UNIVERSIDADE DE SAO PAULO

INSTITUTO DE FiSICA
CAIXA POSTAL 66318
05389-970 SAO PAULO - SP
BRASIL

PUBLICAGOES

IFUSP/P-1158

PSEUDOCLASSICAL MODEL FOR WEYL PARTICLE

- IN 10-DIMENSIONS

D.M. Gitman and A.E. Gongalves
Instituto de Fisica, Universidade de Sdo Paulo

Maio/1995



Pseudoclassical model for Weyl particle in 10-dimensions

D. M. Gitman, and A. E. Gongalves.
Instituto de Fisica, Universidade de S5do Paulo
P.O. Boz 665818, 05389-970 Sdo Paulo, SP, Brazil

(June 1, 1993)

Abstract

A pseudoclassical madel to describe Weyl particle in 10 dimensions is pro-
posed. In course of quantization both the massless Dirac equation and the
Weyl condition are reproduced automatically. The construction can be rel-
evant to Ramond-Neveu-Schwarz strings where thé Wey! reduction in the

Ramond sector has to be made by hands.

. PACS number(s): 11.10.Ef, 036.65.Pm

Typeset using REVIEX

Classical and pseudoclassical models of relativistic particles and their quantization at-
tract a,ftex_ltion already for a long time. One of the main reason to study them is related to
the string theory, because point-like particles can be treated as prototypes of strings or some
modes in string theory. Recently [1], a pseudoclassical model to describe Weyl particle in
4 dimensions was proposed, The limit m — 0 of the standard action of a spinning particle |
[2] in 4 dimensions was modified essentially to get the minilﬁal theory {Weyl theory) of a
massless spinning particle. Thus, both Dirac equation and Weyl condition are reproduced
in course of a quantization. It turns out to be possible to adopt the mode! to 10 dimensions.
That js important in connection with éuperstring theory problems i, such dimensions (3],
where, for example, the minimal quantum theory of Ramond-Neveu-Schwarz string does not
appear automatically, and the corresponding GSO reduction (in particular Weyl reduction
of the Ramond sector) has to be made by hands [4].

The action of the Weyl particle in 10 dimensions we are proposing has the form
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where z#, e are even and 14*, y are odd variables dependent on a parameter + € [0,1], g =
0,9, nuw = diag{l,-1,...,~1) is Minkowski tensor in 10 dimensions, the variables # form

an even 10-vector, and « is an even constant. There are three types of gauge transformations

under which the action (1) is invariant: reparametrizations
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with an even parameter £(r); and two kinds of supertransformations: first ones
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with an odd parameter (7); and second ones
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* with an even parameter x(7).

Introducing the canonical momenta
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we discover primary constraints ®() = (@gl) =F, 'I)gl} =P, @Qj =P+ by, (I)(I)
P,,). Then the total Hamiltonian HW constructed according to the standard procedure

. [5,6], has the form H) = H + 2400 | where
1
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Using it, one gets secondary constraints 2 = 0,

1 a
Q?) = 772 H (bg2) = 71'#’!}‘)” 1 q)((i 81 GiCavsz.os T d’p? wpg + 2_87'-“ ' (G)
One can go over from the initial set of constraints (@) ,@®) to the equivalent one

(@1, 8@, where ) = 2 The new set of constraints can be explicitly

ppit ol
divided in a set of first-class constraints, which is {® 2, 2V, &) and in a set of second-class
constraints (I)é”.

Consider the Dirac quantization, where the second-class constraints tI’:{,,l) defines Dirac
brackets and therefore the commutation relations, whereas, the first-class constraints, being

applied to the state vectors, define physical states [5]. For essential operators and nonzeroth

commutatars we get:
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It is possible to construct a realization of the commutation relation (7} in a Hilbert space
" R whose elements ¥ are 32-components columns. Taking into account trivial first-class

. constraints QJE%A, we can select ¥ dependent only on @. Then
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- where I is 32 x 32 unit matrix and 4* are the y-matrices in 10 dimensions, [, 9], = 2.

In the realization (8) the operators &), which corresponds to the first-class constraints (8),

ha,ve the folldwing form
s N 1 '
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One can see that conditions (i’(z)‘lf(:c) = 0, are reduced to the following set of independent

equations
8" ¥(z) =0, 4, (7“ - a) U(z)=19.

The first one is the Dirac equation for massless particles in 10 dimensions and the second one
at & = F1 is equivalent to Weyl or anti-Weyl conditions (1 &+ v!) ¥(z) = 0 if we consider
only normalized functions ¥(z). Thus, we get automatically projections with positive and
negative chirality in course of quantiza.tidn.

The canonical quantization can be made similar to 4 dimensional case [1} and leads to

same quanfum mechanics.
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