30 min. Dots are calculated with the LS distribution and solid lne

with the modified LS distribution.
The average R® behavior is shown as the ¢ power law .

The average square radius dispersion behavior is shown as the /% power law.
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Table 1 -— The Annealing Conditions and the Average Parameters Obtained,

Temperature | time | Scaled time | Ny | (R) | ((AR)Y) | (R?)
(°C) (min) | (min) (nm) | (nm)? | (nm®)
500 60 2 228 | 4.0 2.3 93
550 30 5 102) 7.5 0.9 441
600 10 10 2071 9.3 4.2 921
600 3o 30 231 | 11.8 10.1 1995
600 60 60 2211 16.1 11.2 | 4717
650 30 215|127 | 254 | 158 | 17622
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