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Neutrino helicity flip in a curved space-time

Carlos Mergulhéo Jiinjor!

In Minkowskian spaces, the helicity of a massloss fermion is a conserved
quantity. In principle, this property may not hold when gravitational
effects are not neglected. In this context, this work proves that the helicity
of a massless neutrine is not conserved in curved spaces. In order to
show this fact, the time variation of the helicity in the Heisenberg picture
is calculated, Also, we verify ihat the differential cross-sectjon due to
helicity Mlip of a rnassless neutrine in a cerved space does nol vanish as a

result of the coupling between the spin and the curvature of space-time,

1 Introduction

Many physicists have studied the inertial effects of a fermion iz a gravitational
field. These works have shown the existence of a couplingil] between the to-
tal angular momentum of 2 fermion and the rotation of acelerated frames.
J.Anandan!® showed that this result is more general by coupling of the spin

to the curvature through the quantum interference of the de Broglie waves. As
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& consequence, particles with spin are sensitive to gravitation, independently
of the frame, which means that, in free fall, particles with or without spin do

not behave in the same way due to the absolute coupling between spin and cur-

vature. According to this, Cai and Pa.pini[sl have shorily shown that massless

neutrinos in curved spaces can flip their helicity contrary to the expected in
Minkowskian space-time. Objections of Anandan'¥l have begun the discussion
about this question which has not been solved yet.

Through this work, we calculate the probability of the existence of a helicity
flip of a massless neutrino which interacts with a éravita.tional field represented
by a Minkowskian asymptoticly metric. The asymptotic regigns of metric are
necessary in order to define, without ambiguity, the mass and the helicity of the
neutrine at issue. Initially, we prove that the helicity operator is not conserved
in general in the quantum formalism calculeting the commutator of the helicity
operator with the hamiltonian of the system in a static metric {section 2). In
this paper, we calculate the differential cross-section of the neutrino helicity
flip due to an external gravitational field in the semiclassical approximation
(sections 3 and 4), solving the discussion mentioned previously showing that

there is helicity flip of massless neutrinos in curved spaces.



2 The time derivative of helicity
To calculate the commutator [fa,, ‘H} we take the helicity operator as
.1 o 1.,
h= Eb—e;jkcr’pk = k—USkpk (1)

where the o'/ = %[7', /] ate the commutators of Dirac matrices and the 8 are
‘the spin operator of the neutrino (see the appendix B). In this work, the Latin
indices denote the Lorentz indices of the four-vectors (tetrad es,")) which ¢, 3, k&
are equal to 1,2,3, The Greek indices are related to the space-time. The units
where c=1and k=1 are used.

In the Heisenberg picture the dinamical evolution of the helicity operator is
given by

ih = {i"l H] (2)

where H is the hamiltonian of a lepton in a curved space. Iis calculation is
given in appendix B.

Using the metric written like
ds® = dy? — f(a)de'du; (3)

and the calculation of the spinoxial connection I'{2) (see appendix A) we see
that the helicity operator is not conserved in curved spaces owing to the non-
vanishing of the time derivative of the helicity operator. This derivative (see its

calculus in appendix B) is

i x| PP - o 0
E
0 el {p? + p?) — o3p! - o?p!
4T o + g 0
-t 9E (4)
0 o2+ o®

where T = Fi’?% and E is the energy of the particle.
As (b # 0) hence the helicity operator is not conserved in the presence of

the gravitational fields contrary to the classical argument given by Anandan!4.

3 The Interaction Lagrangian

A massless fermion in a gravitational field obeys the Dirac equation coupled
minimally to the gravitation (covariant form of the Pauli-Lee-Yang equation)[m]
given by equation:

o1 8a) + T(a)) (=) =0 (5)
wherel®] Tay = iet’n)eﬁ)e“(ﬂho’(‘)au) are the spinorial connections, o(¥) are
the Pauli matrices, el are the field of teiradl® and ¥ is the usual spinor of 2
components. Hereafter, we use Pauli matrices instead of Dirac mairices.

Actually, the equations (5) are the Euler-Lagrange equations obtained from
the Lagrangian densit]rm which, integrated by paris and writien by means of
Pauli matrices (r = det(g,,) and o® = ef‘u)a'(“)), is given by

€= ~—={To" (0, +1,)%} )




from which we get the interaction Lagrangian density:
£y = gl
1=-—=Yo Ty ¥ (7

In this case, we use o', = J(")F(u). We get the equation (5) applying the
variational principle to (6), proving that this Lagrangian density is correct.
This Lagrangian density represents the coupling between the curvature of
space-time and the spin of neutrino. This fact can be seen of a better way
through of sqnare of massless Dirac equation (5) in formalism of Dirac matrices.

Doing it, we get the following result:
" 1 FITU DY
{VHv, -~ ER,“,,,,\O' o 1F =0 (8)

‘where V* = 8" 4+ I'*, K., i5 the curvature of space-time and o*¥ is given by
o = %[’r("),'-y(")}ef‘ﬂ)efb) s0 that the spin angular momentum S is related
to the spin S%) of neutrino by Sy = Ze(i;x)SU*).

In order to calculate this Lagrangian density in the context of the semi-
classical gravitation we consider a static physical case where the adiabatic hy-
pothesis is true in which the gravitational interaction can be switched off so
that we can define asymptotically the usual states which define the neutrino.

For this we demand that the space-time is asymptotically fiat with the metric:
ds? = dn* — f(.'.c)(d:l!?‘ +dy? + dzz) (9)
so that limg..z, f{z) = 1 and z is a specific spatial coordinate.

If we want to calculate the interaction Lagrangian, we have to get the spino-

rial connections calculated in the appendix A. Using these results we get finally

the following interaction Lagrangian density:

-1 —
Ly = —:u;qm(ﬂr(ﬂ)‘r
i df—
Lr = —t T (2)503) _ f3)5(2)
i 4\/~‘_rf3/2dz‘1'(a- o At (18)
- “1¥s o
Ly = Zfadm‘l’cr o

After that, it is straightforward to build the S-Matzix in the tree-approximation.
Therefore using the fact that there are no derivative counplings we can write the

action in this approximation as

S = —i f 'Ly
df —
s = i ey LHOORE ()

where € = (1, z, ¥, z) Is the coordenate of the space-time.

4 Helicity Flip

Consider the following physical situation: a lefi-handed neutrino is emitted
{from a source placed in & region where no gravitational field exists. After a short
time T it crosses & region of dimension L which contains a gravitational field and
reaches a detector situsted out of this region where there is no gravitational field.
Taking these considerations, we will calculate the differential cross-section due to
the neutrino helicity flip. This flip occurs because in the interaction Lagrangian
density (7) the helicity couples to the curvature of space-time causing a non-

vanishing probability of flipping the neutrino helicity.



In order to get this flip, we consider initially the metric bellow that satisfies

the adiabatic hypothesis mentioned previously

ds* = dp® —

i

1
2
so that 0 < A << 1 at region i#| <L, |yl < L and izl < L and A = 0 at the
1est of space-time.

Using this metric, the element of the S-matrix (11) to first order in A is
Sr= -2 [ g0
PE iy ¥ty (13)

This element of the matrix 51 is the leading term of the Scattering-Matzix
due to this flip> because A is a very small parameter and hence other terms

become negligible. Thus A simulates a coupling constant for the gravitational

nteraction.

The incoming state léin}, a left-handed neutrine with an energy E = |7, is

given!®] by
) = lim) = — o (p) exp (s
= = A" p) exp (—ipz) (14)
- and the outcoming state Jout), a tight-handed neutrino with energy B’ = 177
<
9= lout) = ——uy (9 exp (i |
= _ﬁﬁppep ip'z) {15}
where vy = —o?)us,, ugup = 2F and vva = 2E.

The state Jou) represents a right-handed nenirino but not an antineutrino
due to the fact that the hamiltonjan density of & massless neutrino, (see equation

(39)) in a curved space in the bispinor formalism, commutes with the leptonic
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number operator I = [ d® : ¥ (z)¥(2) : which implies ihe conservation of the
leptonic numberl¥]. Therefore, by consistency, if a change of helicity happens
without changing the leptonic number then a flip of helicity means that & left-
‘handed neutring flipped to a right-handed neutrino and not to a antineutrino.

The amplitude of probability of this fip to flist order in A is obtained com-
bining the equations (13} to (15) giving

(d|S1e) = 2% f| L f dt{d[To M0 e) (16)
z| <

so that the wave equations are normalized in & box of volume V., Integrating

this amplitude in a finite range of time T we get
A = ilF =)
(IS )ef = b (' - B) f EFea TPl oy (17)

where §(E' — B) = ‘%r-].imTqm §r(E' - E).
Taking the limit T' — oo above we obtain the following flip probability per

unit of time:
28(F' — E}

wavips Ml (&)

w = 27A

so that |M| = lf daize“'""’?(vl,a-(’)up) .
After these ca.lculationé, the differential cross-section for this process may
be obtained by multiplying w by the finul states density V—g;i and dividing by

the incident flux % we yields

do 2xA?
aw - mﬁ(E’ ~ E)|M|*E”dE" (19)

Without loss of generality, we can set Py = p. = 0 and hence F = p, as

initial conditions. This choice simplifies the calculation of quantity | M [*. Using



the value of |M|* cbtained in the appendix C and integrating over the energy
E the above equation becomes

de  256wA’E sin®qyL, sin’q, L, L%g% cos? ¢, L — Lq, sin 2¢, L + sin® g, I
Eﬁ; = L4 ( qﬁ }( qg ){ qu )

(20)

where §'is the transfered momentum of particle and (@, ') ate the polar angles
of momentum F in the rest frame of the detector.

Introducing ¢, = E{1 —sin ®' cos ¢’), g, = Esin @'sin ¢’ and ¢, = Fcos &'
in this expression we can rewrite it and therefore obtain finally the differential

cross-section concerning to the flip as being (c # 1 and K £ 1)

de  256xA’L? sin® Asin @ sin g’ sin® A cos ©'
s AS sin? @'sin ¢/ cos? @1 — sin ©' cos ')
sin® A(1 — sin ©' cos ¢')
[ {1 —sin @' cos ¢')2
A(sin 2A(1 — sin ©' cos ¢’)
1—sin® cos g’

+ A%cos? A(1 - sin @' cos ') —

] (21)

where A = j—;—i—‘

This cross-section is a finite and non—va.nis}ﬁng quantity. We can prove
this assertion integrating numerically the above expression using the values:
E = 1071V, A = 0.1 and L = 0.988cm. Doing this, we obtain the following

non-null eross-section:

o = 2.76cm? (22)

This cross-section is large when compared with the dimension L? of region
of interaction. Integrating numerically with other parameters we obtain values

finite and different of zero and, in this way, this calculation exhibits that the

cross-section due to the flip of helicity does nbt vanish and grows with the
energy. Though this probability is non-null, it vanishes when we remove (A — 0)
the gravitational field as expected. According to this fact, we do not observe
right-handed neutrino in our experiences because as the gravitational effects
are negligible then the coupling to this neutrino is very small and so the right-

handed neutrino is not ohserved.

5 Conclusion

We show that the cross-section due to helicity flip of massless nenthinos in
curved spaces can be different of zero and finite. In order words, there is 2
non-vanishing probability in order that a left-handed neutrino flips Lo a right-

handed one and not to a antinentrino since this transition obeys the conservation

of lepton number. Looking at the siructure of equation (8), we ¢an infer that

this flip exists as consequence of the coupling between the spin of the neutrino
and the curvature of space-time. Therefore, in general, the helicity of massless
neutrinos can be changed owing to the presence of weak gravitational fields in
contrary to expected in Minkowskian space-time, thus the issue among Cai and
Papini and Anandan about this flip is resolved. Aceording to this conclusion,
this flip is other evidence of that a new physics beyond of Standard Model need

be found when gravitational effects are important in quantum context.
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Appendix A

The spinorial connection[®] T{®), in the context of Pauli matrices o(), can be

written as
K = 3RapoIo? (23)
so that Qg(y5) = efa)eﬁ)ep(j)w
Accordingly, we have to get covariant derivative of tetrad field (e‘,(j)w) cor-

responding to the metric g, extracted from {9). Therefore, the Levi-Cevita

connection must be caleulated and their values obtained from this metric are

B, = 0

S = g3 2 @atn  Bab = bundye)

=2, = —%%{6,,16,‘2-#6,,26,,1) ' (24)
= g 2t + )

Putting these results in the equation {23} we obtain the spinorial connections:

Ty = 0 (25)
I =0 (26)
r; = 1;33—2%0(3) (21}
= e (2)

These connections refer to a nentrino immersed in a curved space with a metric

(9).

11

~ The spinorial connection!®] %), in the context of Dirac matrices oli), can

be written as

1 g
L(a) = 3a)ey 7™ (29)

50 that Qays)(e) = ef el Enelw

Joining the results {24) to the equation (29) we yield the spinorial connection:

To =0 (30)
r, = 0 (31)
. (3) ¢
i df | &
I's = ——=— . (32)
4312 dg ¢ o®
. (2
- df ] 7
Ly = % (33)
4f3/2 dz 0 #@
(34)

Appendix B
The spin vector of Panli-Lubanskilll] is given by
. papy 35
Wy = §5ﬂﬂwx-7 r (35)

-with J# as infinitesimal generator of Lorentz transformation.

Defining the helicity & as W, = hp, and taking ¢, so that p,i* =1 we get

R = Wit

1
h = =Z€ypvagpaputp (36)

12



In order to simplify the previous expression we choose t.,_s = (k—l,,! 0), ko= E

“{enezgy of neutrino) and, taking the spin §; = %e.-jko"'j,a = %[7",1-"}, we get

the usual expression to the helicity operator of neutrino as
(37)

The hamilionjan operator % can be obiained from massless Dirac equation

‘wiitten conveniently as
8P = —ia’ 8;% + o T, ¥ (38)

and thus

H=a'p; +al¥l, (39)

Putting all these results together, the time variation of helicity can be

achieved as

ih = [hH
P 1 g .
th = Ee,-,-k[a"pk,a( )I‘(B)] {40)

Using the resnlts of appendix A and employing the properties of the Diirac

matrices, we get the result:

x| @+ 7)ot — o 0
ih = E -+
o ol (p® + p?) ~ o%pt — o2p!

8T ol + o3 0
2E

(41)

0 o? 4 g3
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- Appendix C

The spinors u; and v, normalized as "'I“"p =2F and v,.! v, = 2E are given by

PamE
w = Eip | " (42)
1
1
v = —oPut =i /Bty (43)
‘ E'—p,
PL—1p)
Using these spinors in expression |M|%
M| = f Fize (o} o0 (44)
[#l<r
and setting py = p, =0 and E = p, # 0 we get
[v:[.o“)upﬁ = 2E(E - pl) {45)

Integrating over the spatial coordinates we arrive at

L?q2 cos? g L — Lgy sin 2g. L -+ sin? qu)

4sin®g,  4sin’g
(01 = 25("-p) (A Ty A S

q2 q2

X
{46)
where g = p; — p, g, = Py & = P, and {@,¢) ‘are the polar angles of

momentum 7' in the rest frame of the detector.
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