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Abstract:Using a previously derived QCD effective hamiltonian we find the masses
of heavy quarkonia states. Non perturbative effects are included through temperature
dependent gluonic condensates. We find that even a moderate change in these conden-

sates in a hot hadronic environment (below the deconfining transition) is sufficient to

significantly change the heavy meson masses.

The study of hadronic matter at high temperatures and densities has direct rele-
vance for heavy-ion experiments. Apart from the search of quark gluon plasma, serious
attention has been given to signatures of a hot system composed by hadrons below the
deconfining transition. Among these signatures, changes in the masses due to medium
effects play a major rolé. They have been extensively studied with the Nambu-Jona-
Lasinio model [1], with non-relativistic potential models [2] , with QCD sum-rules (3]
and in lattice QCI [4].

The experimental detection of medium effects on the masses is a very difficult
problem. On the other hand, from the theoretical point of view the situation is not
quite clear. Some calculations predict a significant decrease (N 400 MeV) of the %,
J /1 and ¢’ masses. Some others suggest that the masses stay constant. We will argue 7
that they may increase.

The approach to this problem adopted in the present work is in many aspects
similer to QCD sum-rules at finite temperature. In particular, our results for the heavy
quarkonium spectrum depend primarily on perturbation theory (which is related to the
value of a,) and on the glion condensate. The same conclusion is found in ref. [3]. The
majn difference between this work and the above mentioned spectrum calculations is
that we give special emphasys to vacuum changes with temperature.

It has been known since the late seventies that the QCD (physical) vacuum is full of
soft gluons or, equivalently, contains chromoelectric (E) and magnetic (B) fields. Such
a state, |Q), has lower energy than a state without any fields, the perturbative vacuum,

|0). This picture is supported by the existence of non-vanishing gluon condensates, i.e.,
oy [Ty _ 42 1
(1% B, Fj0) = ¢ 0 (1)

where F,, is the usual QCD field tensor.



At increasing temperatures; lattice calculations érédict a phase transition to a de-
confined phase. In terms of the vacuum state this transition can be interpreted a;s
the passage from the non-perturbative (or physical) to the perturbative vacuum, i.e.,
|€¥) — |0). Roughly speaking, one can say thai the background soft gluon fields would
then “boil away”, implying that ¢* — 0. In fact some specific lattice calculations {5)
suggest that even above the deconfining phase transition there may be non-vanishing
gluon condensates, but they are not yet conclusive and therefore from lattice simula-
tions we cannot extract the temperature dependence of the gluon condensate over a
wide range of temperatures. Model calculations using chiral perturbation theory [6] or
dilaton fields {7] come to the conclusion that ¢* stays almost constant until the phase
transition temperature T, and then starts to drop faster going to zero very slowly.

We will now shortly describe the basic elements of our “effective QUD” applied
to the study of heavy quarkonium. Qur meson states incorporate the background
soft gluon ficlds . Together with the usual quark anti-quark states, |gg), we will
have also |[gEg) or |gBF). In the first case the quark and anti-quark are in a color
singlet representation and we call it a singlet state. In the second case, because of the
interaction with the vacuum, the combination ¢ g {(or ¢ B7...) is a color singlet but
the quark anti-quark pair is in a color octect representation. We call therefore these
states ocltect states.

In order to ensure the gange invariance of our calculations we will make our meson
states gauge invariant by consiruction. This can be done with the help of the color
transport operator

Top (F2,%1) = P exp (—ig '/:Tt dz Au) - (2)
i ab
The path ordered exponential (denoted by P exp) of the background gluon field A,(x)

transports along a straight line the color index b {of the fundamental representation of
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the gauge group) at pdsition &1 to index a at position ;. This operator was introduced
in this context by Schaden and Glazck [8] and extensively used later on by Nunes [9]. It
is easy to show that canonical anti-commutation relations for the quark and anti-quark
6perators imply that the singlet meson basis states defined below are orthonormal.
Considering all that was said above we can write now our heavy meson basis states
explicitly. For simplicity we restrict ourselves to the pseudoscalar mesons, which are

then

15) = ul* (&) Top (80, %1) v3 (51) |02) (3)

T

By} =

7
B = > Lt (@) @0 BuThe (30,51) o () ]0) @
; (#2) Bap - (F2 — £1) Tho (&2, 1) 02 (1) |2) {(5)

|By) = ugig :/‘L; ul* (&) Bas - (3°° x (82— #1)) Toe (@0 51) o2 (£1)19)  (6)

The pseudoscalar meson 7 can be well represented by a linear combination of the

above basis states

In) = [ 202,00 (7)

M= SEhEz.

The interaction between heavy quarks is described by the QUCD Lagrangian with
two simplifying approximations: a) non relativistic limit with the inverse heavy quark
mass expansion up to first order and b) separation of the glion fields into classical
background nonperturbative fields (which will later give rise to the condensates) and
quantum high momentum fields. Expansions involving both types of fields will include
only lower order terms because we will consider only the lowest order gluon condensates
and also because higher powers of-the quantum high momentnm fields will couple only
in the perturbative regime and can be neglected since @, is small for high mementum

couplings.



Denoting the quark fields by 9 and gluon fields by V, the QCD Lagrangian is

written as

1 — _
Lovn = —iF,?.,F.inr?f’(i@"‘QTBK)TJ"“””TP%’) . (8)

We make then a Foldy-Wouthuysen transformation in the quark fields

P — exp (ﬁ . ﬁ/Zm) ]

% — Pexp (wi’?-ﬁ/%ﬂ.) 9)

obtaining a non-relativistic Lagrangian

1 -
Lnpaep = — i FLEY +9 (i'yDDg - m) P+

g 0
0 &
components. We next separate the gluon field in background (4,)} and quantum (Q,,)

where D = § — igff and ¥ = ( ) does not couple upper and lower spinor

fields

Vi=A,+4, . (11)

We choose the Conlomb background gauge for the quantum fields
D@ =0 (12)

where D0, = 8,Q.. + gf ™ A4Q... The background fields are defined in a modified

Schwinger gauge [10]

A% = —éF;’,-:ci ; AL = —Fh e (13)

J

The field A, is treated as an external field and therefore satisfies the equation of
motion D“F‘j}, = 0, where Flj’:, is the background field strength which is assumed to be
practically constant over the extent of the heavy meson.

We next expand the nonrelativistic Lagrangian only to second order in the quan-

tum fields and subsequently integrate them out in favour of an effective (coulombic)

interaction. These calculations have been carried oul in more detail in ref. [9,11] and
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will not be presented here. It is important to mention that during the calculations

~ retardation effects have been neglected (this instantaneous approximation should be

correct up to order 1/m) and that matrix elements of A, have been parametrized,

. producing terms proportional to $?. The resulting effective Hamiltonian was presented

in ref. (9,11} and is still complicated. We have numerically diagonalized it in the basis
(3 - 6) and found the solution of the resulting set of coupled differential equations for
the wave functions. We have then checked that for the description of the low lying
states of the spectrum it is enough to keep the terms of order (1/m)° plus the kinetic

energy terms. The effective Hamiltonian can be finally written as
" Polutz - 2y ey L v
= g v (F)mu(F) +v(d)mv (@)“ZF,WF

—ul(@) T g B wiu(@) — v(#)T" g Ef 2 0'(2)

—~ —+

V‘Z v2
R - RN T FR T
al(#) S Eu(#) - (@) 5.2 o'(E)

1 5 -
to, [ Pyul(@) T (@) - v(@) T v'(7)

(14)
where the second line corresponds to the “Stark effect” discussed by Leutwyler [14] and
Voloshin [13]. Here u(Z') and v(Z) denote the annihilation operators for a quark and
antiquark of mass m respectively whose spin and color indices have been suppressed,

7F=&—Fand T4, T" are the Hermitian generators of the SU(3) color Lie-algebra in
d

the 3 and 3 representations respectively.



Diagonalysing our effective Hamiltonian in the basis (3-6) only the states S and E,

couple and we obtain the following set of coupled differential equations for the wave

functions.
1 8 a, Trqbr

4
3
st (o) -t o

where I is the mass cigenvalue of the quarkonium and m is the mass of the constituent
quarks. The functions $(r) and E(r} are related to the wave function components
in the expansion (7) via

E,

Us()=750) 5 el =2 )

In order to include the scale dependence (or distance dependence) of a, we use in

eq. (15)

) ) 1 295 +53/75  4621n(f(r)
R L = Ty o
where
1
T} = l'ﬂ, b
f(r} {(Ar)z +]

This is the result of the two loop calculation given in ref. [12]. In the above expression
e = 0.5772, A = 200 MeV and b = 10. Among the matrix elements we find some

involving the energy of the background fields. In particular we find
(s1 [ & ( ,,,,F‘“’) 15} = (QFQ) = C = Cod? (16a)

(Ellfd3:c (—iF‘wF“"’) 1B\ ~ (QEF'E)R) = 0 (16b)

where ¢* is the gluon condensate defined in {1) , Gy is a positive constant and C is the
energy appearing in eq. {15a). The last line follows from the assumption that higher

order vacuum expectation values of the background fields are zero.
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Asit can be seen thereis a splitting between “singlet” and “octet” states given by C.
Since ¢ is negative C will be also negative and the singlet states have a negative energy
with respect to the octet states. The constant factor O was fixed by reproducing the
observed energy levels of the groundstate and first excited charmonium and bottomium
states al zero temperature. In the (1/m)° approximation pseudoscalar and vector
mesons are degenerate and our calculations are valid for the J/4 , %' ,T and 1" states.
For an energy splitting between ¢’ and J/4 of 600 MeV we obtain C = —680 MeV.

In order to investigate the temperature dependence of our results we consider the
temperature dependence of the gluon condensates. In view of the existing estimates of
this dependence we parametrize it in the folowing way :

2
& =1- () (1)
where ¢ is the value of the condensaie at T = 0 and T, is some critical temperature at
which ¢* = 0. Ty might be much larger than the deconfining transition temperature.
With To = 250 MeV eq. (17) interpolates the results compiled in ref. [6]. Inserting
eq. (17) into (15) and solving it for several values of T between 0 and T, we find
the wave functions and masses of the fundamental and first excited states at different
temperatures. The results for the masses are shown in figure 1. The quark masses
were taken to be m, = 1640 MeV and m; = 4800 MeV. The first interesting aspect
in figure 1 is that the masses are increasing with temperature. We understand this
behaviour in the following way : any physical state considered is a mixture of singlet
and octet components but for the low-lying states , such as J/9 , ¢/, T and Y’ the
singlet component is largely dominant. In the limit Ey{r} — 0 we are left only with the
first of eqs. {15). In this equation , the constant C has the effect of shifting the energy
of the state to smaller values (since it is negative). The temperature dependence of the
condensate implies that

C = C(T) = Cog™(T)

8



As ¢*(T) decreases with temperature , so does C and the energy levels of the S states
are shifted to larger values. The existence of important octet components does not
change this behaviour. Roughly speaking we “ boil away ” the physical vacuum and
raise the energy of the states. A similar effect occurs in the context of thermodynamics
of quarks and hadrons during the deconfining transition, where a suppression of the
physical vacuum brings an additional term (in the simple bag model language this is
the bag constant) to the quark energy density.

Our conclusion about the behaviour of heavy quarkonium masses with temperature
is in contradiction with those of ref. [1] and [2] but in agreement with the lattice
simulations performed in ref, [4].

The second interesting aspect in fig. 1 is the sudden disappearence of the 1 line
much below the critical temperature. Excited states (specially light ones) are less
tightly bounded and therefore sensitive to subtle changes in the confining potential, In
our approach, as extensively discussed in ref. [11], the gluon condensate generates the
mid range part of the potential, which other authors parametrize as being linear. Qur
calculations indicate that a small reduction in ¢ due to the temperature is enough
to make the existence of %’ impossible. Accordingly , long before dissociation due
to plasma screening, 3" would be suppressed as a bound state. Usually , in order to
explain J/v and 9’ suppression in a hadronic environment (i.e. without quark gluon
plasma) one has fo use charmonium-nucleon cross sections which are considered to be
too large. In our picture this suppression would occur very naturally , reflecting the

inhability of the weaker gluonic condensate to bind the ¢ — 2 .
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FIGURE CAP'TTIONS

Fig. 1 Mass (in vacuum mass units) plotted against temperature (in critical temper-

ature uilits). | O' 9
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