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Abstract

Poincare group in 2 + I-dimensional space-time is considered. An ex-
plicit realization of all enitary irreducible representations of the group is
constructed, using the generalized regular representation. On this base one
presents relativistic wave equations for higher spins (including fractional). A
detalled description of angular momentum and spin in 2 + 1 dimensions is

given and corresponding coherent slates are constructed.

Typeset using REVTEX

L INTRODUCTION

At the present time a greatl attention is devoted to field theoretical models in 2 -+ 1-
dimensional space-time {1]. In the space there is a possibility to exist particles with fractional
spin and exotie statistics. Such particles, which are called anyons, have an interest in
connection with different ztpplica,tions; in physics of planar phenomenon. One can mention
in this connection quantum Hall effect and iigh temperature conductivity [2].

The corresponding Poincare group, which will be further denoted as M{2,1), is the semi-
direct product of the translation group T'(3) and the rotation group SO(2,1), M(2,1) =
T(3)%)50(2,1). Tt was studied in [3] and from the the field theoretical point of view in [4].

Significance of the investigation of Af(2,1) is also stressed by the fact that, being a
subgroup of the Poincare group in 3 + 1 dimensions M (3,1), it retains many properties of
the latter. In this connection, 2 part of results, which can be derived for M(2,1), may also
be valid for M(3,1). One has to remark that in contrast with A7(1, 1), discussed in details in
[5), M{2,1) has a non-Abelian and non-compact subgroup of rotations, similar to M(3,1),
that leads to a nontrivial structure of spinning space.

Usually, doing classification of representations of serni-direct products, they are using the
method of little group (see for example [6,7]). That method was also applied to M(2,1) [3].
Nevertheless, for our purposes of detailed and explicit construction of representations it is
more convenient to use the method of harmonie analysis and method of generalized regular
representation (GRR). It is known that any irreducible representation (IR} of a Lie group
is equivalent to a subrepresentation of left (right) GRR {8-10].

In this work we present an explicit description of all unitary IR of 4{2,1). On this base
we construct relativistic wave equations for higher spins (including fractional), and corre-
sponding coherent states. To this end we are studying the left GRR in the parameterization
where the rotations are given by two complex numbers z; and 22, ]z;|*—|22]® = 1, which are
analogs of Cayley-Klein paramelers of the compact case. The representalion space consists

of scalar functions f(x,z), whereas the spinning operators can be presented as first order




differential operators in the variables z. Tt is convenient to classify representations not only
with respect to the Casimir operators # and $J, bul also with respect to the operator of
square of the spin 52, which commutes with all generators of the lelt GRR.

In the frame of such an approach one can naturally construct relativistic wave equations
for particles with arbitrary spin. The fixation of the value of the square of the spin S(S+1)
defines the structure of z~dependence of the fimetions f(x, 2}, namely, they appear to be
(quasi-)polynomials of the power 25 o z. Cocllicients of these polynomials are interpreted as
components of finite(infinite)-dimensional wave functions of relativistic particles with higher
spins. Fixation of the values of Casimir operators produces equalions [or these components.
In such a way, for exarple, 2 + 1 Dirac equation for a particle with spin projection 1/2
appegrs. [n the same way one can write explicitly equations for higher spius and eguations
for functions, which are transformed under infinite-dimensioual unilary representalions of
2+1 Lorentz group S0(2, 1), and which correspond, in particular, to particles with fractional
spins, i.e. to anyons.

A detailed description of angular momentum and spin in 2 + 1 dimensions is given on
the base of the representation theory of STU(1,1). In particular, multivalued upitary IR of
50(2,1) ~ SU(1,1} and corresponding coherent states ((!S) are considered. I is interesting
to discover that 2 + 1 Dirac equation appears also in the latter case as an equation for €S

evolution.

II. PARAMETERIZATION

M(2,1) is a six-parametric group of motions of 2 4 l-dimensiona! pseudo-Euclidean
space, it preserves the interval m,,,Al'"A:t", where = (@), i = 0,1,2, are coordinates,
and n,, = diag(l, —1,—1) is Minkovski tensor. The transforniation of the vector & under

the action of the group (vector represenialion) is given by the formula

al=gr, g e M(2,1), 2" =Ar"+a", (2.1)

" where A is a 3 x 3 rotation matrix of S0(2,1). The transformations can also be presented

in the four-dimensional form,

a T

zft Alo) at z!

) - a? 217 (2.2)
I 0 1] 0 1 1

with the composition low (a2, Az)(a1, AL} = (2 + Asar. Azl ).
Different parameterizations of the rotations are possible. For example, by means of three

angles a,,

Ale) = expliald), [J*,J*] =i,

0 0 0 00 i 0 i 0
So=f0o 0 4|, =00 o], =0 0 if. (2.3)
0 —i 0 i 00 0 0o

where ¢#*7 is totally antisymmetric Levi-Civita tensor. The one-parametrical subgroups can

be written as

1 0 0 cosha; 0 —sinhe
explicgd®} = | 0 cosap —sinag |, expliay')= 0 1 0 N
0 siney cosog —sinhoy 0 coshoy
coshoy  —sinha; 0
expliasJ?) = | —sinhay cosheay 6. (2.4)
0 0 1

It is also possible to write finite transformations by means of matrices from SL(2, R) [3].
There exists another possibility to write finite transformations of M{2, 1), which is similar
to the cases of M(3} and SO{3). Remember [10-14] that the transformations from the group
M{3) can be presented in the formn X' = UXU~1 + A, where X = iz' +j2? + ke3, A=
la' + ja® + ka® are vectorial quaternions, i2 = jZ = k? = -1, X? = — (=), i = 1,2,3,
and I/ is'an unimodular quaternion, || = 1. H one presents the quaternions by complex
2

2 x 2 matrices, then i = ig', j = io?%, k = io®, where o' are Pauli matrices, and the

transformations can be written in the form




jat ! ot a? 4 ia'
—a'? iz —ixt —a? 4 ia! —ia?
1 1y i 24 it T —y
+ )
— 250 -3 =
~Uy W —&“ -k —LE Uy Uy

[+ Jag? = 1, wy = cos(ﬂ/?]c-i(""+”}’f2, Uy = 511)(9/2]@"(“"‘“’”2,

0<0<r, ~2rn<p<in, 0<w<dr, (2.5)

where wy and wp are Cayley-Klein paramelers, and o, 8, w are Euler angles.

For #(2,1) the transformations (2.1} can be written in a similar form,
X' =UXU+ 4, (2.6

X =ie'+j2?+ k", A=ia'+jel+ke®, k2=1, ?=j =1, X = z,a". In this case
are matrices from SU7(1,1). Clear that A is responsible for translations and I/ for Lorentz

rotations. If we present 1,j,k by 2 x 2 malrices, i = ic', j = io?, k = ¢*, then

a° af 4 ia' wy g
A= s I =
—a? +ia! —a° ity iy

and the transformations (2.6) can be written in the form

2 o' 4!t a’ a? + ia!
'_'l,[:.'z + i;r" 71::0 ‘“(1.2 + ial —(ID

) Ug x0 x? 4 izt u —ur
+ s
Ty Ty —2% 4 ix! —a° —Ty 1y
Iul|2 _ i“'ZP =1, u = C.OS]I{H/‘Q)(;‘_‘-W"W”Z, 1ty = Si[lll(g/t?)ﬂf(v_w!'fz,

0<f<oo, —w<p<m, 0Sw<2n, : (2.7)

Here (for S0O(2,1)}) u; and uy are analogs of Cayley-Klein parameters, and », 0, w are
ones of Euler angles. It is possible to see that U{p,8,w) = Ule,0,0)U7(0,8,0)U(0,0,w),
ie. the general transformation can be presented as w-rotation around the axis z° then
the f-rotation around the axis z', and again t»-rotation around the axis % The following
sets of the parameters (¢, 8,w): [c.rg,0,0), (0, 01,0}, (7/2, a2, —#/2) correspond to the one

patametrical subgroups (2.4) with the angles (e, 0,0), (0,0, 0), (0,0, az) respectively. The
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A malrix frony (2.1} in Fuler angles paraméterization can be presented as Al 8,0) =
Ale, 0. 0)A(0,4,0)A(0,0,w).

Oue can remark that 7 and ~{7 correspoud to onc and the same rotation in 2 + 1-
dimensional space, so that to parameterize the rotations it is enough io use p € [0, 27], the
matrices U in (2.7) belong to the fundamental spiner IR of SU/(1,1), which is the double
covering of SO(2,1).

Further we are going Lo use the latter parameterization of elements of A7(2, 1} by means
of matrices 4 (vector a) and SU(1, 1) matrices I/, g = (A,{/), where the composition low
and ioverse elements have the form

9= (AU) = (A, IR} AL Uh) = (UaA U5 + Aa, TRULY

gl=(-UtAr vy, (2.8)

IIE. QUASLI-REGULAR REPRESENTATION

Let us consider a quasi-regular representation T'(g), which is acting on the homogeneous

space A1(2,1)/50(2,1}, L.e. in the space of functions f{z),

F(@) =T{(e)f(z) = (g™ 2). (3.1)

It s easy lo rernark that the representation (3.1} corresponds to a scalar feld, f'{gz} =

F(2') = f(z). The explicit form of g~'z is given by the formulas
(70" = (Ao —a), gl = UPH(X — A 32

in the parameterizations (2.1} and (2.6) respectively. Lie algebra of M(2,1) contains six

generators fi, and IA}‘, which correspond to the parameters ¢ and o,. They have a form
Po = i8f8z", E" = e™h,p, = i, 8/0", (3.3)

in the representation in question, and obey the commutation refations




b =0, [Erv= LTI TR P A A i : (3.4)
Finite transformations in the parameterizations (2.3) and (2.7) can be written as

T(g)f(e) = emiortinimblaionl® minp g1 (3.5)

T(g}f(:r) - eﬁivfﬂe—iﬂﬂ'e—iwi."e—iu;sf(x}. (3.6)

The eigenvalue m? of the Casimir operator 7 can, in particular, characterize the IR,
Pru(z) = m?fm(z). For unitary represenfations, where the generators p, and [* are
kermitian, m? is real. It follows from the commutation relations {3.4) that 5[ i= also a
Casimir operator, which is, however, zero in the representation under cousideration.

To find all IR, which are contained in Lhe represertation (3.1}, we go over to the space

of functions tiependent on momenta, doing Fourier transformation,
o) = 20y [ fa)e de. (3.7)

In this space expressions for the generators have the form

P = Pun i = M upy, = i{ﬂ.pr“a/apv_ (38)

The form of 1* in the space of functions f(p) coincides with one in the space of functions
f(x) if one replaces p* — 27, and, therefore, the rotations result in: flp) = Fir'}, where

#i = (A"")p.. Tn the parameterization (2.6),
Pl=UTPU, P=ip 457 + 150 (3.9)
Translations affect only the phase of the functions, so we get an analog of eq.{3.1),
T(g)f(p) = e f(p'), p* = ()2 = mit. {3.10)

Representations with a given m we denote as Ti,{g). Below we consider three possible cases.
L. m # 0 and is teal. In this case the representations T, (g) are acting in the space of

functions on two sheet hyperholoid,

Po = tmcoshd, p; = Fmsivhfcosy, p; = Tmsinhfsineg. (3.11)

At m > 0 it s decomposed in two IR, one T;}(g), which corresponds to particles {upper
sheet, py > 0), and another one T, (g), which corresponds to antiparticles (lower .sheet,
Po < 0). One can consider only IR with m > 0 because of T (g) and T_,.(g) are equivalent,

The scalar product at a fixed m is given by the equation

(Foifd = [ do [ F0 1100, ) sinh 0as, (3.12)

and the generators £* have the form

9= g, L' = —i(coth®cos@d, + sinpds),
L= i(— coth Osinpd, + cos pd). . (3.13)

2. m = 0. In this case the representations T},(g) are acting in the space of functions on

the cone,
Po=p. PL=-—poosp, m=—psing. (3-14)

The representation To{g) is split into three IR: one-dimensional T(g), which corresponds
to the invariant p = 0 {vertex of the cone}, and Ty (g} and Ty (g}, which are acting on the

upper and lower sheets of the cone. The scalar product is given by the formula
o [ T 3.15)
1= [ do [ TR falp o), (3.
and the generators £# have the form
i =-i8, ['=i{cosed, +psin wd,), L* = i{—sinpd, + peospd,). (3.16)

3. m is imaginary, that corresponds to tachyons. The representations T.(g) are acting

in the space of functions on one sheet hyperboloid,
po=1im sinhf, p; =—im coshfcosp, p2 = —im cosh@sine. {3.17)

The scalar product is given by the formula




2r 00
il k= [ ee [ RRI A0, 0) cosh 0ds, (3.18)

and the generators £* have the form

P=_ig,, = —i{tanh 6 cos 8, -+ sin pds),

£? = i(— tank @sin 8, + cos i), (3.19)

IV, GENERALIZED REGULAR REPRESENTATION

In the previous seclion we have considered the quasi-regular representation, which pro-
duces description of scalar fields or spinless particles. To get a complete picture of all possible
representations one has to turn to so called generalized regular representation (GRR) [SwlO]
The GRR is acting in the space of functions f{g) on the group, ¢ € G. The left GRR T;,(g
and the right GRR Tr(yg) are defined as

Tif9)f(g0) = f(g™" g0}, (4.1)
Tr(9)/{g0) = f(0g). (4.2)

It is known that any IR of a group is equivalent to one of subrepresentations of the left
{right) GRR [8]. Taking this into account, we are going to the construct GRR of 4(2,1) in

the parameterization (2.6), where we put go = (X,Z),and g =(4,17),

a0 x? gt Pt -
XN = . , £ = .
ezt 4 il -z B I

a® a? -+ 1a! wy o g
A= LU= : {4.3)
—a® +ia! —a® e g

Using the composition law {2.8), one can get

Tugf(X, 2) = fI(A. 07X, 2)) = FIU (X -
Tr(g)f(X. 2) = (X, 2)(4

A)U, U1 7y, (4-4)
UY)=HX+ZAZ7', ZU). (4.5)
According to (4.4), X is transformed with respect to the adjoined (veclorial) representation
and Z with respect to the spinor representation of S0(2,1). One can also see that Z is
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invariant under translations. If one restricts itself by Z-independent functions {i.e. by the
functions on the homogeneous space M(2,1)/50(2,1)). then (4.4} reduces to the quasi-
regular representation (3.1), which corresponds to a scalar field. If one restricts itself by
X-independent functions, then {4.4) and (4.5) reduce to the left and the right GRR of
SU(,1).

Calculating generators, which correspond to the parameters ¢ and o, (see (2.4)), in

the left GRR (4.4}, we get
Pa = 00z, J* = L% 4§ (4.6)
where f.“ are angular momentum operators {3‘3), and .é"’ are spin operators,

5% = —(1/2)(218/ 21 — 520/ 5) + (1/20(5D/ 51 — 2.0] ),
8V = —(i/2)(28/ 7 + 21D/ z1) — (/2N 220/ 71 + 510/ 22),
§% = ~(L/20(210/ 5 — 58] 1) + (1/2)(518] 72 ~ 28/ 51),
(5,8 = i, [$%.4.] = {4.7)

The algebra of the generators has the form
[ﬁm ﬁU] =10, [j“-, ﬁ"] = i{“vnﬁﬂe [j“e j”] = ic"”’jﬂ - (4‘8)

Generators of the right GRR we denote by the same letters but underlined below. The

zenerators J do not depend oun = and are onl-y expressed in terms of z,
B,=—WA i for P=-27'P2), J'=35" (4.9)
where

8 = (/028721 — 20/2) — (1/2)58/5 — 29/2),
5" = (i/2)(210/ 2 + 20]2) + (i/2)(2:0/5 + 20/5),

8 = —(1/2)(218f 22 — Dz} + 1/2(5.0/ 52 — 220/ 5;). (4.10)
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All the right generators commute with all the left generators and obey the same commutation
relations (4.8). The aperator # = §° and Pauli-Lubanski operator Jp = _fg are Castmir
operators. Thus, IR of (2,1} can be marked by their eigenvalues.

It follows from (3.3} that Lp = 0, so that always Jp = §5. The operalor Jp com-
mutes with the total angular momentum operators J* = L# + 5", but not with the orbital
momentum operators i* and spin operators Se separately. The operator of spin’s square?
52 = iz commutes with all the generators of the left GRR. That means that objects, which
are transformed under the left GRR or under its subrepresentaiions, can also be marked
by eigenvalues of this operator. However, that operator does not commute with the gen-
erators pof the right GRR, [f,@“] = ic”””(;“}qi,, + i,,jjﬂ), simitar to the left GRR case,
{jz,f)"] = ic"""(ﬁ,,j,, + j,,;ﬁ,,]. Thus, the spin is not a conserved quantity in all the right
GRR, but 32 is.

Remark that the left and the right GRR are equivalent, CTr(g) = Ti(g)C, where
Cfige) = figyl). Because of that, and also because of the left representations are more
adequate to describe physical fields, we are going to consider in detail only the left GRR of
M(2,1).

Making Fourier transformation in the variables z, i.e. considering representations in the

Pa —p2 — 1Py
P = ) ,
2 —ip —Pq

one can get an analog of formalas (4.1,4.2) in this representation,

space of functions f(P, Z),

Tula)f(P,Z) = ™™ fIU-' PU LT Z), P =U"'PU, (4.11)
Tr{g)f(P, Z) = ™ Pf(P, ZU), A'=ZAZ™". {4.12)

It is seen that the combination [z,|* — 23| and p* are preserved under the transformations

{4.11) and (4.12). The former is always equal to 1 and the latter to m?, and depends on the

"Here and in what follows 8% = 5,5 and so on.

It

representation.

The classification of orbits with respect to the eigenvalues of the operator p? is completely
similar to one was done in Sect.3 for spinless case. These are orbits 0% for real m # 0, OF
and O3 for m = 0, and finally O,, for imaginary m. However, to describe IR it is not enough
only one parameter m, one needs to know characteristics connected with the spin. Z and P
are defined by six real parameters. Three of them (the mass m and the momentum direction,
namely, P = —Z-'PZ for the left GRR. or P for the right GRR) are fixed and three are
changed under group transformations (for the left GRR two of them set the direction of the
momentum}.

The variables z; and z;, are transformed under the spinor representation of SU(1,1).
Mareover, IR, of this group are at the same time ones of M(2.1) connected w.ith the orbit

05. That is why we are going to describe below represtntations of the former group in detail.

V. UNITARY IR AND COHERENT STATES OF THE 5[/(1,1}) GROUP

Lorentz group S0(2,1), and close related groups SU(1, 1) and SL{2, R) with the same
algebra, where investigated in numerous papers [8-10,15-32]. Their finite-dimensional IR
and unitary IR (discrete series) are used to describe spin in 2 + 1-dimensions [4]. As is
known, SO(3, 1} has only principal and supplementary series of unitary representations, and
the principal series is used to describe spin in 3 + 1 dimensions [33,34]. In this connection,
besides of all, it is important to consider the same series of SO(2,1) or SI/(1,1).

We are going to describe unitary IR of SU(1,1), their discrete bases and corresponding,
CS. The consideration, to be complete, is going to repeat some known results, but also to
present some new ones. For example, we are constructing CS in unitary IR of the principal
series at arbitrary fractional projections of the angular momentum, in addition to [30] where
only integer ones were considered. We construct unitary IR, including multivalued, in spaces
of functions on various manifolds connected with SO{2,1) or SU(1,1), whereas usually they

restrict themselves to the unit disk or to a circle. In particular, we consider decompositions
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of fustclions on a cone and one sheol hyperholoid with respect to nnitary ol SO, 1),
Consider a representation T(g), g € SU{1,1), acting in the space of functions H)

defined on the colunins v = {1},

T(gf(v) = f(v), ¥ =g"v. (5.1)

The matrices g=! can be parameterized by fwo complex numbers u!, u?,

u' uz
g“:( ,)- [l = [ = 1, (5.2)

T

Taking into account that the combination
[ = 14l = ff? = 0o = © (5.3)

remains invariant, one can use £ to specify different subrepresentalions, Generators, which
. LB

correspond to one-parametrical subgroups (see (2.4), have the following form in this repre-

sentation

J = —(1/2)(v18/v; — va8/vy), Jo= 018/ v, j-:- = uad/vy, (5-4)

T =G+ ) = —(1/2)(18fvs + 120 1),

JP= (- ) = (1/2){v28/ vy — v18/vs).

i

They ohey the commutation relations (4.8}, so that Je= .fu_j“ is a Casimir operator.
Let us take functions of the form f, ., {v) = v[*vj*. The action of the geperators on
these functions can be found?,

ng—ny . np+ng

jofnlnz =M fainzs jzfn.n;, =77 +1) fayngs M= 5 j 5

j—fﬂlﬂq = nzfnl-l-l,nz—l, j+fn1n2 = nlfnjwl‘n::_-l-l- (55)

Thus, all quasi-polynomials of the power 2§ form a TR space (j characterizes the IR). J,
and J_ are arizing and lowering operators for the projection of the angular momentum
*We are going to use here the notation m for the arglular momentum projeciion (the same was

used for the mass), hoping that this will not lead to a misunderstanding.
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= (p — e )/2. 0 ny 2 0 and §s integer then Srng belongs to IR, which has the lowest
weight »; if n, > 0, and is integer then IR has the highest weight v2’; if both n; >

0, i=1,2, and are integer then IR in finite-dimensional (has both the highest and lowest

- weights)., For unitary IR of SU(1,1} : (J9* = J°, Jf = —J, that means ny — ny

is real, and ni(na + 1) < 0, np{n; +1) £ 0, whereas for IR of SU(2) : f; = f; and

ny{ny -k 1) 2 0, na{n; + 1) > 0, [32]. At agiven j one can select
‘N’l: nz ‘L"[“ U;I? (5‘6)

as elements of a discrete basis in the space of functions f;(v), where N,,, ., is the normalization
constant, and ny = —m, ny = j +m.
A classification and weight structure of unitary infinite-dimensional and non-unitary

finite-dimensional IR of ST/(1,1) is presented on the Fig.1.
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FIGURES

m J Ny
finite-dimerfsional, 7 2> 0

prznc%al,g =—1/2+1r/2 .
Lsupplementary, —1/2 < § < 0

3

discrete T,

j< =12

discrete T,

FIG. 1. Weight diagrams for unitary and finite-dimensional (R of SU(1, 1)

To describe IR of different series one has to define in more details the space of functions
f(w). At different C in eq.(5.3) one can use the following parameterization of v; and v :
C=0: = pe“"’"’"“’”% Ty = pei(‘”_"’}”z,
O<p<4oo, 0<p<dr, 0<w<2r; (5.7)
C=1: v =cosh(§/2)e¥*H2 oy, = sinh(#/2)ellv—#)2,

0<8< oo, D<p<dr, 0<w<or. (5.8)

The case of negative ' (€' = —1) is reduced to (5.8) by the replacement v; = . The
parameter w is not changed under the group transformations in the case (5.7), thus, there
are two complex manifolds, on which the group is acling transitive: the complex hyperbolaid

(5.8) and the come,
C=0: v =pe¥? 43 = pe™™* 0 <p<doo, 0<¢<dr (5.9
Using the components (v, v2} of the spinor and the conjugate comporents (T;,7;), one can

15

. o1 2 : : :
construct ohjects (2% 2!, £?), which are transformed under three-dimensional vector IR with

j:]‘!

2= (o + [oa)/2, @' = (Brva + 0i72)/2, 7% = (01T, — Bra) /2, (5.10)

P =y, zl= (02 vi)/2, 2= (uf —ul}/2 (5.11)

The vectors {5.10) and (5.11) have the same transformation properties, because of the spinors
(v1,12) and (¥2,7;) are transformed equally. The latter can be easily checked, using the

explicit form of the matrix (5.2). Substituting (5.9) into (5.10) or (5.11}, we get the cone

a

' =p' 2= _—pleosp, 2f= ~ptsine, T al— 2= (5.12)

Substituting (5.8) into (5.10), we get two sheets hyperboloid
2% =coshd, 2= _sinhg cos, z°=—sinhdsing, " zZ—z?~ =1 (513)

If v, are periodic in ¢ with the period 4=, then %, are also periodic with the period 2x.
Let us turn first to IR of the discrete series TF (m=—j,~j+1,—j+2..)and Iy (m=

53i—1,7-%..), 7<—1/2, the theory of which is quite similar to the one of the finite-

dimensional IR. The IR T# and T} can be realized in the space of functions J{v}, where v,

and v; belong to the case (5.8). The scalar product of functions on the complex hyperboloid,

1 —_
(i) = g [ Tifad(onl  foal? — dPnd?o,
1 2= rid 00 __
=57 fn o L 4o fo Fifosinh8d0, &v = dRv dSo (5.14)

allows one to normalize the elements of the discrete basis Tj+ at j < ~1/2,

BRSO 1/2
( 1) F( nl)) v;“v;’

z!!LYJ',ITL('U) = (U Ijm) = ( "-‘Z!F(-Qj)

—1)2T(=n, 1\ 12 N
- (b( n.?!r (F_(zj)”) (cosh(8/2))™ (sinh(8/2)) et istes2e8) (5.15)

The projection m, and therefore j (f = Muyax in I, j=—mpyin TJ-""), have to run over the
integer and half integer, j = —1,-3/2,-2,.. ., for representations in spaces of single-valued

functions.
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"Fhe lowest weight (v]j — 7) = vZ has a stationary subgroup &(1} and CS are parame-
terized by dots of the upper sheet of two sheet hyperboloid SU(1, 1)/U(1). An explicit form

of CS can be obtained by the action of Rnite transformations on the lowast weight,
Yiu(v) = (v ] fu) = (u'vg - uPoq)¥, (5.16)

where u = {(u',u?), u' = cosh(6)/2)e"™/2, u® = sinh{,/2)e="™"/? are elements of the

matrix (5.2). The C§ overlapping has the form
(' | ju) = d,p(in’ — @by (5.17)

A detailed description of CS of the discrete series of SU(n,1) one can find in [31}, and of
SU(1,1) in [30-32]. The representations T; and T ave conjugate; the discrete hasis Ty can
be derived by means (;f the complex conjugation from (5.15) or hy the replacement, vy 5 ;.
For the functions, which are transformed with respect to one and the same representation
17, the integral over w in (.14) gives 27, The completeness relation at a given j can be
written in terms of the discrete basis as well in terms of CS,
= S | jmim (= 22t f" doy [ |00 e [sinh 0yd0y. (5.15)
e oo 4 —2r a
The parameter j takes on discrete values and the hasis functions are orthonormalized
on the Kronecker symbol §;; for the single-valued IR of the discrete seties, whereas for the
principal series the condition of orthonormality contains the d-function §(j — 7). Principal
series can be constructed both in the space of functions on the complex hyperboleid {5.8),
and on the cone (5.9).

One can construct the principal seties on the cone {5.9) with the scalar product

il =) [ do [T Tl b elo do (5.19)

Weget Cppny = |, my + 1 =25 = =1 +4), 2m = ny — ny, for the clements of the discrete

basis (5.6) in case of the principal series,

Ju = &¥me((1/2)p83p £ i8/0g), Jy = i[O, (5.20)
(,alp ! /\m) - 'U;"‘U;z = p—l+i,\e='M(w+4rk), (,\m l X'ml) - {S()\ _ A’)Jmm’; (5-21}

{ow | 0"y = (1/pp)o(lap — 1n p)A(ip ") = (1/p)8(p — p)B(0 — ).

Two IR in the space of single-valued functions with integer and half-integer m (the first and
the second principal series accordingly to the terminology of the work [10]) correspond to
each given A,
iz [ e [ edow | odo = 7 [0S 1 amdiom |
82 Joax o 812 Joco po

The summation in the last equation is running over all integer and half-integer m. Multi-
valued IR are characterized nof only by A but also by a number ¢, [} < 1/2, which gives
the nearest to zero value of m {for single-valued TR, ¢ = 0 or ¢ = +1/2). Elements of
the infinite-valued IR space are not periodic in . Thus, an arbitrary representation of the
principal series is defined by two numbers (A, ¢), where 7 = (—1 + iX)/2 characterizes the
angular momentum square, J? = j{j + 1) = (-1 — A%}/4, and ¢ characterizes possible values
of the momentum projection m = £+ {mj. There is a certain analogy with IR of the principal
series of 50(3,1), which are defined by two numbers (A, 5), where § corresponds to the spin
(33,34}, and A defines the square of the four-dimensional anglular momentum.

The representation of the principal series T_y/2 is reducible at X = 0 and |¢| = 1/2, and
is split into two IR: Tflﬂ (g = —1/2) and T2y (e = 1/2); £ = £1/2 corresponds to one
and the same IR at A £ 0.

One can remark that, according to {3.21), p-dependence of functions on the cone is the
same at a fixed 7, and it is possible to consider the space of functions f(i7) on the circle, what
they usually are doing, considering the principal series of IR. However, such a reduction of
the representation space is not always reasonable because of the space of functions on the
cone appears sometimes naturally in different physical problems.

Te construct CS one has to consider orbits in the representation space, factorized with

respect to stationary subgroups [30]. The stationary subgroup of the state |A m = 0) =
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~H 45 U(1), and CS, which correspond to integer m (£ = 0), are pa;rameterized by the

p
dots (0, 1) on the upper sheet of the liyperboloid SU/(1, B/ULL). {Such CS were conslructed
in [30,35] in the space of functions on a circle.) Substituting o' = cosh(0/2)citi? 42 —

sinh(#/2)e7/2, o = p(cosh d + sinh @ cos(3 + ))'/? in {5.1),(5.2), we get CS in the form

{ow [ M%) = (')7"+™* = p='*3(cosh § + sinh O cos{tp 4 ip))"2HA2
1
{Am | A 09 = Qf](/\ﬂl | po}{owe | MO pdpdip

2r .
= (172m)8(A — X, )fo " (cosh § + sinh & cos(y + tp})_l"“"\"zdgc

F{m 4 1)

=&)X= m . —imyr
A = M 172 g g maaleosh 0)em, (5.22)

where P avinga(cosh 8) is adjoint Legendre function. Atm = 0 the latter goes over to zonal

harmonic P_yjg:s jadcosh #) (it is also called cone function {10,36]). To get CS at arbitrary

€ one has to act by means of finite transformations on the state jA m = g} = p=lHheiew

—1/2+0) a? gly©
{p | Acthip) = ((1’11.!] + gy u® + 7)21“.:')) 1atid/2 (odl” + vy’
vyt 4y
=p""** (cosh 8 + sinh @ cos(ip + 1)) HEHM2

y (COSh (6/2) expl~i (1w — ) /2) + sink (8/2) expli (v — ¢)) /2])5
cosh (8/2) expli (¢ — ) /2] + sink {8/2) exp[—i{p — ) /2

(5.23)

The case £ = 0, which we have considered above, and ¢ = £1/2, correspond to represeata-

tions in spaces of single-valued functions. In the latter case al m = %1/2 we get

{ew | A172,0¢) = (vyu! + ey foia' + wgu® [P,

(oo | X =1/2,00) = (0@ + vga®) ™ | vyut + vgu? | (5.24)

At X\ =0 the CS take a simple form
(e 10 1/2,00) = (w1n + vpu?)7,
o [0 172,89 = (n@® + vy, (5.25)

which coincides with the explicit form of CS of the discrete series (5.16) (in this case, all the
difference between CS of different series consists in different domains of v; and vy, see {5.8)

and (5.9}).
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Let us turn to IR of supplementary series. The integral in (5.19) is divergent at real j.

However, one can use a convergent “non-local” scalar product

1= [ [FGihlei(en za)dnden, (526)

where the kernel function I{z;,,) has to be invariant with respect to finite transforma-
tions of the group. For the cone one can select an invariant expression (9] — favf) =
21sin(/2 — o' /2)pp'. At a fixed 7 representation functions have the form Y fle). Let us
select f(x1,22) = J(vpv] ~ v,04)/2]"%, then the integrand i (5.26) is Fle)f2(o) sin(ipf2 —
©'f2)i7¥. It does not depend on p, so that at a fixed 7 (5.26) takes the form

2 2 -

Gl = [ [ RS Nsinte/2 - o 2)[ Pdpds, (5.27)
where —~1/2 < j < 0, the latter is necessary for the scalar product to he convergent and
positive defined.

For the single-valued representations of the supplementary series m is integer, for the
multi-valued representations one has to iniroduce £, [gf < |ji (restrictions on & follow from
the unitarity of the representation, see Fig.1). Matsix elements of the supplementary series
IR are expressed via so called torus function [36].

An invariant dispersion with respect to SO(2,1) transformations can be written as
AF® = (L HTNT#) = (BT = (AP — (A7 (528)

It has the value j(j + I) — m? on the states |jm). At a given j CS minimize the absolute
value of the dispersion (5.28). For CS of the discrete series AJ? = 7, and for the principal
series AJ2 = —1/4 — 32/4 - &%

Below we present a short summary of IR studied.
For single-valued unitary IR of 50(2,1) the amgular momentum projection m is integer,
for single-valued IR of SU/(1,1) it is integer or half-integer. For multivalued unitary IR
the projection m can fake any real values, Here we meet an essential difference with the

Lorentz group in four dimensions, for unitary representations of the group this projection is
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always integer or half-integer. That is connected with the existence of noti-Abeliazn compact
subgroup SU/(2) ~ S0(3). Representations of the discrete series Tj:k(g} of SU(1,1) at réaj,
integer and half-integer § < /2 are single-valued and have the highest and lowest weights
m = +j. Representations of the principal series Tielg) §=—1/2414h, =12 < e < 1/2,
are single-valued at £ = 0 and at ¢ = 1/2, At ¢ & 1/2 representations are irreducible and
have neither highest nor lowest weights: al & = 1/2 (e representadion is split in Lwo ones:
T;12{g) with the highest weight m = ~1/2 and 7}‘[’1’,2(5:) with the lowest weight m = 1/2.
All said about IR of 5U/(1,1) is summarized in the table below. The parameter n there is

integer and n > 0; § or M signify single-valued or multivalued TR respectively.

seties J m M
finite-diffiensional : T; | j >0, integer | —n, n <25 B
discrete: =172 Salj=—1—ny2
T : —i+n
17 ji—n
principal:
Ties =1/2<e<1/2 |j=-1/24ir2| c4n Sate=0,1/2
Toapae =T, 0T
T4 j==1/2 1/24n 5
T j==1/2 ~1/2~n S
supplementary: —1/2<j<0
Tie, le]l < |7} exn Sate=10
TH (e=4) e+n M
I7 (e = —j) £—mn M

Now we have to make some technical remark. As it follows from our consideration,
representatives of all non-equivalent finite-dimensional and unitary IR of SU(1,1) can be
construced in the space of functions on two complex variables v, and v, only. At the same

time, studing the left GRR (4.4) of the M(2,1) group, it is convenient to use functions on
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the elements 21, %, of the first colurm of the matrix Z. In such a space the spin generators

(4.7) are reduced to the form

8= (U2 (218/z1 - 28/2), §* = (/22105 + 220/ =),

52 = —-(1/2)(2;6/22 - 526/21), (529)

In fact, after the renotation = — v, 5 — v they go over to the generators (5.4).

VI. RELATIVISTIC WAVE EQUATIONS FOR HIGHER SPINS

As is known, wave functions of relativistic particles are identified with vectors of repre-
sentation spaces of the corresponding Poincare groups. Thus, the problem of the construc-
tion of the relativistic wave equations for particles with diffe¥ent spins is connected with a
decomposition of the (left) GRR of the M{2,1) group.

Cousider functions f(z, z), which are transformed under the left GRR of M(2,1}, and
which are eigenfunctions for the Casimir operators j°, ,ﬁj = ﬁS", and for the operator Sz,

which commutes with all the generators of the left GRR,

(- m)f(z.2) =0, 1)
(pS — K)f(z,2) =0, (6.2)

(8% — S(5 + 1))f(z,2) = 0. (6.3)

The equations (6.1)-(6.3) define some subrepresentation of the lefi GRR of M (2,1}, which
is characterized by mass m, spin 5, and by the eigenvalue K of Lubanski-Pauli operator,
the latter is connected with the spin projection s on the direction of the momentum. The
equation (6.1) is 2 4 I-dimensional Klein-Gordon equation. For particles with m > 0 one
can see that K = dms. Indeed, in the rest frame 5§ = p05% pos® — K =+tms— K = 0.
At m = 0 we suppose K = {, that is true for IR with finite number of spinning degrees
of freedom. The cases m = 0 and m imaginary will be discussed in Sect.9 in detail. The

equation (6.3) defines z dependence of the wave functions. The eigenfunctions of the operator
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57 are {quasi)polynomials in the variables 21, % of the power 25, on which representations of
SU{1,1) can be realized (see the previous section). Consider possible cases, which correspond
to finite-dimensional non-unitary IR and to infinite-dimensional unitary IR of the latter
Eroup.

1. The value of § has to be positive, integer or half integer for finite-dimensional and
non-unitary IR of SU{1,1). In this case f(z,2) = fs(z,z) are polynomials in 21, Zz of the

power 25, Solutions of the equation (6.3) have the form at 5 = 1/2,

! .
N2, 2) =~ )5 + b pol(z) 2y = (<2, 21} Visele) . (6.4)

’([)—1/2(1'}

Using eq. (5.29), we find the action of Lubanski-Pauli operator 48 on the funclions iz, 2),

5 1, . Pi7e(z)
]?ag_f|,,'2(:r,z) = i(—'*? ZI)P.M'Y” f
![Lu'z(?f)
where 7v* = (0%i07, ~ic?) are 2 x 2 ~-matrices in 2 + 1 dimensions, {y#,v} =

2%, [v"vt) = 24"y, Then, the equation {6.2) can be rewritten in the form of 2 +1

Dirac equation

([ P (6.5)
Vr’—l/z(f)

The column (1 p2(2), Wo12(2))7 is transformed under the spinor representation of SU(1,1).

Indeed, let us subject the function fipalz, 7} to a finite transformation of M(2,1},

T(ghfipalz, 2) = ~guplg ) g 5a) + Voo 2 ) g™ 2),
, el _ Uy ug
=gt (~g7Rgy) = (-5 2}
iy Uy
On the other hand, fi’,,z(:r:, z) = —y’;j,,z(:rjéz + 11"'“1/2(31)211 that means tlat #'(z') = U(z).
Thus, 4 sy(z}, $_ypa(x) are transformed as components of a spinor field, The combination
[} (") — L1l )E = i ol )P — [#-172(2)[* = C(x) is preserved under the transfor-

mations.
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Lel us consider the states fipa(, z) = €7%( Az 4 Bz,) with § = 1/2 and a definite
momentum. The combination {A|* — |BJ? = € remains constant under the M(2,1) trans-
formations. One can set A or B to be zero in a certain reference frame, depending on
the sign of €. In the rest frame we get two wave functions, which can not be conmected
by any continuous M (2, 1) transformation, e ®%"2;, (0 = 03, g’ 2, (C < o).
They cotrespond to two different directions of the spin projection on the axis % The
case C = 0, Ae‘ipnru(e"‘slz; +e%2,), A #£ 0, corresponds to the massless particle. In-
deed, a straightforward calculation shows that the action of the operator 35 on the function
(69121 + e™¥22,) gives zero at i% = p, j* = peosp, B = psin g, ¢ = 1 — ¢, { see also (9.11)).
Thus, at 5 = 1/2 we have three cases in accordance with possible values of the Casimir
operalor B8 (km/2, 0). Representations of M(2,1) at m > 0 and § = 1/2 are split into
two IR, which correspond to particles with spin projections s = 1/2 :;u:l s = —1/2, whereas
the representation, which corresponds to the massless particles, is irreducible.

For the § =1 the equation (6.3) has the following solutions
film, 2} = Fi(2)2E — Folx)v2n3, 4+ Foy(z)?, (6.6}
with F{z) = (Fi(z) Fy(z) F_1{x))T subjected the equation
(S — sm)F(z) =10, (6.7)
10 0 018 0-1 0
. 1 .
Sn = , S[ = _L . , Sz —_ i —1},
00 0 7 ot 7 0
00 -1 010 0 1 90
where the projection s takes ou the values &1, 0. The matrices 5! and 52 are connected
with the corresponding spin matrices 5 and 52 of SU/(2} by the relations §' = i§! and §? =
—:52, 1f one introduces the new (Cartesian) components F#, F!' = {(F_, — F)/V3, F? =
—(Fy + F_1)/v3, F® = F, instead of the components Fy(z), Folz), F_i(z) (cyclic compo-
nents), then in such terms the eq. {6.7) takes the form
D F — smFr =0, {6.8)
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One can find, by analogy with the § = 1/2 case, that ﬁnité transformations of M(2,1)
act on the Cartesian components as £ (') = Al F#(2). Here the combination [ Fota))? ~
[FYz)E — |F2(z)? = C{x) is proserved. ¢ does not depend on & for states with a definjte
momentum. The case ¢ > 0 corresponds to Darticles with real mass m # 0, the case ¢ =0
corresponds to massless particles. Correspondent wave functions are presented in Sect.9.

Consideration of higher spins can be done by analogy. The funclions fs(a,z) have the
form

5
Js(w,2) = 3 Fa(a)(Cge)? (=5,)5+ 25,
P

where F(z) is 25 + 1 component column, obeying the equation

{p.S" — sm)F(z) = 0, (6.9)

C3s are binomial coefficients, n = § 4 &2, and (25 + 1) % (25 + 1) spin matrices S# are

generators of SI/{1,1) in the representation Ty,

5% =diag(~3, ~$+1,...5~1, 5, (6.10)
i} V25 0 00
V35 0 JES-12 .. 0 ¢
G_i 0 (25 —-1)2 0 0 0
= 5 5
0 0 0 .0 V28
0 ¢ 0 - V25 0
0 28§ 0 .. 0 0
V28 0 —J25-12.. 0 0
. L] 0 y2s—12 0 - 0
=3
0 0 0 4 —/325
0 0 0 V250

The functions F{z) are transformed under IR Ts.of M(2,1), F'(z') = Ts(g)F(z).

In 2 +1 dimensions, in the rest frame, a particle has only one polarization state,
F(z,2) = 7 gSba b ™™ {cosh 8/2)5+(sinh 8/2)5-a gl

Indeed, the non-relativistic group of movements is M(2) = T(2)x)S0(2), where the group
502}, which describes the spin, is Abelian and has only one-dimensional IR, to which the
functions ¢** correspond.

If in the rest frame a particle has integer or hall-integer spin projection s, then the
correspendent representation of SU{1,1) of a minimal dimension is finite-dimensional Ts(g),
where § == s, and dim Ts = 25 + 1. To describe states with fractional spin projections one
has to consider infinite-dimensional representations of 2+ I Lorentz group.

2. Tor infinite-dimensional unitary IR of §I/(1,1), the values'of § have to be non-
integer, § < —1/2 (discrete series), —1/2 < § < 0 {supplementary series), or complex,
5 = —1/2 +i)/2 (principal series), see Sect.5 . The correspondent equations describe, in
particular, anyones. Consider first representations with highest and lowest weights. These
are all representations of the discrete series T# and two representations of the principal
series T's,, which correspond to § = —1 [2and e = 1/2, i.e. to hall-integer spin projections.
Tke eigenfunctions of the operator 52 in the representations T3 are negative power § quasi-
polynomials (see {5.15)),

o ~1}T{n — 28)\ /*
J(,2) = 3 Posin(a) (Cio) ¥ (=i, é‘s:(('——‘n)zr((fzs) )) ’

J5(5,2) = 3 Fonle) (Clo) ¥ (=502, (6.11)

=0
aking this into account, in (6.2), we get an equation for the infinite-component column

(=),
{PuS* — sm)F(z) = 0. {6.12)

The matrices 5° are diagonal, whercas S? and §? have only non-zeroth elements on the

secondary diagonals. For the representations TS
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50 = diag{~5, —S +1, —§+2, ..},

0 V2 0
@ v o 51 _ 28)
2 g Aroze o
D —v/=38 0
1= 0 -2t 25) ..
§t= L 25 ( Vel (6.13)
2l 0 i-28) 0

In case of unitary infinite-dimensional representations the matrices 5 and 5% are Hermitian,
whereas in case of finite-dimensiosal non-unitary representations, considered above, they
are anti-lermitian. As il follows [rom (6.11}, the funetions gy, () are transformed ander
representations of positive series Td (Fs_n(x) under the negative series Tg') and therefore,
the sum 725 1Fs_.{2)|? is invariant under the transformations of M(2,1).

The spin projection s can take on only positive values for the representations T¢ and
negative values for ones T .

Representations of the principal series Tse, 5 = —1/2+1A/2, —1/2 < ¢ £ 1/2, have
neither highest nor fowest weights, with the exceplion of the above nienbioned case.

In case of representations of the principal series, the functions fs(z, z) are presented by

the infinite sum

4o
fs(z.2) = Z F€+'I(-T)('52)S+(5+")zf*(5+n}_ (6.14)

Equations for the components Fyy. (%) have the form analogous to (6.12), where the matrices

5% are diagonal, and 8!, S? have non-zeroth elements only on the secondary diagonals,

5% = dope(e 4 ), n=0,F£1,42 ...,

= % (b wrsr(S — & =)+ bnp w(S+e+n+1)),
§ = L [8n wntlS — e = ) b bay w{S e b0+ 1)) (6.15)
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The functions Fy.{z) are transformed under representations of the principal series of
SU(1,1), and the sum T} [Fesn(z)[? is invariant under the transformations of M(2,1).

In all the cases considered above the matrices S* obey the commutation relations
[5%,8"] = ieS,, and anticommute at different indices, {5*, 5"} =0, u#r.

As one van see from the consideration presented, the construction of the relativistic wave
equations in 2 + 1 dimensions is, in a sense, simpler then one in 3 + 1 dimensions. That is
connected with the vectorial nature of the operators of the angular momentum and of the
spin. In 3 + l-dimensional case the above mentioned operators are tensors, and namely this
circumstance complicates the problem.

Differeut IR of Af{2,1) are marked by the spin projection s. Howe‘ver, how one can see
fr;gm the previous consideration, the classification by the value $, connected wiﬂ] the square
of the spin operator, is also useful.

In case of the infinite-dimensional unitary representations of 2 + | Lorentz group, it is
easier to deal with the functions f(x, z), but not with infinite number of their components
Fia(z) in z-decomposition.

As an example let us consider the plane wave solutions at m > 0. For § = 1/2and §=1
such solutions were analyzed in [4]. There was remarked that, in Fact, all the components
are connected, that means that the number of spinning degrees of freedom is one. Here we
are going to present similar consideration for all the representations of 2+ 1 Lorentz group,
which have lowest weights, namely, for finite-dimensional T (§ > 8, integer or half-integer),
and for infinite-dimensional unitary representations T (§ < —1/2).

The wave function in the rest framne, which corresponds to the spin projection s = —§,
has the form 2f*®(py), po = E = £m. Acting on it by finite transformations, we get at

E > 0 a solution in the form of the plane wave, which is characterized by the momentum p,

flp, 2} = (2181 — 52u2)*° U(p), {6.16)
m O

P=U"'MU, M=
0 -m
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Withoul loss of generality, we selocl 1y = cosh Of2e70 gy o il /267 Loeange of
y-rotations correspond to the stationary subgroup of the state {6.16), and lead only to
variations of the phase. Using the relations p” = £ = m cosh &, —p; +ip, = msinh fe,

one can express the parameters ; and u; via e momentum p,

Uy giwi? —pa +ipy

e — . (6.17)
it v2Im(E +m) £ 4+m

In case of finite-dimensional representations one can gel the 28 4 1 components Filp) as

coefficients in z-decomposition of the function (6.16),

; 28
s 7

Flpl=y . | = ~ | W), (6.18)
F s ’L_L'l‘;s

VI
Fi(p) = (C5°) " afeugts

S5 . S5
- (Cés;s)lﬂ (E+m) " (—pa + im} ¥(p).
(2m,(E +m))°

(6.18)
Here we have omitted the phase factor e=*/2} In the particular case § = 1/2 we get [4],
g

i ~p+ip
Y(p) = e T(p). (6.20)
V2m{f — m) E+m
For representations of discrete and. principal series similar results holds. For example, in the

former case one can get
Posiu(p) = Cloi) ™ us*
= (C)H? (E+m) 7 (—py +ip,)"
5 (2m(E + m))®

Y(p). (6.21)

VII. DIRAC EQUATION AND CS EVOLUTION

It turns out that 24 | Dirac equation appears also in case of infinite-dimensional unitary

IR (discrete and principal series with highest and lowest weights) as an equation for CS
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evolution. ‘fo see this, let us take spinning CS of & massive particle, relaled {o the highest

(lowest) weight of IR T (T3),

b (. 2) = (228" () + 2 (2))%, (7.1)

¥i(e 2} = (' (a) + 2 (@), WP - i =1 (7.2)

Here S can take on the value —1/2, that corresponds to the principal series of SU(1,1), or the
values & < —1/2, that corresponds to the discrete series of the group. At S intezer or half-
integer the representations are single-valued. We demand ¥} (z,z) to be an eigenfunction
for Lubanski-Pauli operator 53,

p5Et(z, 2} = FmSei(e, 2). (7.3)

The left side of the equation (7.3} takes the form after the action of the operator,

s (—;}‘,(z;ul — 51%) — ip{zu® + Bou') — Polzyu® — Fud ))
u'(z)

x(zu! + 5P = § (2 5) [—ﬁgcru — ipot — ipea®
u*(z)

w{zut + Ezuz)z'g_l = FmS(zu’ + Egu2)25.

Taking into account the explicit form of the wave function, we obtain an equation for the

parameters of CS,

ul(z)
(Puy" & m) =0, (74)
w(z)
which is, in fact, 2 + 1 Dirac equation. The same equation controls the evolution of the
parameters of C3 (7.1}, and appears also both in case of § = ~1/2, and for arbitrary
S < —1f2
Consider an example. Let a massive particle in the rest frame is in the spinning CS,

related with the lowest weight of the unitary IR T¢ or 74 . The corresponding wave functions

have the form
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Ui (,2) = €790 (2,75, (7.5)

g (i, 2) = e~iP=" ()25, (7.6)

The wave function of the particle with arbitrary momentum can be derived from (7.5) or

(7.6) by means of an appropriate rotation,

Pz, 2) = ez u! 4 5u?)?S, (7.7}

Py (2, 2) = e W82 4 5,81)%5,

P = Ul (7.8)

It is easy to verify that the functions u*(z) = e=*u* obey the Dirac equation {7.4).

VIHI. ANGULAR MOMENTUM

In Sect.3 we have considered three types of representations of M(2,1), which correspond
to a real mass, zero mass, and imaginary mass. In each case the functional representation
spaces are different, these are functions on one or two sheet hyperboloid and on the cone.
Respectively, are different expressions for the angular momentum operator. Here we are
going to analize the eigenvalue problem for the square of this operator and its projection in
all the cases, using essentially the consideration of Sect.5. In particular, we will use bases of
unitary IR 50(2,1) to decompose functions on one and two sheet kyperboloid and cone.

1. m #0 and is real. The operators L* are acting in the space of functions on two sheet
hyperboloid with the scalar product (3.12}. The arising and lowering operators [y and the

operator of square of the angular momentum L2 have the form

Ly = e (41 coth 08/84 + 5/0) ,

L, & ¢, 1 &
Z . [ —
L oot byt e aE

~ o 89 1)

Let us suppose that a representation of the S({2,1) subgroup has the highest weight
£(8,3)e%, then

Ly £i(8)e7% = eUF%(—j coth 0£;(0) + B £:(9)/96) = 0. (8.2)
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and, therefore, the highest weight has the form (sinh Ve . It is easy to remark that at
J < ~1/2 (that would correspond to a discrete series) the norm of the state has a power
divergence because of 2 singularity at # = 0, and at j > —1/2 the integrand of the norm is
growiag exponentially with the growth of 8 (the case of double-valued IR with j=-1/21is
considered below). That means that single valued unitary IR with a highest {lowest) weight
are absent in the decomposition of T,

In general case the wave function, which corresponds to the state | 7} can be written in

the form N P(cosh 0)e®™®, where N does not depend on 8 and ¢. The equation
I:”’}(coshﬁ)e“é =i+ I)Pj(coshﬂ)c“‘f'

defines adjoint Legendre functions Pl{cosh8) (below we are going to use the functions
P}(coshg} = (B0 + 1)/TG + 1 + 1})P}{coshf}). The representation is unitery at j =
~1/2 4+ iAf2 {see [10]). Fhus, IR TF of M(2,1) are decomposed in course of the reduc-

tion into representations of the principal series,

(60 | ALy = Pl(cosh 8)e™[vIm, j=—1/2+i)[2, (8.3)
(AT = (1/22%)A tanh (7 A/2)8(A — N}, 8.4)

53 (86 1 M)NT1 09) = Banef2r.

The representations of the principal series (A,e) with arbitrary non-zeroth & can be
constructed in terms of multivalued functioqs o a sheet of the hyperboloid {¢ = 0 cor-
responds to the single-valued representations). The functions have the form {4 | Ael) =
PHe(cosh 8)e!l<) {\/2x, with the scalar product (8.4}, where the factor tanh{= A/2) has to
be replaced by one tanh(m(A/2 + i€)} [10]. At & = 1/2 ( double-valued representations)
and j = —1/2 the representation is reducible and is split into two representations with the
highest weight [ = —1/2 and with the lowest weight | = 1/2, the corresponding functions
have the form (sinh 8)~1/2¢¥%/2 according to (8.2).

2. m = 0. The operators L* (3.16), and ones
Ly = *™(pojop+8/0¢), L? = pd/dp(pd/dp+1), (8-5)
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are acting in the space of functions on the cone 7~ 1l — P} = 0. One can remark that
after the replacement p by p? the expression {8.5) for Ly passes into the expression (5.20)
on the complex cone (5.9). The scalar products on these manifolds differ only by the limits
of integration over the angle & ([ -2r, 2n] or [0,27] ). Thus, the representations of the
principal series (A, ) can be constructed in the space of functions en the cone, however,
only the representation with £ = 0 will be single-valued and the representation with & = 1/2
will be double-valued.

According to (5.21), the wave function of a massless particle with the fixed momentum

J=-1/241iX/2 and with the projection { has the form in the momentum representation

{Pd? ' )\[) — p—1/2+i,\,'26i1q5/27r’ (86)

(ALY = 8((A = X)/2365.
3. m # 0 and is imaginary. The operators 1 (3.19) and ones

Ly = e**#(4itanh 03/0¢ + 5/08),

. » 8 1 &
2 —_— e e o — e
V=g +tanh g, — — 5530

(8.7)
are acting in the space of functions on one sheet hyperboloid. Unitary IR. of the discrete
series can be realized in such a space. The result of the action of the arising operator L. on

the highest weights f;(8)e of the discrete negative series IR must be zero,
Lif50)6 = 0% (—j tanh 0£;(0) + 51,(9)/6) = o,

thus, {with accuracy to 2 normalization factor) f;(0) = (cosh8). By analogy, we get
the expression (cosh #)7e=#* for the lowest weight ([ = —j) of the discrete positive series.
Nermalizing these functions by means of the scalar product (3.18) and denoting them as
Y;:(6,9) and Y; _;(8, #), we can write

(—2j — 2

1/2 o
T 3)”) {cosh §)etis?,

Yi4;(0,¢) = ( {8.8)

The functions ¥;4(8,¢), { < 7 (IR 77 ) can be derived by the action of the lowering operator
L. onthe highest weight Y _;(0, ¢), and ones ¥;,(9,¢), [ > —j (TR T}") by the action of the
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arising operator £, on the lowest weight ¥;;(8, ¢). By analogy with the spherical functions
we will call (8.8) the functions of one sheet hyperboloid. The wave functions of tachyons in

2+ 1 dimensions have the form,

{08150 = Yi(8,¢), (M {AT) = Gradias, (8.9

where 7 < —1 and is integer (for the multivalued IR § < —1/2, and non-integer), whereas
the momentum projection { > |jl. The functions (8.9}, similar to the ordinary spherical
functions, differ from adjoint Legendre functions P by a factor only.

In general case one has to consider eigenfunctions of the operators L? and 19 with the
eigenvalues j(j + 1) and I. These functions have the form f(#)e™, where F(9) obeys the

equation o

1

(% +tanh 0 4 mfz) £0) = 3G + 1) 5(0), (8.10)

which coincides with one for the adjoint Legendre functions,
92 a3 2 ir, s Ir.
((1 - ZZ)EZ — 225; ~ Bl -z ]) PJ(‘,) = —j{7 + 1) F;(z),

at = = isinhd. At'j < —1 we get the above considered IR of the discrete series. The
functions F{isinh0) at § = ~1/2+iA/2 could correspond to the principal s-eries of unitary
IR, but the corresponding norm is divergent in this case.

Thus, our consideration shows: in course of the reduction on the subgroup S0(2,1) the
representations T=(g) and T (g) of M{2,1) with real (in particular zeroth) mass are split
into IR of the principal series, 7 = —1/2 + i), L? < —1/4, whereas I are arbitrary integer.
For tachyons, the representations T,,(g) are split into IR of the discrete series, j S —1 and
integer, L = (4 1) > 0 (i.e. the space component of the angular momentum L° is greater
than the bust ones). For the tachyons the absolute value of the projection ! can not be less

than |5|, in particular, { can not be zero.
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IX. HARMONIC ANALYSIS ON M(2,1)

The harmonic analysis allows on to give the most complete description of representations
of a group Lie, using explicit realizations in spaces of functions on the group. The bases of
the method are presented for example in [6], there one can also meet & detailed application
to the group of movements of the plane M{2). The harmonic analysis for M(3,1) one can
find in [37,38].

The consideration we have presented jn Sect.4,5, and & is, in fact, a component part of the
harmonic analysis on M(2,1). Here we are going to derive explicit forms of eigenfunctions for
different sets of commuting operators of M(2,1), decomposing GRR in IR. A classification
and a description of unitary IR of the group will also be given. l

Let us turn first to wave functions of spinless particles.

1. States with a given momentum, {z | p) = =2,

2. States with a given energy py and angular morentum projection I,

(@l m 1) = o=+, (i =2 (2.1)

where p, & are the polar coordinates in the 2, 22 plane, and J; are Bessel functions.
3. States with a given orbital momentum L and with its given projection I. According to

the eq. (8.3}, (8.6), and (8.9), we have three case in the mementum representation:

m>0, (01 A = Pllcosh®e™, L=—1/241ix/2, (9.2)

where ¢ and ¢ are coordinates on two sheet hyperboloid p? = m? > 0, and Pj are adjoint

Legendre functions;
m=0, {pp| M) =p M, (9.3)
where @ and ¢ are coordinates on the light cone p? =

(0 1 30) = V(8. 9), (9.4)

m — imaginary,
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where # and ¢ are coordinates on one sheet hyperboloid p* = m* < 0, and Y;(#, ) are one
sheet hyperboloid functions {8.9).

It is possible to construct bases for particles with spin, which consist of eigenfunc-
tions for different sets of commuting operators. For example, for sets of operators:
(#, 55,8, 32, J0), (#,.55,3%), (5%,5% 50, L°,8° (we did not include the Casimir op-
erator 35 in this set because of it does not commute with the eperators [* and §»
separately)), (ﬁp,éﬂ,ﬁg), and so on.

Let us consider states, which are eigenfunctions for the operators ﬁ;,, 55, 52 {plane

waves). They can be written in the following form

Sos(z,2) = " fe(p, z), {9.5)

where fs(z} is a homogeneous functio-n on the variables z;, #; of the power 25. These states
are important to classify IR of M(2,1} by means of the little group method.

It is known that IR of the motion groups of the pseudo-Euclidean spaces (Poincare
groups) are marked completely by means of parameters of orbits in the space of momenta
and by numbers, which characterize IR of a stationary subgroup of a state, belonging to the
orbit (little group) {6]. Thus, let us consider three cases: m > 0 {orbits OF, OZ), m =0
{orbits OF, 07, OF), and m? < 9 {orbits O,,).

1. At m > 0, in the rest frame, $5 = £m5®, so that the eigenfunctions of this operator

with the eigenvalues +ms are
c—ipuza(_fz}s+szls—a' (9.5)

One can find the stationary subgroup of the state {9.6) from the condition UBU! = P,
where Py = diag(m,—m). The matrices I/ = diag{e~*/%, &"/?) obey the condition and
form a one-parametric subgroup, which is isomorphic to the group U(1) with the generator
Jo = E° 4 8% The eigenvalues s of this operator together with the characteristic of the
orbit mark IR of M(2,1). Let us denote such representations as 7,1, and T, ,. They are

single-valued at s integer and half-integer, whereas ms and —ms are the eigenvalues of
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the operator 55 in these tepresentations respectively. Subjecting the state (9.6) to a finite

transformations of M (2,1}, we get the function

@z|mSs p)= e N (2,8 — 56! )5+ (20! — @], P =UT'RU . ()

The spinning part of the function is CS of SU(1,1). The paramsters uy, u; are expressed
via the momentum p’ (see (6.17)). This function describes a particle with real mass m 3 @,
momentum: p', spin S, and spin projection s. The normalization coefficient Ns, depends on

IR series, see Sect.5.
The wave function of a massive particle with spin S, energy po, angular momeatum
prejection s, and spin projection { on the axis 29, have the form, according the eq. (9.1},
(e lmSsmly=en"s0g (pfsf—mt) Ns - m)ai. . (og)
2. The wave function of a massless particle, moving along the axis z!, is
8 fs(z, z) = pe= "N (80 L g1y porzy

Jos(z,2) = 7PN po(),

The operator 5% — 51 is the generator of the stationary subgroup of the state with pe =0,

Po = p1 = p. The U matrices, which correspond to the subgroup, obey the condition

p o1
UPnU™ =Py, Py= P .
—ip —p
and have the form
1—ia 1a
U=+
—ia l+:ia

They form the R® Z group, where R is the additive group of the real numbers, and Z is the
multiplicative group, consistent of two elements {1,—1}. These two elements cotrespond to
the identical transformation and to ¢ = 2m rotation around the axis 2% respectively I/ = J
and I = —I, where I is the unite matrix. One can see from (4.4) that the latter rotation

does not change = but changes the sign of 7, T(2r)f(x,2) = f(z,-2).
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‘The eigenfunctions of the operator 5 — § 1, which correspond to the eigenvalues ), have
the form

21+22)

—z1+

A=) = Pl = z)exp (9.9)

The wave functions of the massless particle with the momentum (,p,0), spin &, and the

spin projection A on the direction of the movement can be written as

—Zﬁ_‘?z_) ) (9.10)

Frsa(z) = a0z — 5 exp (/\ -z + 5
They are eigenfunctions of the operators 55 and $2 with the eigenvalues A = pA and 5(5+1).
These functions change the sign under Z-transformations (rotations on 27} at half-integer
5 and remain unchanged at § integer. We deno.tze IR, which correspond to m = 0 as T, A
and Ig, o Heree = 0 (S integer) or e = 1 (§ h‘alf-integer) mark IR of Z group. One can

see that

n n
@37 = (-2 (-2 - 2)) = e (m-n) -

and, therefore, the operator 5 — £* can have only zeroth eigenvalues in the space of poly-
nomials. Thus, as was remarked before in [3], eigenvalues of the Casimir operator 5 are
zero for the finite-dimensional in spin wave functions of the massless particles. That can be
seen directly, using the explicit form of the states (9.9),(8.10). At X # 0 there is an expo-
nential factor dependent on z, its z-decomposition leads to infinite number of wave Funetion
components; similar states appear in the tachyon case. At A =10, fs(z) = (z— Z)*" and if
§ = 0 integer or half-integer, then the number of components is finite {is equal to 25). We
denote IR at A = 0 via Ty, and Ty, where £ = 0 corresponds to the integer and € = 1 o
half-integer S. The case of an arbitrary direction of movement, p’! = pcosyp, p* = psingp,
#° = p, can be derived by a rotation around the axis =°, then 2=zl B =5

particular, at A =0,
(zz|m=0 8 p)y= e ®((ze~ /2 — 5i¥/?)25, (9.11)
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This function deseribes a massless particle with the momentum P and spin S, It is casy to

remark that the states (9.11) are ejgenfunctions for the helicity operator in 241 dimensions,

(1" + P52/ ilp), (9.12)

with the eigenvalues —5 or 5, depending of the sign po. Thus, massless particles, which are
described by the finite component wave functions, have the spin directed antiparallel to the
spatial components of the momentum, whereas antipariicles Lhave one parallel. For IR To‘;
and 75, (wave functions (9.11}) the helicity as wel as the square of the spin are invariants,
the corresponding operators commute with the generators of transtations and rotations of
the left GRR.

In particular case, & = 1/2, taking into account the explicit form of the ~-matrices (see

Sect.6), we get for the operator of helicity

(' -+ p2r?)filp) = (—pia? + pae®)/lpl. (9-13)

(Another possible choice of the ¥ matrices, v = {—0® —ic!, —ig?}, leads to the helicity
operator (po! + par?)/|p|, which is a dimensional reduction of 3 + 1-dimensional case.)

There exist unitary 1R of M{2, 1), which are connected with the orbit (8 and are IR of
SU(L,1).

3. In case of tachyons, the state with po = po = 0, p; = m/i,
frslz,z) = ™' fs(2),
has the stationary subgroup, which can be found from the condition U P01 = Py, where

cosh # sinhé@ 0 ip
V== , B=
sink @ cosh @ ip 0

This subgroup is isomorphic to B ® Z and has the generator J!. The eigenfunctions for the

operators 5 and §2, with the eigenvalues is and S(5 + 1) respectively, have the form

I5(6) = (11 = 2o = )% = (aF - 0)7 (222 Y

(9.14)
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The value of s has to be zero or imaginary for unitary IR, therefore, for s # 0, representations,

whick correspond to the imaginary mass case, are infinite-dimensional in the spin. The case

of arbitrary direction of the movement can be derived by means of a rotation, as was done

above for the real mass.
The classification of the single-valued unitary IR of the T(3)x)SU(1,1) group can be

summarized in a table, which we present below.

s IR elgefw. states remarks
orbits ps
m>0,| T, ms | (9.7) s> 0,
OL, 041 Ths | —ms integer or half-integer
m=0,| T 0 [(91n) e=0,1
03 05| T | 0
Tofae | A=pr|(9.10) A # 0, real,
vae | A=pA infinite-dimensional IR
m? < 0,] Tmpe 0 [(9.14)
Om T ms & # 0, imaginary, infinite-dimensional IR
m=0,TFTs] 0 see discrete series of SU(1,1)
o3 Ts. 0 [sect5 principal series of SU(1,1)
Ts 0 supplementacy series of SU(1,1)
T2 0 invariant

The IR. states of SU(L,1), correspondent to the orbit O, do not depend on z and are
invariant under translations. The sign (+ or —) at T is related to the sign of pg. The
characteristics “infinite-dimensional” mean infinite-dimensionality in the spin space.

As was already remarked in [3], the finite-dimensional in spin wave functions of massless

particles are zeroth modes of the operator p5 .

To complete the picture one has fo add to this table multivalued representations .

and T, at non-integer 25, and multivalued IR of SU(1,1), described in the Sect.5. The
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explicit form of states, which are transformcd under the representations Tjf, and T,;, at
non-integer 25, can also be given by the formula (9.7), however, in this case, z-decomposition
generates infinite nurober of components.
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