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Abstract

We describe a class of transformations in a super phase space (we call them
D-transformations), which play the role of ordinary canonical transformations
in theories witlh second-class constraints. Namely, in such theories they pre-
serve the forminvartance of equations of motion, their quantum anazlogue are
unitary transformations, and the measure of integration in the corresponding

hamiltonian path fntegral is invariant ynder these transformations.

Typeset using REVIEX

I. INTRODUCTION

As know canonical transformations play an important role in the hamiltonian formula-~
tion of classical mechanics without constraints [1]. They preserve the forminvariance of the
hamiltonian equations of motion and their quantum analog are unitary transformations [2,3] :
Canonical transformations constitute also a powerful tool of Lhe classical mechanics, which 7_
allows one often to simplify solution of the theory. For example, it is enough to mention that
evolution is also a canonical transformation. Quantum implementation of canonical trans-
formations where discussed in numerous papers, see for example [4-7). However, modern
physical theories in their classical versions are mostly singular {in particular, gauge) ones,
what means that in the hamiltonian formulation they are theories with constraints [8,9].
Lquations of a hamiltonian theory with constraints are n:;t form invariant under canoni- -
cal transformations, but namely this circumstance allows one to use these transformations
to simplify the equations and to clarify the structure of the gauge theory in hamiltonian
formulation [9,10}. Nevertheless, a question remains, which kind of transformations in theo-
ries with constraints play the role of ordinary canonical transformations in theories without
constraints?

In this paper we describe such kind of transformations for theories with second-class
constraints, which js, in fact, a general case, because of a theory with first-class constraints
can be reduced to a theory with second-class ones by = gauge fixing. To this end we
consider a generalized Poisson bracket and transformations, which preserve this bracket
forminvariant. Such transformations we call generalized canonical transformations. One
can treat the Dirac bracket as a particular case of a degenerate generalized Poisson bracket.
The corresponding generalized canonical transformations we call D-transformations. It turns
out that in theories with second-class constraints they play the role of ordinary canonical
transformations. Namely, they preserve the forminvariance of equations of motion in such
theories, their quantum analogue are unitary transformations, and the measure of integration

in the corresponding hamiltonian path integral is invariant under these transformations.




II. GENERALIZED CANONICAL TRANSFORMATIONS

Let a classical mechanics is given with phase variables 7={n", A=1,...,%2 (in
general case they belong Lo Berezin algebra ]11,9] and have the Grassmann parities P(p?) =
Pa}, and with a symplectic mettics A% (5), which defines a generalized super Poisson bracket

for any lwo functions F(5) and G(n) with definite Grassmann parities P(F) and P((3),
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where d./3n" and 87 are the right and lelt derivatives respectively. The metrics A48(n)
is w Ty-nutisymmelric supermatrix [9], P(AY8) = Py + Py, A*B(n) = ~(—1)PaPa A BA(y),

obeving Lhe conditions,

AV A
{—1)IAE) g AD )L()T}Q +eyeh (A, B,C) =0 (2.2)

which are necessary and sullicient for the eacket (2.1) to be super antisymmetric and satisfy

the super Jacobi identity,

{1". G}(n.f\) - ,_(_1]1’{!-"]!’[0) {G', F}("'M ,

Ny o L [mA X
(=P {{F,G}("M,I\} mA) Feye (PG ) =0 (2.3)
Besides, the property takes place
{F.GRYN = (B GYN g (w )PP R oY) (2.4)

It is casily to see that

; (m.4A)
A () = {5 "} (2.5)
[ case il
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the generalized Paisson hracket (2.1) cotucides with the ordinary super Poisson bracket,
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8, FEAB a,

(F,G}mE) - ={F,G} . (2.6)

If # = '(x) is 2 nonsingular change of variables, then the generalized Poisson bracket

(2.1) acquires in the primed variables the following form

(nﬂ) I i’ (q.A’) arF‘ 1ABs ¢ BJG’ .
where
F'(n') = F(’?) , G’(U') =Gln),
AAB() = cp( )3ﬂ7 { A q,g}[u.l\] . 28)

anP
By analogy with the case of the ordinary Poisson bracket one can ask the question: which

. . .
kind of transformations preserves the generalized Poisson bracket forminvariant, namely

when a relation holds
ARG} = AN () @9)

We will call such kind of transformations generalized canonical ones. They are just canonical
transformations in case when the generalized Poisson bracket coincides with the ordinary
Poisson bracket.

Consider transformations of the form
7 =eVy. (2.10)
In (2.10) the operator W is defined by its action on functions of 4,
WF(n) = {F,w}»A (2.11}

where W(7q), (P(W}=0),is a generating function of the transformation. We are going to -
demonstrate that the transformations {2.10) are just the generalized canonical transforma- -
tions, connected continuously with the identical transformation. To this end one has, first,

to verify that the following property takes place




"k T e bt

e

VP = Fey) = F(y) . (2.12)
{ndeed, one can sce, using (2.4), that

- A R . .
MFmeV =3 SOV, (W, W, L) = V() . (2.13)

p=0 """

Then, one: can write, for example, for any analytic function F{n),
ch(q} — eWF(r;)c“w - F ({,ll’nc—ﬂf’) - F (cwq) =F(y).
Now, let us introduce a funclion F4%(a,n), Pla) =0,
FAB(o, ) = {enﬂ’n/i’enﬂ’??B}(n‘n) . (2.14)

At a = 0 this function coincides with A4%(g), sce {2.5), and at & = 1 with A"48(5/), see

(2.8) and {2.10),

["AH(D,?]) — AAH(ﬁ] , (215)

FAR(L ) = AP () (2.16)

Diflerentiating (2.14) with respect te o and using the Jacoby identity (2.3), one can get an
eeation for the function FAP (e, ),

317"1'3((1',-:])

i AR
o = WF"(a,n) . (2.17)

A soletion of this equation, which obeys the initial condition (2.15), has the formn
If'vAH(n“ Tf) — C“H:AAH{?]) . (2.18}

Taking into account the equation (2.16) and the property (2.12), we get just the condition
{2.9) of the forminvariance of the generalized Poisson bracket. Thus, the transformations
(2.10) are uamely gencralized canonical transformations, connected continuously with the
identical transformation. By the definition Lhey preserve the forminvariance of the general-

ized Poisson bracket,

wn

{F! G}(W.A) - {F’, Gr}(u’..‘\) , Fl(,?f) - F(’?)r Gr(r]f) . G("T) . (219)

Let us suppose now that the classical mechanics in question has equations of motion of

he form
7= {n, HYN (2.20)

.. the hamiltonian equations of motion, but with a generalized Poisson bracket. How they -
e transformed under the generalized canonical transformations 7 The answer is: after the

he generalized canonical transformations (2.10} the equations (2.20) take a form

.y ; +y{n'. SR ai"v
i = (', WYY W) = H + (2.21)

Chat means that the& equations (2.20) are forminvariant under the generalized canonicals.
ransformations, only Hamiltonian is changed by the partial time derivative of the gener-
iting function, similar to the usual case of the canonical transformations and hamiltonian
»quations of motion with the ordinary Poisson bracket. For simplicity we present a proof ~
or infinitestmal generalized canonical transformation with a generating function W, which '.

we given by the equations
7 =n+4dy, &p={n W} (2.22)

Zalculating the time derivative of o', and using (2.20), we get

(mh) (m.A)
(Y14 oW
7= {7]-!-517, H}(‘LM+ {Tl:%} = {714‘67]1 i+ *‘5{‘} .

Tzking into account (2.20),(2.22), and (2.19), we obtain just equations {2.21) for this par-
ticular case.

If a physical quantity is presentesl by a function F(7} in the variables # then in the
primed variables (2.10) it will be presented by a function I7(y’), which is related to the -
former one by the eq. F*(') = F(n). In the infinitesimal form it results in F'(7) = Fgw(q), '

according the eq.(2.22),




Faw(ny = F(n)+&F(y), §F(y) = {§W, Fit»M | (2.23)

Varialions of the phase variables in course of the time evolution (2.20) can also be
considered as a generalized canonical transformation. Namely, let 7 are the phase variables
at a time instant { and 7y are ones at the time instant ¢ = 0. Then y are some functions
ol 5y and of £ as a parameler, 5 = {1y, £). One can see that the Lransformation from 70 to
i is a generalized canonical transformation. Morcover, this transformation can be formally
written explicitly. Indeed, cousidering for simplicity time independent lamiltonians only,
one cansee that the solution of the Cauchy problem for the equation (2.20), with the initial

data gy al £ =0, has the form
. w=ely,, . {2.24}

where the operator 1 3s defined by its action on functions F(no) of 7o as HF(p) =
{F o), ()" ™) Because of the transformation (2.24} is the generalized canonical trans-
formation (see (2.10)) with the generating function H{n), one has only prove that (2.24)

obeys the cquation of motion (2.20). Taking the time derivative from (2.24), one gets

. T 7 0. A
i = ey = {ellp, 11(73[,)}‘“ b, (2.25)
Using (2.12), one can verify that
(M) = ™1 (o) = H (1) . (2.26)

Substituting (2.26) into (2.25) and taking into account the property (2.19], one obtains
. Y It (mo.A) (mA)
n = {e 70, H{e r;u]} = {n, H{(M} ,

whatl proves our afliemation,

ITII. D-TRANSFORMATIONS

Now we are going bo apply the previous consideration to theories with constraints,

naely, with sccond-class constrainis,
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Let we have a theory with second-class constraints ® = (®,(n)}, in hamiltonian formu-
lation, described by phase variables 5, A = 1,...,2n, half of which are coordinates q

and half are moments p, so that p* = (¢%,p.), A=1{C,a), (=1,2, e=1,...,n. An’

important object in such theories is the Dirac bracket between two functions F(n) and G(y),-
{F\G}prey = {F,G} ~ {F,®:}{®,®};} {®:,G} . (3.1)

It is easily to see thal the Dirac bracket is a particular case of the generalized Poisson bracket

(2.1),

{F,G}pey = {F,G}=M | (3.2)
with *»
AP = EAB _ (A 91{®,2}5! {B, 1"} = (0", 1" }oie) - (3.3)

If so, then one can consider the generalized canonical transformations for such a genera]ized: -
Poisson bracket. This special but important case of the gencralized canonical transforma.;} .
tions we will call D-transformations. Thus, by the definition, D-transformations 7 — 7

preserve the forminvariance of the Dirac bracket!,
{Fa G}D(@) = {Fr1 G’}b(@] - (3‘4)

As we will see further, in theories with second-class constraints, D-transformations play the
same role which play canonical transformations in theories without constraints.

An explicit form of D-transformations connected continuousty with the identical trans- -

formation can be extracted from (2.10) and (3.2},

3 = CWTJ . ["VF(T]) = {F‘ "V}D(@) 1 (35) -

'A prime above the Dirac bracket in {3.4) means that the latter is calculated in the primed

variables.




and in the infiuitesimal form
7 =q+dy, dp={ndWlpye {3.6)

where 1¥() is a generating function of the D-transformation.
One can see Lhat D-transformations differ from canonical ones only by terms proportional

Lo constraints. Indeed, the variation & under the D-transformation can be written as
& = {n, dW}y = {n, 81V} + {®}, (3.7}
where

SV = G — & {®, 0} {Bu, 5WY

and {#} accumulates terms proportionat Lo constrainls, or terms which vanish on the con-
sheaint sarface. Tn the special canonical variables (w, 1Y), i whicl equations of constraiuts
have a simple form @ = 0 (sce [9,10]), and the Dirac bracket reduces to the Polsson one
in the variables w, so that the latter are physical variables on the constraints surface, D-
trium['urln:ll.imls Nave a sitiple meaning: they are canenical transformations in the sector of
pshysical variables w with no cliange of variables §2. 1t is natural because of D-transformations
do not change the form of constraints,

As known [8] equations of motion for a theory with second-class constraints can be

writlen i Lhe form

i = {0, 1} ey - (3.8)

(i) =0. (3.9}

They consist of two groups of equalions, hamiltonian equations {3.8) with the Dirac bracket,
which is in the same time a generalized Poisson bracket, and equations of constraints (3.9).
Using the previous section consideration, ane cail say that the equations (3.8) are formin-
variant ouder the D-transformations. It Lurns also out that the equations of constraints
{3.9) are formiuvariant under the D-transformations. Indecd, let ®'(%') = 0 are equations of

constraints in variables 177, connected with 1 by a D-transformation, then the relations

9

(1) = &(n) (3.10) -
have to hold. One can consider these;rela.tions as functional equations for the functions @',
It is easily to verify that they have a solution @' = &. Indeed, consider the functions o(x').

Using the formula (2.12} and a well known property of the Dirac bracket: {F, Q']’D(@) =0

for any function F(n) and any constraint &;, we get

3(n') = ¥ o(n) = B(x) . (3a1)
That means that the constraints surface ®{n) = 0 after the D-transformation can be de-
scribed by the same functions, i.e. by the equations ®{y") = 0.
Thus, equations of motion of theories with second-class constraints are forminvariant

under the D-transformations. Namely, the equations (3.8} and.(3.2) have the following form

after the D-transformation:

- r nr ¥ ' aW
A = {0y, Yoy, Hn')=Hin)+ "

o) =0. (3.12)
A physical quantity I, which was described before the D-transformation by a function F(n}),
is described in the transformed theory by the function F'(y’), connected with the forma'. .
one by the relation /(') = F(n).
The equations of motion after an infinitesimal D-transformation have the form
; asw
n= {'?,H.sw 5 } ., B =0, {3.13)
Di¥) ’

and the physical quantity F is described by the function Faw (7}, see (2.23),

F'(n) = Faw(n) = F(n) + {§W, Flpes) . (3.14)

IV. QUANTUM IMPLEMENTATION OF D-TRANSFORMATIONS

One can ask a question: which kind of transformations in quantum theory corresponds
to D-transformations in classical theory? It is easily to see that these are unitary trans-

formations and vice versa: unitary transformations in a quantum theory with constraints k

10




thduce in & sense D-transformations in the corresponding classical theory. From this point
of vicw D-lransfermations in theories with constraints play also the role similar to one of
the canonical transformations in theories witloul constraints. To prove this affirmation
we have Lo remember that in a classical theory D-transformations are transformations of
trajectorics-states of the theory. Thus, if to speak literally, some transformations of quan-
tumn states-vectors in a Hilbert space, have to correspond them in a quantum theory.

Ll we have a classical theory with second-class constraints, which is described by the
cqualions ol motion (3.8,3.9). Is canonical quantization [$,9] consisls formally in a transition
froni the classical variables 57 to quantum operalors 4, P(§%) = P(y?) = P,, which obey

the operator relations?
[ﬁ;l\’}H} = ’-h‘m-’fﬁl}n(m = ikAB(y), ®{y) =0, (4.1)

and wlich suppose Lo be realized in a Nitherl space B af vectors |¥ >. Then oue has

to assign operatars & Lo all the pliysical quantities F', which are described in the classical

theary by the funetions (i), using a certain correspondence tule, 7 = ) Tlie time

evolution of the stale veetors is defined by the quantwin Hamiltontan f ), according
the Schradinger equation

N >

= =1 . (4.2)

Let us consider a unitary transformation of the state vectors, {# > [ >= J|¥ >,

where U7 is some unitary operator, {7+ = |, which one can write in the form

U= exp {—%li’} R (4.3)

Wia [, B} we denote a generalized commutator of two operators 4 and B, with definite parities
PlAYy and P(R), TA,BY = A8 - (—1}OPDAA An overtine with a hat, above a classical

function A(y), here and further means a certain rule of correspondence between the function and

the correspanding quantum operator A, A = A{n). The fortner is in this case the symbol of the

operator [11]. A choice of this rule is not important in our considerations.

tt

where W is a hermitian operator, W+ = W, further called quantum generator of the
transformation. In the infinitesimal form W o JW), simplifying the consideration,
U >= ¥ > +8|F >, §|¥ >= —5§W|T >.

One can find a variation of operators of physical quantities from the condition

< U|F|¥ >=< W|E'[¥ >, which results in
F'= By = OF0* = F 4 6F, §F= —=loW, A). (4.4)

If §W(y) is a symbol of the operator §IW, §IV = Wﬁ) and F(n) is one of the operator
{the classical function which describes the physical quantity in the variables ), F = qu),

then it follows from the eq. {4.1)
88~ oW, Fpgg, + olh) L (45)
Remembering the formula (3.14), one can write
Fyw = Fow(m) + of#) . (4.6)

Thus, operators of physical quantities, transformed in course of a unitary transformation,
have as their symbols initial classical functions transformed by a D-transformation, with
the generating function being a classical symbol of the quantum generator of the unitary
transformation. '

The Schrédinger equation for transformed vectors can be derived from the eq. (4.2) andr
has the form

LT >
ik T

= >, B =Hw+ %J”W- 4.7

Thus, the time evolution of the state vectors after the unitary transformation is governed
by a quantum Hamiltonian with the classical symbol

3§IV (7])

H'(n) = Haw(m) + —5"—=+ o(R) . (4.8

That fact and the eq.(4.1) allow one to see that the classical limit of the quantum theory
after the unitary transformation (4.3) is described by the equations (3.13) and therefore-

12




corresponds o the D-transformed classical theory with the generating function, which is
a classical symbol of the quantum generalor of the unitary transformation. In the same
way one can prove an inverse statement: if we have a classical theory and its D-transfered
formutation, then quantum versions of both theories are connected by an unttary transfor-
mation. Besides, the classical generating function of the D-transformation and the quanturm
generator of the unitary transformation are connected in the above mentioned menner.
Consider now the generating functional Z(J) of Creen’s functions for theory with second-
class constraints in the forn of hamiltonian path integral and a hehavior of the latter under

the D-transformations. Such an integral can be written in the forn

Z(J) = fﬂxp {;;-SJ(J]}} T, (4.9}

wliere

Sely) = ’/[]i“rj" = (e, M) = ) + Janp?

is the classical action with sources, J4(4) are sources Lo the variables (¢), P{Js) =

Py = Pyoand the measare Dy has the Torm 12,13,
Dy = Sdet'2{®, }5(0) Dy {4.10)

with Sdet{d, &} denoting the superdeterniinant of the matrix {@;, @,}.

As known, il a change of variables 3 = 3/(y) is a canonical transformation, then
[(Bee o' (3)| = 1, where Ber(n) is Berezinian [| 1] of the change of variables, Ber #(n) =
Sdetd, /iy An particular, for infisitesimal canonical transformations 5’ = n+dn, &=
{m, 51V}, Ber () = L. In case of theories without constraints, the measure Dy (4.19)
reduces Lo Dy and is invariaul under canonical transformations, but in theories with con-

straints il is nol. However, this nicasire is invarianl under D-transformations,
Dy =Dy,

what confirins ones again that the latter play the role of canonical {ransformations in theories

witle constraints. To see this one can use a relation [10f,

13

Sdet'/2{®, q’:}5(<1>)|H Ber 1) = Sdet'?{®, 3}5(®) , (4.11)

v {n}
where 7' = 9 + {, W }pe).
The invariance of the measure (4.10) under D-transformations, induces an invariance of

the integral {4.9} under the transformations of the action S;(7),

Suln) > Shln) = Ss(a'(n)) = Saln) +6Ss(m) (12)

where 77'(n) are D-transformations,
i 1
2() = [esp{38:n} Pr = [explzSia)IDn
or
[esstrexn {;‘_;SJ(U)} Dn=0. (4.13)
1t is enough to know JSJ(ﬂ)K on the constraints surface, because of the integrationin (4.13) is
only going over this surface due to the §-function in the measure (4.10). Taking into account
the representation (3.7}, one can find an expression for §5;{7) on the constraints surface,
)
851(M)lgon = (dq— SW)ji +f [gqaw - {H_;,éW}D(q,)} dt. (4.14)

In field theory ustially fin.ne — oo and trajectories of integration vanish at these time

limits. Considering D-transformations, which do not change this property, one gets

/ [ / (%JW - {HJ,JI-V}DM) dt] exp{%SJ(n}} Dp=0. (4.15)
This relation can be used to obtain different kinds of equations for generating functional
and therefore for Green's functions. For example, let us consider D-transformations with
two types of generating functions: W = €49, and W = (%(n), with arbitrary “small”

time dependent functions e4(t) and {i(t). Using Lthese W in eq. {4.15), we get two relations

f [,‘;f‘ - ft, H.r}n(@)] exp {%SJ(’?)} Dy=10,

[etmes {5} or=0, (4.16)
which can be rewritten in the form of Schwinger equations for the functional Z(J},
&
2 A A = —t =0. 4,17
[~ s Hodoc,, 291 =0, 8 (55 ) 200) @
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V. REMARKS

Thus, we demonstrated that in theories with second-class constraints D-transformations
play the nsual role of canonical ones. lu facl, in our books [9] we have already used infinites-
iinal D-transformations for technical reasons, but that time we did not realized fully their
special role.

Author thanks Prof. Igor Tyutin Jor uselul discussions on the initial stage of the work

aed Profl. Jose Prenkel for discussions and friendly support.
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