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Abstract

Particles creation effect by a constant electrical field is’ considered in the
frame of QED in 2+ 1-dimensions. In this connection exact solutions of the
2-+1 Dirac and Klein-Gordon equations in such a field are found. Using them,
characteristics of the effect are calculated, namely, the mean numbers of par-
ticles created and the vacuum-to-vacuum transition probability. Expressions
for these quantities can be presented in a universal form for both dimensions

(2+1 and 3+1) and for both kinds of statistics of particles created.

The effect of particles creation from vacuum by an external field ranks among the most
intriguing nonlinear phenomena in quantum theory. Its study is tleoretically important,
since it requires one to go beyond the scope of the perturbation theory, and its experimental
observation would verify the validity of the theory in the superstrong field domain. The
study of the effect began, in fact, first in 3+1 dimensiona.l QED in connection with the
so-called Klein [1] paradox, which revealed the possibility of electron penatration through
an arbitrary high barrier formed by an external fielf. Then Schwinger [2] found the vacuum-
to-vacuum transition probability in a constant electric field. It beceine clear that the effect
can actually be observed as soon as the external field strength approaches the characteristic
value (critical field) E, = m?c®/|e[ ~ 1,3 - 10'® V/em. This is the field that produces the
work mc? when acting along the path equal to the Compton length /i ‘me. Although does not
exist now any possibility of creating such fields under laboratory cenditions, they can exist
in astrophysics, where the characteristic values of electromagnetic fields near pulsars and
gravitational fields near black holes are enormous. One can alse meution that the Coulomb
fields of superheavy nuclei can create the electron-positron pairs. Consideration of diffrent
problems in QED connected with vacuum unstability (particles creation effect) and detailed
bibliography can be found in the book [3]. Particle creation by an external gravitational
field, in analogy with electrodynamics, has also been considered in 1nany papers. A detailed
bibliography may be found in [4].

It is interesting to turn again to the particle creation effect and see which kind of modifi-
cations appear in the corresponding formulas of 34+ 1 QED when passing to 2+ 1 dimensions.
In the last years a great attention is devoted to field theoretical models in such dimensions
{5,6], in particular, because there probably could exist particles with fractional spin and ex-
otic statistics (anyons}, which can have an interest in connection with diffrent applications
in physics of planar fenomenos. One can mention here the quantim Hall effect and high
temperature conductivity, see, for example [7]. In the present paper we are calculating char-
acteristics of particles creation effect by a constant electrical field in 2 4 1-dimensional QED,

namely, the mean number of particles created and the vacuum-to-vacuum transition proba-
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bility. We are using the general approach, which was elaborated in field theory for such kind
of calculations [8,9,3]. According to it all the information about the processes of particles
scattering and creation by an external field {in zeroth order with respect to the radiative
corrections) can be extracted from complete sets of exact solutions of the relativistic wave
equations in the external field. (A complet collection of exact solutions of such equations
in 341 QED is presented in the book [10], one can also find there a detaited bibliography.)
That is why we find first a special set of exact solutions in 2 + 1-dimensional QED for the
constant homogeneous external electric field, which can create particles from the vacuum.
The 2+ 1-dimensional Dirac equation in an external electromagnetic field with potentials

Au(z) has the form (further i = ¢ = 1)

(P —=m)pl{z) =0, z=(2*)=(,x), x= (), £=0,1,2, i=1,2, {1)
Pu=id,—eAu(a}, [ 7"]e =2, o = diag(1, -1,-1),
where ¥(z) is a two component column. We will use the following representation for the
two-dimensional y-matrices

Y=y =iet, = —ial, [y = —2ie ey, = 00 (2)

where ¢ are Pauli matrices, £#* is totally antisymmetric Levi-Civita tensor normalized
by €2 = 1, and [P, P)] = —iel,,, F, = 8,A, ~ 8,A,. Electric field E = (B, E,)
and magnetic field H are defined as E, = Foo, By = Foy, H = Fy;. In the case under
consideration, it is possible to construct only one invariant I,

1
I=FuP" = FJF“ = B* - F*, F}= %EF,AFW‘ =(-H,E,~E,). (3)

To solve the Dirac equation (1) it is convenient to make the well known Ansatz
Y(z) = (Puy" +m) é(z). (4)
Then the function 4 has to obey the squared Dirac equation in 2 + 1 dimensions,
(P? —m? — eFy*) () =0, Fy* = i(Eo' + E,0® +iHod) | (5)
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Consider the const.ant and homogeneous field with the invariant I < 0. This is a partic-
ular case of the external field, which can create particles. In this case one can always select
the reference frame so that H = E; =0, B, = £ # 0. For such a field we will use the
potentials 49 = A; =0, A; = Fz° Fy = E, = E . Besides, we select ¢E > 0. Solutions
of the squared Dirac equation (5) for such potentials éaﬁ be expressed in terms of the Weber

parabolic cylinder functions [11],

£¢pa(z) = Cp Tdpa(a®) explipx}, s =1, (6)
F8pa(2%) = Dy pa (F(1 = d)7)vs, Fhpo(2®) = D, _ams(F(1 +8)7)vs,
1 1

2 —
T Uy =8 Vg, Uy == , Uy =
1 —i

X m? 4+ p? p2 — eBz®
If = -, A = ) T =
2 ek VeE

Solutions of the Klein-Gordon equation, which looks like the eq. (3} at v — 0. follow
from (6) at 5=10, v, = 1, and O} = (2#\’/2&5’)—1 exp {—mA/8}. They can be derived from
the corresponding solutions in the 3 + 1-dimensional case [8,10] by means of a dim: nsional

reduction.

Solutions of the Dirac equation can be found, using the formula (4),
$¥pe(®) = (Py* + m) £¢ps(2) = Cp {up,(a°) exp{ipx}, (7)
T¥par(2%) = (m+ ip ) Dyt (F(1 = i)Yo FVEE(L + ) D, (F(1 = 7)oy,
™m—ip

:,'_z,bp‘_l(:ro} =7 o/cE (11} I‘f’p.-il(mu) )
Upo1(2%) = (1 — i) Doy ({1 4 )7t & VEB(L =)D (F(1 + )70
(

+: ,
by 41 (2%) = i"; \/E_"g (1+1) Fhp_a(2?)

As we can see, only half of them appears to be independent, that means, in fact, that the
spin projection can take up only one value, as was also remarked in the case of a free 2 +1

Dirae particle [6]. We select as independent the following sets of solutions

i'ﬁf’)p(-'b") = iﬂ’p‘il(w) s id’p($) = i'ﬁbpﬂ:l(m) . (8)



i Choosing C, = (4W\/6E)_1 exp (—7A/8) , one can verify that the relations of orthonormal-

ity hold,
(ctps ¢pr) = bccb(p — B), (“tp, “pr) = (P — P, (= (9)

One can also prove, similarly to the 3 + 1-dimensional case [3,8], that each of the sets (8)
forms a complete system of functions.

The solutions ¢¢p{z) are classified as describing particles (+) or antiparticles (=) at
{ = —oo, and %4y, are classified as describing particles (+) or antiparticles (=) at t = +oo.
Thus, they present so-called IN and QUT sets of solutions. This interpretation can be

confirmed in two ways. One of them {8] is to consider the constant electrical field as a limit
of a slowly alternating field, which switches out at ¢ — oc. Another one [9,3] is to check

the relations

Hp(t) ¢¥ule) = (&p ctplz), sign (Ep=(, t-> —o0,

Hp(t) “thp(z) = ‘&p “Wp(x), sign &y = (, t = +00, (10)
where Hp = v°(ed¢y® — Piy* + m) is the corresponding one-particle Hamiltonian and £ is
quasi-energy. By using the asymptotic expansion of the Weber parabolic cylinder functions
1], D.(2) = 2*exp{—22/4} + O(|z|"?), one can see that (10} takes place, and (Ep =
teBlt], ‘&, = (eEL. .

Now one can find the decomposition coefficients G (cl‘:') of the OUT solutions in the IN

solutions,
Wle) = +9(2)G (41) + -p(2)G (1) - (11)
To this end, for example, one can consider the asymptotic behaviour of ‘¢(x) at t — —oo,

using the corresponding asymptotics of the Weber parabolic cylinder functions {11]. Thus,

we obtain

! ' ' + i \/E(m_"" 1)
G (), =9 (), 8o -0, g(+! )p:em{g(v—lﬁ)}m»\/};:?

g(1f) =—ewlim}, g(17), ==a (), o(s),=0(-1"), . (2

B

Having these coefficients, one can extract all the information about the of the particles
creation processes [8,9,3]. First of all, let us calculate the mean nnmber N of electrons with
a given momentum p created by the external field {at the same tizne this is the corresponding
number of the electron-positron pairs created). To this end is convenient to use the volume
regularization, so that §(p — p’) = &, . Then

+
NY = {G (_|+) G (_I*)} = exp(—wA). {13)
pp
To get the total numher N+ of the electrons (pairs) created, one has to take the sum of the

expression (13) over all the momenta, which can be easily transformed into an integral,

¥
N+=§:N+= (2) fd N
> P (271-)2 pf p*

where V) is two dimensional volume. Here we meet a divergency (integration over pj),
which is related to the infinite time of the electric field action. If we restrict ourseves to a

big enough, but finite, time T of the action, we can efficiently roplace the integral over p,

by eET [8,3]. Then

=T (B) (5],

where E, = m®/e is the critical field strength. The vacuum-to-vacuum transition probability
P, =exp {tr In|G{. ]‘)I?'} can be calculated, using both kinds of regularization, with respect
to the volume and to the time. Thus, we get the 2 + 1-dimensional analogue of the well
known Schwinger formula, [2],

Pyzexp{ "’E(’;):m ( )_2%‘"”%}. (15)

Similar calculations can be made for scalar QED, using the corresponding Klein-Gordon

solutions. In particular, it turns out that N} and N* have the same form (13) and (14),
whereas the vacuum-to-vacuum transition probability P, differs from (15). It can be calcu-
fated in the scalar QED by means of general formula P, = exp<]f trln |G (-{7)] } and has

the form



Puxexp{ _{(%'..T*m( )%n: l)n_ —nn(%)} ' (16)

Remembering the corresponding expressions for N+ [8,3]and P, 2,3] in 3 +1 dimensions,
one can write formulas for both dimensions D + 1, D = 2,3, and for both statistics in a
unique form

Vi TmP+L o gy 5 F
Nt = D—l’Jﬂ____(_J {_ Ci) -
P Tamr(R) e (F)) Rmee{ou)

i —1)l=sin E, 0 scalar particles
P> e e, s (17}

1 spinor particles

One can see that in 3+ 1 dimensions N+ for scalar particles is one half of the same quantity
of spinning particles, whereas they coincide in 2 + 1 dimensions. We believe that occurs
in virtue of the coincidence of degrees of freedom for spinning and spinless particles in the
latter case.
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