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Abstract - An Iirgodic Magnetic Limiter is a device which main effect in a Tokamak is to creale
a cold bonndary layer of chaotic magnetic field lines. In order to study its effect we have used
two approaches. The first is a description of magnetic island formation throngh an analytical
method to describe its dimensions, results being in accordance with nunmerical P()ill("rLl'(’“lIl:l[)s
for magnetic field lines. The second is a model which simulates the Ergodic Limiter action as

a sequence of impulsive perturbations. enabling the derivation of analytical formulas for the
Potucaré maps.

INTRODUCTION

The problem of the quality of plasma confinement in a fusion-oriented device like a Tokamak has many
facets, challenging us with both conceptual and technical difficultios to be solved. Thus, the pr(‘svn('.(‘
of impurities in the confined plasma should be controlled to improve the confinement 2 However, a
common source of impurities in Tokamak plasmas is the heal and particle loadings on the metallic
inner wall, causing impurity release by sputtering processes. In the late seventies some authors ** have
proposed that a cold boundary layer of chaotic magnetic field lines could act as a plasma limiter. since
it would uniformize these loadings, lowering the impurity levels withio the plasma core.

The Ergodic Magnetic Limiter concept. ® is based on the idea that a chaotic houndary layer of field
lines could appear as a result of magnetic island interaction in the peripheral region of the Tokamak
chamber. But these islands appear as a result of resonant magnetic disturbing fields, acting on the
equilibrium magnetic field which contains the plasma. The Frgodic Limiter consists on a Ql'i(i—S]l‘d[)(‘(l
coil wound around the Tokamak vessel and conducting a current that generates these dist‘u(rl)ing‘ fields
This claim is supported by theoretical as well as experimental evidences 6.

One popular way to think of a magnetic field line flow, even in magnetostatic equilibrivm configu-
rations, like those cxpected for ideal Tokamak operation, is the hamiltonian description. It was ﬁr.:;lv

observed hy Kerst 7 ater by many . Blol6 - . .
v Kerst 7. and later by many authors #°19 that magnetic field line equations could be rewritten

as Hamillon equations. where the role of time is played by an ignorable (eyclic) coordinate

Within this framework. the field line hamilionian is actually an invariant over the magnetic surfaces
appearing in the MHD description of plasima equilibria. In the dynamical systems language, they are
KAM surfaces, and its existence depends on the symmetry of the equilibrium confignration 7. The inverse
winding numbers characterizing these surfaces are also known in the plasma literature as "safety factors”.
since they are related to the stability of certain undesirable modes.  According to this classification.
magnetic surfaces are rationals (irrationals) il their salety factors are rationals (irrationals) likewise.

A magnetostatic perturbation, like that due to an Ergodic Limiter, can he viewed as a hamiltonian
perturbation, whose effect depends on the character of the magnetic (KAM) surface. Rational surfaces
will be destroyed. leaving a chain of Poincaré-Birkhoff islands, whereas most of the irrational tori will
survive, provided the hypotheses of the KAM theorem are fulfilled 18,19 Notice that it is essential thal
ghe perturbation cause a symmetry breaking in the equilibrium configuration, otherwise the island chain
destruction does not oceur, and the island evolution may show a completely different behaviour 2.

A useful tool to study such near-integrable systems s the Poincaré surface of section method. Mag-
netic (KAM) surfaces appear as ‘pvariant closed curves, and chaotic magnetic field lines yield area-filling
orbits in Poincaré sections®'. In this paper we analyse the Ergodic Magnetic Limiter action through a
conple of approaches ihat nse Poincaré maps as preliminary diagnostics of chaos.

The first approach describe magnetic island formation by means of a lincarization of field line equations
i the neighbonrhood of a rational surface. The method is applicable to any magnetostatic perturbation,
once its Fourier components are known. The net result is a reliable estimate of magnetic island width,
which is an important ingredient in any global stochasticity prescription, like the Chirikov overlapping
criterion.  Results are compared with Poincaré maps obtained through numerical integration of ficld
line equations, showing a fairly good accordance. In this case, the Ergodic Limiter is modelled as a
square-wave perturbation.

The sccond way to generate Poincaré maps in this context is to suppose that the Ergodic Limiter
action on the field lines, which in the equilibrium twist freely on the magnetic surfaces, behaves as
a periodic sequence of delta-function pulses. This kind of procedure enables us to obtain analytical
formulae for the Poincaré maps 22 However, in its original form, this map is not exactly area- preserving,
so that we have to transform the Poincaré map into a symplectic one, since it is needed to ensure flux
conservation.

This paper is organized as follows: in the second section we describe the basic geometry to be used,
and present the equilibrium as well as perturbing fields. In section 3 the construction of Poincaré maps
for field lines is carried out through the use of two methods - numerical integration of field line equation
using an squarc-pulse waveform, and an impulsive perturbation leading to analytical expressions for the
maps. The results concerning these two approaches are presented in section 4. Section 5 is devoted 1o a

detailed analysis of magnetic island width. Our conclusions are left to the linal section.
TOKAMAK AND LIMITER MAGNETIC FIELDS

A Tokamak is a toroidal vessel in which a plasma is confined by the combined action of two basic
magnetic fields: the toroidal field Br. genetated by external coils, and the poloidal field Bp, which is
produced by the plasma current itself. The equilibrium magnetic field is thus B©) = By + Bp. One of

the convenicnt systerms of coordinates to deal with Tokamak geometry is the so-called local or psendo-



toroidal coordinate system (r,0.¢). as depicted in Figure Ta 2% In this svsten, the toroidal and poloidal
fields are written as By = B_é, and Bp = Byéy, respectively.
Tho magnelic field line cquations, viz. B x dl = 0. are given in this system hy
b it oty "
B, B, B
where b(Ry) is the minor (inajor) Tokamak radius. The aspect ratio is defined as A = Ro/b. and for
large aspect-ratio Tokamaks (Ry > bor A > 1) it is possible to use a periodic cylindrical approximation
{ == Rop, see fig. Ib). The effect of toroidal curvature is thus considered as a first-order correction on
the toroidal field.
The equilibrium magnetic field in the cylindrical approximation is given by B = (0, /3}7”)(7')A 1300,

where

By _ By
| + 7;”0 cosfl T 14 ccosh’

B =

{2)

and ¢ measures the strength of toroidal effect, By heing the toroidal ficld intensity for ¢ = 0. The effect
of toroidal correction is thus more intense for large rading » *.

For obtention of the poloidal field component it is necessary to specify the plasma current density
profile. We will concentrate on the so-called generalized parabolic model 2 for an axisyimimelric plasma

current, density, namely
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Fig. 1 - Essential geometry of the Tokamak and Ergodic Magnetic Limiter.

where @ is the plasma column radius (somewhat lower than minor radius); and jy. v are positive param-

elers, adjustable to fit typical Tokamak discharges. Using Ampére’s Law, Eq. (3) leads to

N 210!
() = (1 - [1 - (’—)2} Oa - r)) : (1)

provided Ip is the total plasmas current intensity. ©(x) is the Heaviside unit-step function.
An important quantity related to the magnetic (KAM) surfaces is the rotational transform o(r),
defined as the average poloidal angle displacement of a given field line in the course of a complete

toroidal turn around the Tokamak. Hence ¢ = 27df/dyp, and using (1), (4) it gives for the cylindrical

case (¢ = 1{})
o2 (1= - @) o).

where 1, = /{7 + 1) and /4 is the rotational transform at the magnetic axis (r = 0). In order to

avoid kink instabilities, the Kruskal-Shafranov limit states that ¢ < 27 2%, so that we choose g = 27
and o, = (3 1 D)7 for kink stable discharges. This means (al v oand Ipocan be taken as independent
parameters 1o specify plasma equilibrium.

The Frgodic Magnetic Limiter (EML) model to be considered in this paper is the same already
considered by Martin and Taylor ®, apart from the basic geometry which we take as cylindrical instead
ol rectangular. It was emploved by us in previous papers 2%, One EML ring cousists of a grid-shaped
coil of width g (see Fig. la) with L/2 pairs of wire pieces oriented in the (toroidal) @—direction, and
carrying a current I. Adjacent conductors have currents flowing in opposite senses, and we ignore the
contributions for the magnetic field from the pieces oriented in the (poloidal) #—direction, since their
effect on the equilibrium B, field is negligible.

Sinee the plasma pressure is low, we can deal only with perturbing vacunm fields, without dvnamical
plasima response. Ignoring border effects, the perturbing field due to such an EML device is written as

BM = (B, B, 0), where

B0, 2) = B0 f(2). (6)
and I:iﬁylg)(rﬁ()) are evalnated supposing that the wire pieces are infinitely long, giving %%
. —puoLl fr\ L/ Lo
B, ) 2rh \b T2 (7
<01 poL I fr\ /21 Lo
B,() )(7',0) = =33 <5> cos | (8)

These results were derived from the use of a cylindrical geometry. Toroidal corrections on these fields
are neglected thereby, since the EML action is very localized on the toroidal curvature.

The z—dependence of EML fields is described by the function f(z), and it distinguishes the two kinds
of mappings to be discussed in this work. Firstly we can try a square-pulse waveform:

0 otherwise

f(z):{l if—4 <2< +4
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(2) SPM with p=4 rings of width g. (b) IEM with p=4 rings.

Fig. 2 : z-dependence of the radial component of EML perturbing fields.

‘hich assumes that the limiter field falls down very sharply out of ring extension. This case will be called
quare-Pulse Map (SPM).

Another possible form for f(z) is a periodic sequence of delta -function pulses

+oc "/7
flz)=g¢g Z 8(z = 2 Roj’) = 5 Ro [l—}—ZZ(os([{U)} (10)

Jlm— k=1

he latter form being its Fourier expansion, where the period is the Tokamak length 27 /f,. The map so
shtained will be called Iimpulsive Breitation Map (IEM). Evidently, SPM and [EM cases are not mutually
ndependent. A Fourier analysis of the square-pulse waveform (9) would render Eq. (10) for g < Ry and
mall integer values of k. Only within these limits, [EM is suitable for description of EML action.

We also consider the case of a number p > | of EML rings, equally spaced in the toroidal direction
i an angle 27/p. All EML rings are similar, the essential difference being that they have a mutual
wloidal displacement, corresponding to the poloidal angle which would be completed by an equivalent
relical winding. In numerical applications we restrict ourselves to the case p = 4. So, in the SPM case
here will be four square pulses of width g centered at z = 0, %52 TR .7 Ro, 112& (cf. fig. 2a). In the 1EM

ase these are the points in which a delta-kick will act on the fiel l lines (cf. fig. 2h).
OBTENTION OF POINCARE MAPS
Square-Pulse Map
Obtention of Poincaré puncture-plot maps for field lines in the square-pulse case is only feasible by

wmerical integration of field line equations (1), with help of Eqs. (4), (7}, (8) and (9). The system of

irst order equations are (with z = Roe as the independent variable)

dr
- = an( )( —i—Fn(osO) (n

iig = i(w)( +———(()s()> {12)

|

dz ,Bo h)()

The Poincaré surface of section will be located at z = g/2, irrespective of the nr ber of coils p to be
considered. Let (ry,8,) denote the n-th piercing of a given field line on this plan:  We may also work

with "rectangnlar” coordinates defined by

Ty = b 971‘ Yn = b~ Trs (1‘;)

deseribing the arc length at EML radius and the radial distance from the Tokamal cdge, respectively.
Due to magnetic lux conservation within a magnetic (KAM) surface, that stems rom the hamiltonian
nature of field line equations ', we expect that SPM would be area-preserving i1 Lhe Poincaré plane;

b, in fact, due Lo the large-aspect-ratio approximation we made the system is onl nearly conservative.

Impulsive Fxcitation Map

The use of a periodic sequence of delta pulses enables us to obtain analvtical ¢: ressions for Poincaré
maps. The basic idea is that the field line twists freely, according B(® x dl = 0, unt’ it reaches the limiter
al z = 0.27Ry,...2K7Ro... (for p = 1 ring), or z = 0,7Re/2,7Ry... K'mRo/V . (for p = 4 rings),
when it receives a kick. This kick instantaneously changes the z-derivatives of ficl line coordinates (1),
but not the coordinates r, 8 themselves; that is, the "velocities” dr/dz and d@/d  are discontinuous at
z = 9%z, while the coordinates are continuous . The final phase portraits are tal u from the Poincaré
surface of section located at z = 0, for any value of p, as in the previous case.

Define discretized variables for radial and angular positions of the points on 1/ Poincaré surface of

section, to be 22

T = hrm (z = 2m Ron + €), (14)
rro= hmr(z = 27 Ro(n + 1) — €), (15)
0, = lun 0(z = 2xn Ron + €), (16)
g = hm 0(z = 2x Ro(n + 1) —€), (17)

denoting the values of v and 8 just after the n—th piercing of z = 0 plane, and just Hefore the {n+1 )—th
piercing, respectively.
The part of IEM equations concerning the effect of delta kicks is %

é 7,:« m—1 ) .
Top1 = Th— I—(f) sin(m#},), (18)
h
N 5 T:L m—-2 .
bppy = 0, — w (1—)> cos(m¥}), (19)
where we have defined I
¢ = pom g. (20)
B[)?F

Since the effect of the kicks is instantaneous, between two successive kicks the  1d line equations are
readily integrated, even in the presence of toroidal correction. In the case of p = * limiter, we have the

following expressions 2°



Cylindrical Case (¢ = 0):

P= o, (21)
27 B () Ry

0, = 0, -
n T TR,

where the equilibrium poloidal field is given by 4. The extension of these formulas for many limiters
(p > 1) 1s straightforward.
Toroidal Cuase (¢ # 0):
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o= 1, (23)

0, = 2arctan [A{r,) tan (2(r,) + arctan Z(r,. 0,))] + 27, (21)

where we have defined the following auxiliary quantities:

7 Ry B () (1 = (1))

Q) = Borp Alry)
M) = o) .
I — ¢2(r,)

v |
i

= ! ()n [
Z(ry) = 5\-(;—”—)1(11\<A ) e(r,) = T

The kick mapping (18), (19) can be rewritten in terms of the following adimensional parameters

2
ot € _ 1 9%
C= g R sl (26)

so that our equations for description of the field line displacement due to EMT, kicks are

(Ros)'? = (B =220 (R 2 6in(mor), (27)
Oy = 07— C(ROD cos(mbr). (28)

We stress that, although the mapping between two successive kicks is exact (within the limitations of
our model) the part that treats a kick is obtained through a kind of approximation. Hence, this second
part of the map contains higher-order terms that introduces a small dissipative eflect. So, the entive 1M
equations are not strictly symplectic in its original form. In order to obtain an area-preserving form for
IEM, let us mantain (28) and treat Eq. (27) as a canonical transformation of variables with gencrating
function G( R, 41, 0%). so that the transformation equations are
1+t Uy

oG oG

= ()n—H = 7 »
()[1)”4;

-

R = .
7. (‘)/}:

(29)

(a) rotational transform (y). (b) poloidal field By(y). {c) safety factor g(y).

Fig. 3 - Radial profiles of plasma cquilibrium in a large aspect ratio Tokamak with TBR-1 parameters.

being the necessary and sufficient conditions to be fulfilled if the mapping (27) is symplectic, Substituting
{29) in (27) we find that a generating function of the form

\ 20
G(Rus1,0;) = Rua0;, = — R{} cos(md}) (30)

is suitable for this purpose. Putting (30) in (27) gives the new radial equation

(R)'? = Ry = 2C(R2)™ D 5in(mé?). (31)

This equation can he inverted for R4y only for m = 2 or m = 4 cases. In any other situation, we are
forced to use Newton method to do so, using as an initial guess for R,y; the value of R:. Actually
the method converges very rapidly, yielding accurate results after no more than ten Newtou method

iterations.
PHASE PORTRAITS

In the numerical applications to be considered in this paper we take parameters from a small Tokamak -
the TBR-1, operating at the Physics [nstitute of the University of Sao Paulo, Brazil. The main parameters
are: By = 0.30m  (major radius); b = 0.1lm (minor radius); a = 0.08m (plasma radius); By = 0.507T

{toroidal field at magnetic axis); ¢, = 27 /5 (rotational transform at plasma edge); 1o = 27 (rotational
transform at plasma center) 2%,

Let us concentrate in the case of one EML ring with m = % =

length of ¢ = 0.08m. The choice of L is motivated by the fact that a perturbation with such a value

6 pairs of wires. and suppose a ring

of m = L/2 will excite magnetic island formation in the location of magnetic surfaces characterized by

%, where n = 1,2,...m, a result which follows from the Poincaré-Birkhoff

rotational transforms ¢ =
theorem. But we want to create these islands primarily in the peripheral region of the Tokamak, which
comprises the outer portion of plasma column plus the vacuwn region near the inner wall. Moreover,
since the field created by an EML ring decreases rapidly with the distance from the inner wall, those

islands with high values of n are not of interest because they are in the plasma core.
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Fig. 6 : Power spectra of the trajectorics for the case depicted in Fig.5 with x =0.3456m and y,=0.0313m.

Henee we need to know the radial profile of the rotational transform in order to specify a judicious
choice of L required in the design of an EML experiment. Fig. 3a is such a profile. obtained with help of
the TBR-T parameters. It points that a convenient region to explore contains the rotational transforms
27(1/6) and 27(2/6), so that an EML ring with L/2 = 6 would excite primarily those islands.

This assumption is well-supported by phase portraits obtained with the use of both SPM and [EM
formulae. All parameters are taken from TBR-1. Figure 4 shows the case of p = [ limiter. carrying a
current of [ = 4004 and without toroidal correction (e = 0). The SPM (fig. 4a) and IEM (fig. 4b) phase
portraits are very similar. Note that IEM orbits are more well-defined than SPM diie to the large number
of iterations allowed by analytical mappings, in contrast with a map generated by numerical integration
of field line equations. Nevertheless, two primary magnetic island chains are clearly observed - the 6/1
chain, located roughly around the surface at yo = 0.025m (where yo = b—rg); and the 6/2 chain, located
near the radial position of yo = 0.050m. There is a little difference hetween SPM and TEM with respect

to the numerical values for this location. Moreover, in both models the 6/2 resonances are substantially

0.08 - T = v

0.02
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0.00 0.20 0.40 0.60
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(a) Square Pulse Map (b) Impulsive Excitation Map

Fig. 7 : Phase portraits for p=4 EML rings with I=400A, without toroidal correction(€=0), and TBR-1 parameters.
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(2) IEM with I=100A (b) IEM with 1=400A

Fig. 8 : Phasc portraits for p=4 EML rings with toroidal correction (€>0), and TBR-1 parameters,



shorter than the 6/1 resonances. The reason for this fact is the abrupt decrease of perturbing field with

the distance from the inner wall. Hence, although more resonances are expected to appear, only these

ones are relevant in the analysis of EML performance.

Figure 5 shows phase portraits for p = 1 ring and [ = 400A, but with toroidal correction (2). i.c.
(€ # 0). Both maps, SPM (fig. 5a) and IEM (fig. 5b) show a richer variety of islands, in conbrast
with the previous case, where the pure cylindrical case was considered. Previous analysis of Poincaré
maps for field lines with perturbations of a helical winding type *2% shows the presence of "satellite” or
secondary istand chains in the vicinity of the primary resonances; a fact alrcady expected from theoretical

arguments 392!

- Apart from differences caused by graphical definition, both maps exibits satellite chains
of m=6,m=7and even m = 8 in the vicinity of 6/1 and 6/2 primary resonances of the preceding case,

The multiplicity of higher-order resonances leads to various overlappings between adjacent islands ani
field-line stochasticity. The chaotic nature of some orbits, whose initial conditions belong to stochastic
layers, can be inferred from power spectrium of field line trajectories on the Poincaré plane, Fig. 6 shows
such power spectra for an orhit generated by the point 2o = 0.34560m, yo = 0.03130m, for SPM (fig. 6a)
and IEM (fig. 6b). The presence of a broadband noise spectra highly concentrated at low frequencies
indicales chaos.

The case of p = 4 limiter rings and no toroidal effect (cl. fig. Tafor SPM and fig. b for IEM) leads to
phase portraits qualitatively similar to those shown in Fig. 4 (for p = 1), but with larger resonances. lor
a same value of EML current (7 = 4100A). This result stems from the theoretical formula to be derived
in the next section, for the width of a primary magnetic island generated by EML field. Figure 8 exibits
the same case, but now with toroidal correction (¢ # 0), which present an enlarged stochasticity region
in the peripheral region of the Tokamak, according to the expected performance for EMIL. Only the ITEM
case is presented, since the numerical integration required to obtention of SPM phase portrait is not
convenient for maguification of finer details in the stochastic regions, when the perturbation strength is

too high. This would be achieved introducing a symplectic integration procedure.
MAGNETIC ISLAND WIDTHS

The width of a magnetic island obtained in the SPM case can be estimated by a theoretical method
developed by Malsuda and Yoshikawa to deal with general error fields 2. We assume a cylindrical
geometry (¢ = 0), bui allow the existence of an arbitrary number p of EML rings. Let ro be the radial
position of a given resonant magnetic surface. A set of islands will appear around this point, aller a
suitably chosen perturbation is switched on. Linearizing «(r) in the neighbourhood of this surface gives

j—z ~ 2—17;(«) + /), (32)

where & = r — ro, 19 = orp) and / = (defdr)

Jr=rgy

If the sought-for islands are small cnongh, we can

neglect the radial variation of perturbing fields, and evaluate them at r = g, sich that (1) is written as

de  rBM(r,0,¢)
A0 B ()

If the radial component of the perturbing field is periodic in @ and . we can Fourier-expand it, as

. (33)

B(r0.0,0) = 32, Brne' ™, (34)

but the relevant terms of this series are those which characterize resonances, so as to satisfy the relation
o = 2xn/m, where m and n are co-prime positive integers. The remaining terms oscillate very fast and

vanish when averaged over typical periods of motion. Taking only one mode m/n of the perturbing field,

namely

Br(])(ro» 0,0) = binn(ro) sin{ml — ng + F), (35)
where by, , and 3 are related to the Fourier coefficients of (35), Eq. (32) gives in the neighbourhood of
the resonance at 1 = rq

d_cy =1m — —Zmz , (36)
do W+ Uz

where o = ml — ne + 4. Combining (36) with (33), when J/z /i < 1 one finds

2 A €y
(vj—% = —Asina, (37)
do
where we have defined
— _27‘&’7”’7’01),”,71(7‘()) ('18)
3B{" (1)

One recognizes (37) as the equation of a nonlinear pendulum, which is a paradigm f{or the motion around
any type of resonance, as is shown in canonical perturbation theory 8. The advantage here is that (37) is
obtained directly from the field line equations (1). A different approach would be the use of hamiltonian
perturbation theory for field lines, what gives essentially the same results . The qualitative aspects of
the solution curves of (37) are well-known. Working with the adimensional parameter k% = E[2A, where
I = (I/Q)(d()’/d@)izo, we have three distinct types of solutions, according its value: rotation ?urves
(k* > 1), libration curves (k* < 1) and a separatrix (k* = 1), which bounds a magnetic island (in the
Poincaré plane ¢ = 0).

Furthermore, one can evaluate the island width §,,/, (in Tokamak coordinates) by integration of eq.

(33) over a complete turn of the phase a. Using (37) it results that *2

bmn 4]

_ O ]_m (39)
mBéO)(ro) —rot’

dz
= — df =4dr
6771/” «Ki]ﬂnd df "o

In order to apply the above equation, it is necessary to know the appropriate Fourier coeflicient of the

radial error field from its double trigonometric series

2rm/9) 27’
B = Z {Amr,m cos ( W,Zl ) cos ( 777’2%0) + (40)

m!n/

2rm'0\ . [ 2xn'p ! 2’0\ . 27rn’<,9>
3 ‘ It COS sin = +
-+ lgm’,n’ s < T} ) S ( ,[,2 + l)m ot COS Tl ]2

. - . 2xm'8 . 2rn’e }
+ Lm’,n’ sin ‘,Fl COS T2 ,




where Ty and T} are the fundamental periods of variation lor angle variables ¢ and @, respectively. This

form of Fourier expansion is related to the original series (31) by the following definitions:

2rm!’ 2xn’
m= n o= (1)
T T
If the rings are assembled with anr angular displacement of “7‘7} around the torus, B0 is symmelric by the
change » — —i, so that there is only one non-vanishing Fourier coefficient in (40).
4 : [ 2rm'h 2an’e i
Lot = o /r/() / e B (10, 0, ) sin o cos [ ==t} (12)
' YN . 1 1)
Taking in account the z-dependence characteristic of Square-Pulse Map (cf. fig. 3a), a simple integration
gives
4p ) 2N, [’y )
S = s A (rg)moL o L] sin - 13}
Fon Ir? M) 517‘”" pn! o 2R (
where
N Li2—1
/10”4<70> )
Alrg) = - - . (1
ol =" 13

Now working with the salety factor ¢(r} = 27/d(r). in the resonant siwface we get o= g(ro)n. with

m =m' and n = pn’. The resonance conditions turn to he

n , L
n' = - m'=m=qn=—,
P 2

(15)

in such a way thal the mode cocflicient necessary to island width evaluation reads

R AN S <Jﬂ> 16
bun(ro) = ™ (w‘éﬂ'/) ) <7> s 20/ (16)

Fig. 9 shows a comparison hetween the theoretical prediction that we have been made with help of (39),

for SQM constructed with p = 1 and p = 4 limiter rings. Parameters are taken from TBR-1, with the

equilibrivm model studied in section 2. Istand widths measured divectly from phase portraits are

0.020 [ s i . :

(a)p=1 EML ring (b)p=4 EML rings
0.015
5 ; H a [

(m) a
0.010 B
# Cl
- E 4
1 a Q ? ]
0.005 v W= 2
gy " ’

A ,

0-000 0 ?d() 200 300 400 ol 100 200 300 400 500
I(A) I(A)

Fig. 9 : Magnetic island width for 6/1 resonance, calculated using Eq. (39) with TBR-1 parameters. Full boxes

represent SPM and empty boxes IEM.

indicated as boxes in the figure. The resonance width increases with the square-root of the EML current
as well as with the number of rings, and vary inversely with the magnetic shear. For instance, islands
obtained with p = 4 limiters are twice as Targe as those obtained with only p = | ring. for the same valne
ol current intensity.

The agrecment hetween onr theoretical model and Poincaré maps of the SPM tvpe is quite good.
within the limitations inherent to the various approximate models involved. The small deviations can he
partially explained by width measurements without taking account of stochastic separalrix layer, hecause

the separatrix itself is not well-defined in the presence of perturbations.
CONCLUSIONS

Poincaré maps for magnetic field lines have been a useful theoretical tool for plasma physicists, since
they reveal the hasic dynamical phenomena without a detailed description of the whole three-dimensional
MHD problem. The most frequent method to generate these maps have been the numerical integration
ol field line equations, which is a time-consuming task, and with cummulative numerical errors that
introduce small deviations to the symplectic nature of the maps. Analytical expressions are thus of great
interest, from the theoretical point of view.

The Ergodic Magnetic Limiter problem has been an important laboratory to study dynamical prop-
erties of maps, since it is designed to generate bounded chactic field line layers. In this work we approach
this problem from two ways, making comparisons between maps which have been obtained through nu-
merical integration as well as analytical formulas. The basic difference between these cases is the form
af toroidal dependence of limiter perturbing field. Assuming a delta-function shaped perturbation en-
ables us to write explicit formulae for the map, which becomes rigorously symplectic after a canonical
transformation is applied.

Results are in good agreement with numerical maps which uses square-pulse perturbations, provided
the approximations we made remain valid in both cases. The main prediction of the Frgodic Limiter
model, namely, the onsel, of a chaotic region of field lines, appears in the analysis of power spectra.
Morcover, the magnetic island width and radial location of primary resonances generated by perturbation
is estimated, results being in accordance with phase portraits of the square-pulse map.

These results can be a basis for further investigations of field line diffusion in the peripheral region
of the Tokamak, in order to elucidate particle and heat transport properties in the plasina edge, where

a very turbulent phase has been detected by many experiments.
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