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Abstract

The time-changing spectrum of a nonlinear transient is analyzed through the
Gabor transform technique. Clusters of evenly spaced lines appear on
specirograms of the nmerically computed oscillations. They can be explained
by means of a simple model describing the dynamic of the energy exchanges
between the external oscillating force and the nonlinear system. The resulting
amplitude and frequency modulations are shown to produce the spectral line
structures. I'requencies incommensurable with other present oscillations can be
generated by the nonlinear system.

1. Introduction

Most literature on nonlinear oscillations %%’ describes the steady state motion in
detail, while the fransients receive a qualitative description, typically an outline of the
trajectories in the phase space and their topology. The time-domain information about the
motion usually discards transients and covers the steady state, since the Fourier transform of
a nonstationary oscillation has little physical sense.

Nevertheless, nonlinear transients are present on a variety of real-word problems. In the
field of mechanic engineering, they can arise in the interaction of motors and structures.
Acoustics has multiple problems that present nonlinear transients, such as transducers'
dynamic, musical instruments' analysis, as well as sound perception and bioacoustics.
Transients of electronic circuits, which can be nonlinear, have a potential interest on areas
such as signal transmission. It should also be remembered that, in a semiclassical approach,
most problems of interaction of radiation and matter deal with nonlinear oscillator's
transients. These and many other phenomena cannot be fully understood by a steady state
approach.

In the present work, however, we focus the attention precisely on the transient region.
The Gabor transform technique was chosen to examine the spectrum evolution of the a
nonlinear system thorough the transient. This technique has been previously used by the
authors to analyze transients of a double potential well free oscillator °. In this article, we
describe the "transient spectum” or spectrogram of a forced oscillator. '

The spectrograms of the driven oscillator shows temporary quasi-periodic oscillations.
Although they are transient phenomena, they bear a close resemblance with steady-state
quasiperiodic oscillations. There are also important differences that we shall point later.
Before we proceed, let us briefly recall some basic definitions of steady state oscillations.

Sinusoidally driven nonlinear oscillators can, in certain cases, exhibit quasi-periodic
behaviorS. In this regime, the spectrum has a discrete set of peaks, and all present
frequencies can be expressed as sums and differences of a countable set of basis frequencies

.fj and their harmonics. For a p-periodic oscillation, the allowed frequencies are:

f; = gkl fj 6}

where the kj are integers. In other words, the frequencies obeys a sort of Ridberg-Ritz
"combination principle",

In the case of two oscillating external forces, the basis frequencies are the same present in
the driving force and their subharmonics. The power spectrum contains then the so called
combination tones. In a system with an autonomous /limit cycle, such as the van der Pol
oscillator, the external frequency and the limit cycle frequency constitute the basis of the
quasiperiodic oscillations. These are examples of two-periodic motions, and the resulting
frequencies are the harmonics of the basis frequencies, as well as their sums and differences.

In this article, we show that the spectrogram of the transient region of a forced nonlinear
oscillator shows series of evenly spaced peaks as a quasiperiodic oscillator. Each "time slice"
of the spectrogram is equivalent to a three-periodic motion. As expected, one of the basis
frequencies is the external force frequency. The 1/3 subharmonic of the driving force is also
present in the basis. However, the third basis frequency is not equal nor commensurable to
any characteristic system frequency. It is a function of the external force frequency and
magnitude, and also as on the form of the system potential well. As the system approaches
the steady state, these lines decrease in magnitude at different rates, so that each line has its
own "lifetime".

2. Transient analysis

The system chosen to the transient analysis is the Duffing oscillator, defined by the
following DE :

mx+cx—kx—kyx* — k;x* = Fycos(w 1) 2



The oscillator's parameters are m=1, k, =4 12, k, =0, k; =4 7% and ¢ = 0.025. The
potential curve has the form of a single symmetric potential well, with a small oscillation
frequency 1 Hz. The external force has a strength F;=4 and a frequency 1.5 Hz. The
damping constant ¢ is chosen so that the relative energy dissipation per cycle is small. The
initial position is x,=0 and the velocity v,=120 m/s. We have employed in all numerical
simulations the DGEAR routine, which implements the Adams-Moulton algorithm with
polynomials up to 12h order. The transient obtained using the above parameters is shown in
fig 1.
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Figurc 1. Transient of the forced Duffing oscillator.

The picture actually shows the envelope, since individual cycles are too small in the
graphic scale. After a steady energy decay, the system undergoes transient amplitude
modulations (AM) which eventually vanish. We analyze here this second phase of the
transient.

Gabor transform -* is implemented through a dedicated code written on MATLAB®
language and using direct calculation from definition and using Morlet wavelets ?, which has

the form of Gaussian wave packets, as basis elements. The Gabor transform Gs(b,G)) ofa
function s( TJ ), a sampled version of a continuous time function s(7) |, reads then:
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where :

In words, the Gabor transform coefficients are obtained through the hilbertian scalar product
between the basis function and the analyzed function. The sampling rate should, of course,
respect the limits imposed by the Nyquist theorem ",

B'o.th numerical simulation and Gabor analysis are performed using floating point double
precision numbers with 16 digit mantissa and 3 digit exponent. The Gabor transform maps
the original function s(t) onto the fime-frequency phase space. The time mean square
deviation of the Morlet wavelets of equation (4) is O; = 100/ V27 =3986 S . This
peculiar va!ue comes from the choice of the frequency resolution, linked with O; through
the uncertainty relations for Gaussian wave packets. We use only the square modulus of the
transform, | G(b,w) | *, which can be interpreted as an energy density ' and is also called
Gabor spectrogram.

We show in figure 2 a typical spectrogram of the nonlinear transient. It can be read as a
chart of the power spectral density in the time-frequency domain. We use a gray scale with a
density proportional to the /ogarithm of the spectral power. The main line at 1.5 Hz
corresponds, of course, to the external frequency. Surrounding this line, there are sidebands,
constituted by evenly spaced lines. If the system has simple AM oscillations, there would be
just a single pair of extra lines. The oscillations can however be identified as simultaneous

Jrequency and amplitude modulation (AM-FM). The modulation Jfrequency is identical to

the third basis element of the quasi-periodic oscillations mentioned above.
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Figure 1. Narrowband Gabor spectrogram of the nonlinear transient



3. A model for the sidebands structure.

The modulated oscillations can be interpreted as follows: The nonlinear oscillator and the
external force exchange energy back and forth, so that the system energy oscillates during
the transient. The damping term ensures the approach to an equilibrium state, while energy
oscillations decrease. The frequency of these oscillations can be estimated through a simple
model involving energy balance considerations. Only the main hypotheses of the derivation
are sketched here.

We approximate the system motion to a sinusoidal function of time, so that only the
. coupling between the first harmonic of the motion and the external force is taken on
account. Moreover, we assume slowly varying energy and frequency. The energy transfer
rate between the oscillator and the external force is then estimated using a "power factor”
similar to the one used in electric circuits. We assume also a small phase departure from
steady state condition, and obtain the following estimation of the modulation frequency :

tfm = (Um/272' = N gL E) Vmax(a)()) (5)

)
The function W(E) is the angular frequency of the free oscillator, as a function of the
total energy! | E  The derivative of this frequency is evaluated for the free oscillator at the

frequency (W, of the external force. F ’?) is the magnitude of the external sinusoidal force, as
in equation (2), while Vmax (/o) is the maximum velocity of the free oscillator when it

oscillates at the same frequency fo as the external force. These functions depend on the
detailed form of the potential well, and require a separate numerical evaluation.

Due to the oscillating energy exchange, the system motion is both amplitude and
frequency modulated. The system oscillations can be expanded over a set of sinusoidal
oscillations, yielding the spectrum of an AM-FM wideband modulated oscillation 2,

el
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where J, are Bessel functions of first kind and @ , the "carrier frequency" is identified
with @y, , the external force frequency. This expression shows that the AM-FM oscillations
appear in the frequency domain as a cluster of evenly spaced sharp peaks, with magnitudes
decreasing as n increases. The parameter ﬂ indicates the modulation depth. In our
problem, this parameter decreases exponentially in time, while the system approaches the
steady state. The energy oscillation model above fits well the line spacing observed on the
spectrograms with the external force I, ranging from 0.5 to 10.

The spectrogram shown on figure 2 expands the first harmonic region only, covering the
range from 0 to 3 Hz There are, however, similar "multiplet-like" structures at higher
frequencies. We show in figure 3 a "time slice” of the Gabor transform of the oscillations,

which is roughly a "local spectrum”. There are clusters of evenly spaced lines surrounding
the frequencies of the odd harmonics of the sinusoidal external force. The potential
symmetry "forbids" the even harmonics that would be present if the quadratic term of
equation (2) were not zero.
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Figure 3. Spectrum of a section of the sitnulation, calculated through the Gabor
transform. Logarithm of the Gabor transform magnitude is used in the vertical scale

Clusters of evenly spaced peaks are also visible around the frequency fo / 3, a
subharmonic of the driving force (visible on the bottom of figure 2). Moreover, they are
present around the frequencies (n~1/3) F,, , so that this subharmonic is also a basis of the
quasiperiodic movement. Some of the lines are labeled with the integer numbers kJ of

equation (1).' The first integer is the coefficient of the frequency fo, the second, of the
subharmonic f 0 / 3 and the third multiplies the modulating frequency f m.

4. Conclusions

Gabor transform can map the spectrum of transient nonlinear vibrations. We examine the
synchronization process of a forced oscillator with a cubic nonlinearity. The spectrograms
generated by the Gabor transform shows clusters of evenly spaced lines, a signature of
quasi-periodic oscillations. The structure of the line clusters correspond s to a 3-periodic
movement. One of the basis frequency present is incommensurable with the external force
frequency. These spectra are identified with simultaneous amplitude and frequency
modulation of the system. A simple model, based on energy transfer considerations, can
explain the AM-FM behavior and corectly calculate the modulating frquency.
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