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Abstract

A new pseudoclassical supersymmetrical model to describe spin 1/2 particle
in 2+1 dimension is proposed. Different ways of its quantization are discussed.
They all lead to the minimal quantum theory of the Dirac particle {spin
projection 1/2 or —1/2). It turns out that the model can be derived in course
of a dimensional reduction from one of the Weyl particle in 3+ 1 dimensions,

proposed recently by the authors.
11.10.Ef, 03.65.Pm
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I. INTRODUCTION

In thi.s paper we present a new pseudoclassical model for a massive Dirac particle in 2+1
dimensions, interacting with an external Abelian gauge field. Such a model has an impor-
tant meaning not only for the deeper understanding of the quantumn theory of relativistic
particles, but also because of a close connection with the theory of interacting anyons, which
attracts in recent years greal attention (see for example [1]). As it is known, the pseudo-
classical supersymmetrical model for Dirac (spinning) particle in 341 dimensions was first
proposed by Berezin and Marinov [2] and after that was discussed and investigated in the
numerous papers [3-9). Generalizations of the mode! for particles with arbitrary spin, for
Weyl particles and so on, one can find, for example, in [10-12]. Attempts to extend the pseu-
doclassical description to the arbitrary odd-dimensions case had met some problems, which
are connected with the absence of an analog of 4®-matrix in odd-dimensions. For instance,
in 241 dimensions the direct generalization of the Berezin-Marinov action (standart action)
does not reproduce a minimal quantum theory of spinning particle, which has to provide
only one value of the spin projection (1/2 or —1/2). In papers [13,14] they have proposed
two modifications of the standard action {o get such a minimal theory, but these models can
not be considered as satisfactory solutions of the problem. The action [13], in fact, is clas-
sically equivalent to the standard action and does not provide required quanfum properties
in course of canonical and path-integral quantization. Moreover, it is P- and T-invariant,
so that an anomaly is present. Another one (14} does not obey gauge supersymmetries and
therefore loses the main attractive features in such kind of models, which allows one to treat
them as prototypes of supersirings or some modes in superstring theory.

The action, we are proposing, obeys three gauge symmetries-one reparametrization sym-
metry and two supergauge symmetry, It is P- and T-noninvariant in full accordance with
the expected properties of the minimal theory in 2+ 1 dimensions, which has to describe only
one value of ﬂle spin projection. Dirac quantization {without explicit gauge fixing on the

classical level) and quasicanonical quantization with fixation of the gauge freedom, which



corresponds to two types of gauge transformations of the three existing, leads to the quan-
tum theory of spin 1/2 Dirac particle in 241 dimensions, Technically, the Dirac equation in
2+ 1 dimensions arises in both schemes of quantization in different ways, but both quantum
theories appear to be equivalent and describe a Ipa.rticle with spin 1/2. In conclusion we
discuss a relation between the theory of the massive spinning particle in 2 + 1 dimensions

and the theory of massless (Weyl) particle in 3 + 1 dimensions.

II. LAGRANGIAN ACTION AND HAMILTONIAN FORMULATION

The new action to describe a Dirac particle in 2 + 1 dimension has the form
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the Latin indices a, b, ¢, ... run over 0, 1, 2, 3, whereas the Qreek (Lorentz) ones y, v, ...
run over 0, 1, 2; x*, ¢, & are even and ¥°, y are odd variables, dependent on an invariant
parameter 7 € [0,1]; F, = 8,A, — 8,4, is the strength tensor and g is the U(1)-charge of
the particle, interacting with an external gange field A,(x), which can have the Maxwell or
{and) Chern-Simons nature; £4** is the totally antisymmetric tensor density of Levi-Civita in
2+1 dimensions normalized by %% = +1; 5, = diag(l, =1, -1, -1}, n, = diag(1, -1, -1).
We suppose that z* and ¢* are 2 + 1 Lorentz vectors and e, &, ¥, x are scalars so that
the action (1) is invariant under the restricted Lorentz transformations (but not P- and
T-invariant}. There are three types of gauge transformations, under which the action (1) is

invariant: reparametrizations
So¥ = 4, Ge= n(ef), bYt =Bt by = Lixe), bn= ey, @)
R dr ’ ’ dr ’ dr

with an even parameter £(r); supertransformasions

i
dx* = wh'e, de = 1ye, J@D“:-;-Ee, Jz,b3=%e, dx=¢, du=20, (3)
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with an odd parameter ¢(+); and additional supertransformations
1 .
Sz = —1e™ a0 | dyp* = Ee“”zi,d))\ﬂ y dk=0, de=dp =46y =0, {4)

with an even parameter §(7). Calculating the total angular momentum tensor M,,., whose
components are Nother currents related to the Lorentz symmetry of the action (1), and are
at the same time generators of the correspondent transformations for the variables of the

theory, we get
My = Tyufy — Ty + i[%a l,f),,] d (5)

where m, = GL/81”. Below we are going to use it to prove properties of the Lorentz
symmetry of the correspondent quantum theory.

Going over to the Hamiltonian formulation, we introduce the canonijcal momenta
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It follows from (6) that there exist primary constraints
o'=r, o'=p,, oV =P, o =P 1+, (7)

Constructing the total Hamiltonian H{1), according to the standard procedure [16,17], we

get HO = H + 2,04 where

H= _g(n2 = m® + 2 ”) + (T + my®)x + (e athor + %sm)n ., (8)

where II, = m, + gA,. From the consistency conditions &) = {&(1), HW} = 0 we find
secondary constraints ®® = 0,
?
o =TL* + mp®, 8 =11 — m? 4 gl pr”, O = e a0 + F5m, (9)
and determine A, which correspond to the primary constraints CD,{;I). No more secondary con-

straints arise from the consistency conditions and the Lagrangian multipliers, correspondent
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to tﬁe primary constraints ®{", i = 1,2,3, remain undetermined. The Hamiltonian (8) is
proportional to the constraints as one could expect in the case of a reparametrization invari-
ant theory, One can go over from the initial set of constraints &, #2) to the equivalent
ones &0, 33 where §@) = 3 (u') SPh=y+ %@,&1)). The new set of constraints can be
explicitly divided in a set of the first-class constraints, which are (@f—l), e=1,2,3, é(z)) and
| in a set of second-class constraints fIn(ll). Thus, we are dealing with a theory with first-class

constraints.

IIT. DIRAC QUANTIZATION

Let us consider first the Dirac quantization, where the second-class constrainis define
the Dirac brackets and therefore the commutation relations, whereas, the first-class con-
straints, being applied to the state vectors, define physical states. For essential operators

and nonzeroth commutation relations one can obtain in the case of consideration:
P 1
~ " a o b . ab
[‘T#a Wu] = l{xﬂsﬂv}p(q;il)] = ""55 ’ h[) :lbb}+ = Z{'(}b ¢ }D(q)g”) = _577 . (10)

It is possible to construct a realization of the commutation relations (10) in a Hilbert space

R whose elements f € R are four-component columns dependent on z,

uy(z)

where u(z) are two-component columns. Then
. N fa L
=g, fe= 00, = §’Y ) (12)

here I is 4x4 unit matrix and 4%, @ = 0,1,2,3 are y-matrices in four-dimensions, which we
select in the spinor representation 49 = antidiag(f, I), +' = antidiag(c®, —o'), ¢ =1,2,3,
where o are the Pauli matrices and [ is 2x2 unit matrix.

According to the scheme of quantization selected, the operators of the first-class con-

straints have to be applied to the state vectors to define physical sector, namely, D (a) =

5

0, where &) are operators, which correspond to the constraints (9). There is no ambiguity
in the construction of the operator éiz) according to the classical function @52’. Taken into
account the realization (11), (12) one can get a set of equations @f(z} = 0 in the two

component form,

[(20, — gALITS —mlus(e) =0,

(20, — gAL)y* - my’|f(z) = 0 (13)
(48, — g AT —mlu_{z) =0,
where two sets of 4-matrices T, s = %, in 2+1 dimensions are introduced,
[V =0% T!=sd" 2= —sig!, T = Fipy [T2 TV =297, (14)

As to the construction of the operator éé’} according to the classical function ®{” from
the eq. (9), here we meet an ordering problem since the constraint ' contains terms
with the product of the momenta and a function of the coordinates, namely terms of .the
form m, A*(z). For such terms we choose the symmetrized (Weyl) form of the correspondent
operators, m,A*(z} -+ 1If,, A*(#)]} , which provides, in particular, the consistency of
two equations @iz)f = 0 and éff)'f = 0, because of in this case we have ég” = (é%z))z.
The operator &ng) may be constructed without the ordering problem, and the equation

li);(,z)f(m} = 0 can be presented in the following form

\ (284 ~ gAY — sm]uy(z) =0,
" (10, — gA ) vs +ramf(z) =0 — {15)
{28, — gAITE — smu_(z) =0.

Combining eq. (13) and (15), we get

(28, — gA, )% smlus(z) =0, u(z)=0, s==+. (16)

"
To interpret the result obtained one has to calculate also the operators Mm, correspondent

to the angular momentum tensor (5),

n F_,T'_, 0
My, = —1(2,0, — 2,8,) %i : o ] T
+padl o



Thus, in the quantum mechanics constructed, the states ﬁith s = + are described by the
two component wave function u, (z), which obeys the Dirac equation in 241 dimensions
. and is transformed under the Lorentz transformation as spin +1/2 (see for example {19]).
For s = — the quantization leads to the theory of 241 Dirac particle with spin —1/2 and

wave function u_{z).

IV. CANONICAL QUANTIZATION

To quantize the theory canomnically we have to impose as much as possible supplementary
gauge conditions to the first-class constraints. In the case under consideration, it turns ouf
to be possible to impose gauge conditions to all the first-class constraints, excluding the
constraint ‘i?). Thus, we are fixing the gauge freédom, which corresponds to two types of
gauge transformations {3) and (4). As a result we remain only with one first-class constraint,
which 1s a reduction of @&2’ to the test of constraints and gauge conditions. It can be used
to specify the physical states. All the second-class constraints form the Dirac brackets.
We consider below, for simplicity, the case without an external field. The following gauge
conditions ¢ = 0 are imposed: 3F = e+({my!, ¥ =x, ¥F =, BF =zo—(7, o8 =
#° , where { = ~sign 7°. (The gauge z5— (T = 0 was first proposed in [8,17] as a conjugated
gauge condition to the constraint 72 —m? = 0). Using the consistency condition CI>G =0, one
can determine the Lagrangian multipliers, which correspond to the primary constraints @Sl),
i =1,2,3. To go over to a time-independent set of constraints (to use standart scheme of
quantization without any meodifications {17,18]) we introeduce the varialble T, Tp = ZLo— (T,
instead of zp, without changing the rest of the variables, That is a canonical transformation
in the space of all variables with the generating function W = zom§ + 7|mg| -+ Wo, where Wy
is the generating function of the identity transformation with respect to all variables except

2% and 7p. The transformed Hamiltonian H) is of the form

H(x)wszJr%_‘f:wH@}, W=t m, d=1,2, (17)

where {®} are terms proportional to the constraints and w is the physical Hamiltonian. All
the constraints of the theory, can be presented after this canonical transformation in the

following equivalent form: K =0, ¢ = 0, 7' = 0, where

I(:(e—w_l,Pe; XﬂPx; K, P.-c; .’.EB,I?TDI-"‘LU; 'd’uapﬂ);

¢=(Wd¢d+m¢aspk+3¢k)a d=1v21 k=112:3; T=Cw{¢21¢1]+%5m (18)

The constraints & and ¢ are of the second-class, whereas T is the first-class constraint.
Besides, the set &' has the so called special form [17]. In this case, if we eliminate the
variables e, F., x, P, &, Py, 28, Imo), ¢°, and P, using the constraints K = 0, the Dirac
brackets with respect to all the second-class constraints (K, ¢) reduce to ones with respect
to the constraints ¢ only. Thus, on this stage, we will only consider the variables x?, mq,

¢, ¥*, P and two sets of constraints - the second-class ones ¢ and the first-class one T.

Nonzeroth Dirac brackets for the independent variables are

d r i r r 1
{25 m)pw) =8¢, {240 }pgy = J[%Dd,uﬁ I, {259 Yo = —Je’)dﬂr ,

(%% Yoy = —%(55 ~wtmgm), dr=1,2. (19)

Going over to the quantum theory, we have to calculate the commutation refations

between the operators ¢, 7y, ¢ by means of the Dirac brackets (19),

(6] = 60, [8%,87) = g 94,
(6, 7] =~ , 9% 47), = 58— 07 ) (20)

We assume as usual [8,17] the operator ¢ to have the eigenvalues { = £1 by analogy with
the classical theory, so that {2 = 1, and also we assume the equations of the second-class
constraints ¢ = 0. Then one can realize the algebra (20) in a Hilbert space R, whose

elements f € R are four-component columns dependent on x = (z%), d = 1,2,

£(x) = f+(x) , (21)
f-(x)



so that fi(x) and f_(x) are fwo-component columns, A realization has the form

2t =2 + 1f‘s"’[frrzﬂ‘ —-mE, fg=—18],
2002
. _ . I o
P = 2(5 — W g 8T -ﬁm'rdz (= o \ {22)

where I and [ are 4x4 and 2x2 unit matrices, $F = diag(e®, ¢*), and ¢* are Pauli matrices.

The commutator [1,17)2, 1])1]., can be calculated
[lf)zsv')l] = — (mZ3 + 7459,

so that the operator T correspondent to the first-class constraint T (see (18)) appears to be

3m

T = —CEa [éd)Es 4281 (1552) 4 185(—15L") — Sm} . (23)

The latter operator specifies the physical states according te scheme of quantization ac-
cepted, Tf = 0. On the other hand, the state vectors f have to obey the Schrédingér
equation, which defines their “time” dependence, (:8/8r—20)f =0, & = W, where
the quantem Hamiltonian & corresponds the classical one w (17). Introducing the physical
time 2° = (7 instead of the parameter 7 [8,17], we can rewrite the Schridinger equation in

the following form {we can now write f = f(z), (z = 2°, x)),
— ()f(z) =0 (24)

Using (24) in the oq. T'f = 0, namely replacing there the combination {Of by 1f, one can

verify that both components fa{z), of the state vector (21) obey one and the same equation
(8, T% —sm)f(2) =0, (=1, {25)

which is the 2-+1 Dirac equation for a particle of spin s/2 whereas fi(z) can be interpreted
(taken into account {24)) as positive and negative frequency solutions to the equation re-
spectively. Substituting the realization (22) into the expression (5), we get the generators

of the Lorentz transformations

49

) [ra,u: Fsu] D

Mo = —1(2,0, — 2,0,) — I [ ] , (26)
0 Fsu; FSV

which have the standard form for both comporents fe(x). Thus, a natural interpretation
of the components f¢(z} is the following: f,(z) is the wave function of a particle with spin
s/2 and f*(z) is the wave function of an antiparticle with spin 5/2. Such an interpretation
can be confirmed if we switch on an external electromagnetic field. In this case the coupling
constants with the external field in the equations for fe(z) are {g, i.e. have different signs

for particle and antiparticle,

V. CONCLUSION

As is known, the method of dimensional reduction [21] appears to be often useful to

construct models (actions) in low dimensions using some appropriate models in higher di-

mensions. [n fact, such kind of ideas began from the works [22]. One can also mention that
the method of dimensional reduction was used to interpret masses in supersymmetric theo-
ries as components of momenta is space of higher dimensions, which are frozen in course of
the reduction. It is interesting that the model of 241 Dirac particle proposed in the present
paper can also be derived in course of a dimensional reduction from a model [12] of the Weyl
particle in 3+1 dimensions. The action, Hamiltonian, and constraints of the latter model

have the form

1
S = [ [Fop@ — ik~ ey + Bty — ] dr
t]

Err#).'c“ ,

H= ~§7r +17ruy’)“x—(sw)\gfr”z,b’\1,b"+ 5
Pe:Px=PH+lT,[)#—P —Tr %ﬂ#@b“_o

Ty = Cuno ™ + om, =0, pnAo=0,1,2,3, s==. (27)

2
In the gauge %° = 0 {or in any gauge linear in ¥*) one can see that, in fact, among the

four constraints T, only one is independent. That means, that, in principle, one can use
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only one component of 5 and 2]l others put to zero. In 3+1 dimensions this viclates the
explicit Lorentz invariance on the classical level [20]. However, it is possible to do this in
2+1 dimensions without any violation of the Lorentz invariance. Let us fulfil a dimensional
reduction 3+1 — 2+1 in the Hamiltonjan and constraints (27), putting m3 = m. Besides, let
us consider only one component of x*, namely & = &, whereas x° = ! = x? = 0; how was
said, this does not reduce the number of the independent constraints and does not violate
the Lorentz invariance in 241 dimensions. As a result of such a procedure we just obtain
the expression (8) (at A = 0) for the Hamiltonian of the massive Dirac particle in 2+1
dimensions and all the constraints of the latter model. In the presence of an electromagnetic
field one has also to put 43 = 0, & A, =0 to get the same result. An equivalent model one

can get, puting, for example, after the dimensional reduction only &% =0,
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