UNIVERSIDADE DE SAQ PAULO

INSTITUTO DE FiSICA
CAIXA POSTAL 20516
01452-990 SAO PAULO - SP
BRASIL

PUBLICACOES

IFUSP/P-1118

SN R A et
PR PR

NON-LINEAR ELECTROMAGNETIC INTERACTIONS
IN THERMAL QED

F.T. Brandt and J. Frenkel
Instituto de Fisica Universidade de Sdo Pauio

Agosto/1994




IFUSP/P-1118

Non-linear electromagnetic interactions in thermal QED
I*. T. Brandt and J. renkel
Institule de Fisica, Universidade de Sdo Paulo,

Sio Paule, 81498 SP, Brasil

We exatnine the beliavior of the non-linear interactions between electro-
magnetic fioids at high temperature, T4 is shown that, in gencral, the log(T)
dependence on the temperature of the Green fanctions is sitply related to
their UV behavior al zero-temperature. We argue that the effective action de-
acrihing thf: nonlinear Lhermal electromagnetic inleractions las a finite limit
as T' = oo, This thermal action approaches, in the long wavelength limit, the

negative of the corresponding zero-temperature action.

The effoctive thermal action due to the electron-positron box, which is fourth order in
the electromagnetic liekl, has been studied previously in the literature [1-3]. In reference [4]
it was shown that this effective action lias a finite limit at high temperatures, when T' — oo.
T'he main pierpose of this paper is to extend the analysis in [4] o1 the non-linear interactions,
to all orders in the electromagnetic fickl.

At high temperatures, individual contributions conlain power dependence on T', but
the 7% and T terms cancel by symmetry. Gauge invariance inposes strong constraints,
which lead 1o the canceltation of the T% contributions in QED [5,6], excepl in the case of the
photon self-encrgy. Note thal, in general, the dependence upon 7' for Tigh T' is not necessarily
connecled to the UV divergence or convergence of the zero-temperature amplitude. In QCD,
for example, all the N-gluon [unctions belave like T2, alihough they are UV finite for N > 4.

This work adidresses the problem ol possible log(T) contributions. We will present a

simple argument showing that in thermal field theories, these are related to the UV behavior
of the Green functions at T = 0. Consequently, in the N > 4 photon Green functions, which
are UV finite, the log(T) contributions must be absent. We have verified this behavior by
explicit computation of the electron-i)ositron 6-point function, in the long wavelength limit
of the external photons. Therefore, the effective action describing the nonlinear interactions
between electromagnetic fields at high temperature must have a finite limit as T —+ co. Like
the zero-temperature action, it must be gauge invariant. But this thermal ;).ction may be
more coml;lica.ted, because it is not necessarily Lorentz-invariant.

Typical graphs contributing to the nonlinear electromagnetic interactions are shown in
Fig. 1. We must consider only diagrams with an even number of external photon lines, since

for N-odd, their contribution vanishes by charge conjugation.

*

k21 2] k3! Ha k21 Ha k.?as Ha

Q Q

ks oy ki ke i

ks 4
FIG. 1. Diagrams which contribute to the nonlinear interactions between electromagnetic fields.

Dotted lines represent photons, and solid lines stand for electrons or positrons.

in order to discuss the logarithmic temperature dependence, we use the analytically con-
tinued imaginary-time thermal perturbation theory [7]. Then, we can express the complete
thermal amplitude, which includes the zero-temperature part, in the form
ApvereN (ko B0 Ty = M T o FeQ e (00 Q kg, k7). (1}
Qo=miT(Zn+1)
Here M is the UV renormalization scale, k?f/2ri T are integers and n runs over all integers.
For fixed n, the Q-integral is UV finite, having no poles at ¢ = 0.
QOur argument requires the identification of those terms which can yield a pole at e = 0,

when performing in (1) the summation over the frequencies @° = inT(2n+ 1). To this end,




we consider the high temperature limit
T => |ki,m (2)
{m is the electron mass) and examine a relevant contribution invelving a sum like [g]

= 1
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Here &Y is some linear combination of the external energies, with integral coefficients. We
can thus set: &7 = 2T, where [ is some integer. Considering the contributions from the
regions n| < Ji| and || > [{}, we obtain in the limit ¢ = 0 the expression
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where W is the Euler psi-function and ((x, 2} denotes the Riemann zeta-function [9)
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The only singular point of this function occurs as ¢ — 1, where it obeys the relation
1
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Heuce, using Eq. {4), we see that the divergent part of § is given siinply by
5=+ (")
e

This contribution arises frem the surmmation over the region |r] >3 |li, i.e. where |0} >>

|kol. It is associated with the leading term obtained by expanding (3) in powers of £°/Q°.
Conseq.uentl_v, for the purpose of evaluating the pole part of the complete amplitude, we

can expand the integral in (1) in powers of @g'. Proceeding systematically in this way, and

wdentifying all terins proporiional Lo {%)717¢, we obtain contributions of the form
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If frasznw (kg kP)0) is nonzero, this sum diverges and the corresponding Zero-temperature

Euclidean field theory would be UV divergent, having a pole like 1/e. In this case we obtain
1 M
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We note that the log(T') term always combines with the log(M) term to yield a log{M/T
contribution. Something similar happens for the photon self-energy in QED, or the gluon
two-point function in QCD [8,10]. Since furee 5 {k; 0) is gauge and Lorentz invariant, we
expect the log(T) contributions to be Lorentz invariant quantities, despite the presence of
the heat bath. This was argued explicitly in Ref. [4].

Because the Green functions with N = 4 external photon lines are UV convergent, the
functions f#1#2"#~ (&, 0) must vanish. Consequently, the log(T'} terms should be absent in
the non-linea.r.?electromagnetic interactions at high temperature. -

We now verify by explicit computation, the cancellation of the log(T} contributions to
the 6-point photon function, which is UV finite. For simplicity we consider here the long
wavelength limit of the external photons, when k; — 0.

The analytically continued imaginary-time formalism can be formulated [11,12] so as
to express the thermal amplitude (having subtracted the zero-temperature part) in terms
of amplitudes for forward scattering of a thermal electron or positron in an external elec-
tromagnetic field, as depicted in Fig. 2. There are 6! diagrams like this one, which are
obtained by permutations of the external momenta and polarizations. The corresponding
analytic expression has the form
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Here g = |Q|, q° = (g% + m?)"/?, [ dQ is an integral over the directions of @, and the sum is
over the permutations (ijklmn) of (123456). Each B has a numerator which is a Dirac

trace containing projection operators P (k} = [y - (@ + k) + m]. For example
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where &3 = k| + kg, etc.
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FIG. 2. A typical contribution to the forward scattering amplitude. Dotted lines represent

photons, and sclid lines stand for electrons or positrons.
In order to obtain the high-temperature limit of Eq. {10) we use the expansion
(20 k+1) 7 =20 K [1- K20 B HE(2Q k)T 4 | (12)

in (.1 1). For our purposes, we can neglect the electron mass in (10). One thu; getsin Eq. (11)
terms which are homogeneous in @ of degrees 1, 0, -1, -2. The expansion carnot be taken
further without introducing spurious infra-red divergences. Since for each term in the sum in
Eq. (10) there is a corresponding one with @ ¢+ ~(@, terms which are odd in @ will cancel.
The terms of degree 0 would produce @(T2). However, as we have already mentioned, these
contributions cancel as a consequence of gauge invariance. We have checked explicitly this
cancellation at the integrand level in Eq. (10).

Terms of degree -2 would produce possible log(T') contributions. The explicit computa-
tion of this logarithmic contribution is lengthy and can only be performed using a computer
prograin for symbolic manipulations. Even with the help of a computer, one would find
very difficult angular integrals for general values of the external photon momenta. In the
long wavelength limit, one has to consider only the space components of Eq. (10), because
any other component must vanish by gauge invariance. The angular integrations can then
be easily computed. There are in fact no angular dependences left in Eq. (11} apart from
simple numerators like @ @ - .- @', where n = 0,2,4,6 and ir, -+, ¢, represent the space
directions. Even in this relatively simple case the number of terms resulting from the ex-

pansion of a single contribution such as (11} is 975. After adding the 6! permutations of all

the above contributions, and using the conservation of the photon momenta, we obtain zero.
In conclusion, we discuss the finite contributions to the effective thermal action at high
temperature. To this end, we convert the frequency sum in the complete amplitude (1) to

contour integrals, expressed at zero chemical potential as [7]

Ak, K, T) = —1—_f£°°+6 4Q° (H(Q", ki, K9) + H(=@% ki B)) |3 — 1| (13)
t i Jicors B T2 exp(QU/T) 410

where [ is given by the Q-integral in Eq. (1}, and we have omitted for simplicity of notation
all Lorentz indices. The first term in the square bracket of (13) leads to the zero tempera-
ture Euclidean amplitude, while the second one confains the temperature-dependent Fermi
distribution N{@Q°/T).

We now evaluate the Q%-integral by residues in terms of the poles inside the contour. In
general, these poles will be situate# at [(Q + k)P 4+ mz] 1/2+ k%, where k and &k denote some
linear combinations with integral coefficients, of the external momenta and energies. An
imporiant simplification occurs in the long wavelength limit k; — 0, when the contributions

from all poles to the Fermi distribution factors become equal to

N ((¢° +£°)/T) = N(®/T) = (14)

1
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where ¢° = (Qz-i-mz)l’ ?. Denoting by R, the residues at the poles of the function
F(Q" QK0 + F{--Q° QD) (see Eq. (1)), we get from {13) the result

1 1
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Here we have set € = 0, since the nonlinear Green functions are UV finite. At this point, we

AR, T) = [ £QR, (Q.¢K) [- (15)

can analytically continue the complete amplitude to general values of the energies k7.

We use next the important fact that the thermal contributions have a finite limit as
T — co. Thus, we can take in (I5) the limit N (¢%/T) -+ 1/2, without affecting the
convergence of the Q-integral. It follows that in this case, the nonlinear thermal action
evaluated in the long wavelength limit, appreaches the negative of the zero-temperature
action. In this limit, we expect important effects due the collective behavior of the thermal

medium.
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