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L INTRODUCTION

At the present time a great attention is devoted to field theoretical models in 2 + 1-
dimensional space-time {1]. There is a possibility to exist particles with fractional spin and
exotic statistics in this space. These particles, which are called anyons, may have a relation
to the physics of planar phenomens, for example, to the fractional quantum Hail effect [2).

The corresponding Poincaré group, which will be further denoted as M(2, 1), was studied
in [3] and from the the field theoretical point of view in [4]. Importance of the M(2,1) group
investigation of is also stressed by the fact that, being a subgroup of the Poincaré group
in 3 41 dimensions M(3,1), it retains many properties of the latter. In this connection, a
part of results, which can be derived for the M(2,1) group, may also be valid for M(3,1)
group. Oune has to remark that in contrast with M(1,1), discussed in details in {5], M(2,1)
has a non-Abelian and non-compact subgroup of rotations, similar to M(3,1), that leads to
a nontrivial structure of the spinning space.

The aim of the present work is to construct a detailed theory of the M(2,1) group rep-
resentations in the form which may be convenient for the physical applications. Namely, we
try to emphasize the problem of spin deseription and relativistic wave equations construc-
tion, Whereas numerous papers and books are devoted to the representation theory of the
M(3,1), see e.g. [5,9,10], there is, in fact, only one work where the representation theory of
M(2,1) is studied directly. Thus, we hope that the present paper can add some important
details to the latter theory, ‘

Usually, doing classification of representations of semi-direct products, one uses the
method of the little group (see for example [9,10]). That method was also applied to M(2,1)
in {3}. However, for our purposes of detailed and explicit construction of representations it is
more convenient to use the method of the harmonic analysis and, in particular, the method
of the generalized regular representation (GRR). It is known that any irreducible representa-
tion (IR} of a Lie group is equivalent to a sub-representation of the left (right) GRR [11-13].

1

The harmonic analysis allows one to give the most complete description of representatio
of a group Lie, using explicit realizations in spaces of functions on the group. The ideas
the method are presented for example in [9], there one can also meet its application to t:
motion group of the plane M(2). One can find the harmonic analysis for the M(3,1) gron
in the papers [14,15].

In the present work we are using the quasi-regular and generalized regular represe
tations to construct explicitly all unitary IR of M(2,1) and to analyze on this basis £
relativistic wave equations for higher spins (including fractional} and the corresponding ¢
herent states. Studying the quasi-regylar representation of M(2,1), we introduce the scal
fields ‘and construct the relativistic theory of 241 angular orbital momentum, Preset
ing (24-1)-dimensional vectors by means of 2 x 2 matrices, we introduce a parameteri:
tion of the M(2,1) group, where the rotations are given by two complex numbers z; &
23, |21)® = |%[* = 1, which are analogs of Cayley-Klein parameters of the compact ca
The representation space of the left GRR consists of scalar functions f(z,z}, whereas t
spinning operators can be presented as first order differential operators in the vatrizbles
It is convenjent to classify representations not only with respect to the Casimir 0pmtf
pr=p.pf and W= ﬁu.f“, but also with respect to the operator of square of the spin,-wln
commutes with all generators of the left GRR. The latter operator marks representations
2+1 Lorentz group. )

In the framework of such an approach one can naturally construct relativistic wi
equations for particles with arbitrary spin, The fixation of the value of the square of t
spin S(S + 1) defines the structure of z-dependence of the functions f(z,2), namely, ti‘
appear to be (quasi-)polynomials of the power 25 on z. Coefficients of these polynt‘.'on?}
are interpreted as components of finite(infinite)-dimensional wave functions .of re_latwtl
particles with higher spins. Fixation of the values of the Casimir operators provides equatic
for these components. ] ) )

In such a way, for example, both 2+ 1 Dirac equation, equation for spin 1, and equatic
for particles with fractional spins, which are related to the discret series of the Lore
group, (see [4,16,17]) appear. Thus, using GRR one gets an unique approac.h' to descz
particles with different spins and gets also a possibility to establish a relation betw
different descriptions of these spins, for example, in terms of scalar functions fz,z) o
terms of multicomponent columns ¥(z). _ L

A detailed description of angular momentum and spin in 2 + 1 dimensions is given
the base of the representation theory of SU(1,1), which is summarized in th.e Appen
In particular, multivalued unitary IR of §0(2,1) ~ SU(t,1) and ccfrrespond_n_ag coher
states (CS) are considered. It is interesting to discover that 2 +1 Dirac equation app«
also in the latter case as an equation for CS evolution.

II. PARAMETE_R.IZATION

M(2,1) is a six-parametric group of motions of 2 + 1-dimensional pseudo-Eut.:.Iid
space, it preserves the interval 7, Az*Az”, where z = (z*), » = 0,1,2, are coordina
and n,, = diag(l, ~1,—1) is Minkowski tensor. The transformation of the vector z wr
the action of the group (vector representation) is given by the formula




=gz, g€ M(2,1), z"=Az*+d, (2.1)

where A is a 3 x 3 rotation matrix of 241 Lorentz group 0{2,1). The transformations can
also be presented in the four-dimensional form,

2" a® z?
zf Ala al !
S LA A (22)
1 0 0 0 1/\1

with the composition lew (aq, Ay){a1, A1) = (82+Azey, AzA1). The latter means that M{2,1)
is the serni-direct product of the 241 translation group T'(3) and the Lorentz group Q(2,1),

M(2,1) = T(3)x)0(2,1).

"As it is known the group O(2,1) contains four disjoint sets @}, {det A = +1, A3 > 0), OL
(det A = +1, A < 0), OF {det A = —1, A > 0}, OF (detA = -1 A8 < 0), where only ol =
S00(2,1) is connected to the identity contmuously Two sets O+'L are equivalent to the group
S0(2,1). The corresponding continyously connected part of M(2,1) is T(3)x)500(2,1).

Consider first the group S0¢(2,1). One-parametrical subgroups of S0u(2,1), which
correspond to the rotations around axes z% z!, z?, are given by the matrices

1 0 ) coshery 0 sinhey
Ap =0 coseg —sinap |, An= 0 1 0 )

0 sinag cosag sinhe;y 0 coshay

cosheoy —sinhey 0
Asa = | —sinhay coshey, 0], (2.3)
0 0 1

The genera.l transformation can be written in the form Age = exp(—ie,J*), where generators
= zdu {As) |a=o are

00 0 00 i 0 i 0
JO=(0 0 ~i|, F*=|00 0}, Ji=]l-i 0 0f. (2.4)
0 i 0 i 00 0 0 0

They obey the commutation relations
[Ju’ )= ey,

where ¢#¥" is totally antisymmetric Levi-Civita symbol, €22 = 1,

It is also possible to write the finite transformations by means of $L(2, R) matrices [3] or
SU(1,1) matrices. Consider below the latter possibility in details, taking into account that
$00(2,1) is equivalent to SU(1,1)/Z2, Z, = {I,—I}, where Z; is a multiplicative group
consisting of two elements, / is the unit matrix. Thus, we are going, in fact, to study the
group M(2,1) = T(3)x)SU(1,1). The classification and construction of representations of
M(2,1) allow one to describe representations of the group M(2,1).

There is one-to-one correspondence between the 2+1 Lorentz vectors z# and 2x2 matrices
X. Let 0% is the unit 2 x 2 matrix and o', o? are two first Pauli matrices, Then
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0 1

gl —iz?

X=a:“o'“=( z . ),detX:X’:z,,z”, (8

! 4 izl z
¥ = -;-Tr(Xa'“).

In term of the matrix representation the transformation (2.1) can be written in the forn
X' =UXUt+A, (

where the matrices X', X, A correspond to the vectors z™, z#, a*, and SU (1 1) matrix

U__(Ul Uz) Uf (u1 Ua)

AT W/ U ow/’

ug|? = |ug]® = 1, uy = cosh(8/2)e'#-“)/2, y; = ~ sinh(§/2)e'-4+MT,
0<b<on, -2r<¢<im, O0<w<2nr, (

provides the Lorentz rotations. Its relation with the matrix A from §0y(2,1) is given
the formula

2Re(uyuz)  Re(u? +u3) Im(ul —ul)
~2Im(uiu2) —Im(ui + u3) Re(uf —u3)

QOne can remark that I/ and —U correspond to one and the same A, so that to paramete
the rotations it is enough to use ¢ € [0,2n].

In the representation (2.6) u; and uy are analogs of Cayley-Klein parameters, and ¢, §
are ones of Euler angles, U = U(¢,8,w). It is possible to see that matrices U{¢,(
and U(0,0,w) correspond to the rotations around the axis z°, U(0,6,0) correspond to
rotations around the axis z? and U(¢, 8,w} = U(¢,0,0)U/(0,8,0)U(0,0,w), i.e. the gen
transformation can be presented as the w-rotation around the axis % then the é-rofal
around the axis z°, and again the ¢-rotation around the axis z°.

The following sets of the parameters (¢, 8,w): (a0, 0,0), (—7/2, &z, 7/2), (0,01, 0), co
spond to the one parametrical subgroups Ago{ag), Azt (ay), Aza(ay) respectively. The ma
A in the Euler angles parameterization can be presented as A(¢, #,w) = Aze($)Aza(0)Az0:

Further we are going to use the latter parameterization of elements g of M(2,1) by mx¢
of matrices A and SU(1,1) matrices U, ¢ = (A,U). In this representation the composi
low and inverse elements have the form

¢ = (AU) = (An, U)(An Uh) = (Th AU} + As, Ualh)
-1 _ (_U-IA(U—I)f, U—l) . (

(Ulﬁl +uzfiz  2Re(wiflz)  2Im(w48a) )
A

III. QUASI-REGULAR REPRESENTATION AND THEORY OF ORBITAI
MOMENTUM

A. Quasi-regular representation and scalar field

Let us consider a quasi-regular representation T'(g), which is acting on the coset g
M(2,1)/0(2,1) = M(2,1)/SU(1,1), i.e. in the space of functions f(z),




f=z) =T(9)f(z) = f(g™ ). (3.1)

The representation (3.1) corresponds to a scalar field transformation low, f'{gz) = fi(z') =
f(z). The explicit form of g='z is given by the formulas

(g7"e) = (A" )i(e* — @), 7'z = U~4(X - ANUY, - (32)
in the parameterizations (2.1) and (2.6) respectively. The Lie algebra of M(2,1) contains

six generators p, and L*, which correspond to the parameters ¢* and —a,. They have a
form

Py =1i8/8z*, L[7= i D, = €™, 8/82", {(3.3)
in the representation in question, and obey the commutation relations
[Buspl =0, [ L= —ie*"p, , (L%, 1] = ~ien], . (3.4)
Finite transformations in the parameterizations (2.4) and (2.7) can be written as
T(9)f(z) = e™¥b emi0lF gmivl giob g4y (3.5)

The eigenvalue m? of the Casimir operator! 3* can, in particular, characterize the IR,
B fm(z) = m?fulz). For unitary representations, where the generators p, and L* are
hermitian, m? is real. It follows from the commutation relations {3.4) that pL is also a
. Casimir operator, which is, however, zero in the representation under consideration.

To find all IR, which are contained in the representation {3.1), we go over to the space
of functions dependent on momenta, doing the Fourier transformation,

o(p) = (2m)7%7 [ f(z)eds. (3.6)
In this space the expressions for the generators have the form
Pu = Pus = € 2up, = i€"p,6/0p". {3.7)

The form of L# in the space of functions ¢(p) coincides with one in the space of functions
flz} if one replaces p* —+ *, and, therefore, the rotations result in: ¢(p) = w(p'), where
p, = (A~")4p,. In the parameterization (2.6),

P =UTtPU), P=pT+p'0? +pl0 (3.8)
Translations affect only the phase of the functions, so we get an analog of eq.(3.1),

T(g)e(p) = ¢ o (p'). -~ (39)

'Here and in what follows $* = f,5* and so on.

IR are related to orbits in the space of functions w(p) and are marked by the values p*

(p')? = m?. Representations with a given m we denote as Tw(g). Below we consider th
possible cases.

1. m # 0 and is real. In this case the representations T, (g) are acting in the space
functions on two-sheeted hyperboloid,

po=2mcoshf, p, = Fmsinhfcosd, p; = Tmsinhfsindg. (3.

At m > 0 it is decomposed in two IR, one T:*(g), which corresponds to particles {up)
sheet, pp > 0}, and another one T;;(g), which corresponds to antiparticles (lower she -
Po < 0). One can consider only IR with m > 0 because of Tt (g) and T, (g) are equivale
The scalar product at a fixed m is given by the equation

ol s = [ db [T Bioalt, ¢) sinh 0, @

and the generators [# have the form
i«o = —13,, = —i(coth & cos ¢ + sin 8),
£? = i(~ coth 8sin ¢d, + cos $35). (3.

2. m = 0. In this case the representations T, (g) are acting in the space of functions
the cone,

Po=p, p1=-pcos¢, p;=-—psing. (3.

The represehtation Ty(g) is split into three IR: one-dimensional T9{g), which correspol
to the invariant p = 0 (vertex of the cone), and TiH{g) and Ty "(g), which are acting on
upper and lower sheets of the cone. The scalar product is given by the formula

x oy
= d 3.
(frl f) fo d¢ fo 1P, 8)ea(p, $)dp, (
and the generators L* have the form A
L° = —i8;, L' =i{cos ¢y +psingd,), L* = i(—sin B, + pcos $5,). (3.

3. m is imaginary, that corresponds to tachyons. The representations T'.(g) are act
in the space of functions on one-sheeted hyperboloid,

po =1im sinhf, p, = —im coshfcosd, p; = —im coshfsing, 3.

The scalar product is given by the formula

am ‘oo
(ol fab= [ dp [ B8 Fheal, ¢) cosh 6, @
and the generators [* have the form

L% = ~i8s, L' = —i(tanh 8 cos $8; -+ sin $s),
L* = i(— tanh fsin ¢, + cos $5s). (3.




B. Angular momentym -

We have considered three types of scalar representations of M{(2,1), which correspond
to a real mass, zero mass, and imaginery mass. In each case the functional representation
spaces are different, these are functions on one- or two-sheeted hyperboloid and on the cone.
Respectively, expressions for the angular momentum operators [* are different. Here we are
going to analyze the eigenvalue problem for the square of this operator and its projection
in all the cases, using p-representation (3.6) and the consideration of the Appendix. In
particular, we will use bases of unitary IR $0(2,1) to decompose functions on one- and
two-sheeted hyperboloid and cone.

1. m #0 and is real. The operators L* are actmg in the space of functions on two-sheeted
hyperboloid with the scalar product (3.11). The arising and lowering operators Ly and the
operator of square of the angular momentum L? have the form

Ly = e¥"%(£i coth 96/645 +3/68),

L, P 1 &

2 ,—,
V= ag? gz T eoth? aa sinh? 6 5%

Let us suppose that a representation of the SO(2,1) subgroup has the highest weight
f(8,3)e*. Then

Ly fi(0)e® = 9495 coth 81;(6) + 81;(6)/06) = 0. (3.20)

and, therefore, the highest weight has the form (sinh#)7¢'/®, It is easy to remark that at
J < —1/2 (that would correspond to a discrete series) the norm of the state has a power
divergence due to a singularity at § = 0, and at 7 > —1/2 the integrand of the norm is
growing exponentially with the growth of § (the case of double-valued IR with j = —1/2is
considered below) That means that single-valued unitary IR, with a highest (lowest) we;ght
are absent in the decomposition of T,

In general case the wave function (3 5) in the p-representation, which are eigenvectors of
the operatars L?, £°,

(3.19)

L2 |50 =G+ 1) 10, Lo =115, o (32D

can be written in the form N P}(coshf)e”®, where P}(cosh 8} is adjoint Legendre function
and /N does not depend on 8 a.nd @, Below we are gomg to use the functions P'(coshﬁ?) =
(T(4 + 1)/T(j + 1 + 1)) P}(cosh#)). The representation is unitary and smgle—va&ued at j =
~1/2 +1X/2 and ivteger [, (see {13]). Thus, IR T% of M(2,1) are decomposed in course of
the reduction into the representations of the principal series,

| M) = Pl(cosh #)e™/v2r, j=-1/2+i)/2, (3.22)
(M| X'y = (1/2n%) ) taph(mA/2)6(A — M), (3.23)
+)fj° PADNI |= 8yarf2r.

==vo

The representations of the principal series Ty, with arbitrary nonzero £ can be con-
structed in terms of multivalued functions on a sheet of the hyperboloid (¢ = 0 corresponds
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to the single-valued representations). The eigenfunctions of L2 and L° are the same adj
Legendre functions (3.22) with [ = n + ¢, n - integer, and with scalar product (3.23), w.
the factor tanh(m A/2) has to be replaced by one tanh(m(A/2+ic)) [13]. Ate = 1/2 ( dou
valued representations) and j = ~1/2, the representation is reducible and is split into
representations with the highest weight { = —1/2 and with the lowest weight [ = 1/2,
corresponding functions have the form (sinh §)~1/2¢¥%/2, according to (3.20).

2. m = 0. The operators L* (3.15), and ones

a

Ly = e*"(pd/op + 3/39!3

.\

=p0/Op(p8/Op+1}), - @

are acting i m the space of functions on the cone p? = 0, One can remark that the expres
(3.24) for Lt passes into the expression (6.20) on the complex cone (6.9) after the repl
ment p by p?. The scalar products on these manifolds differ only by limits of integra
over the angle ¢ ([-2m, 2x] or [0,27]). Thus, the representations of the principal series
can be constructed in the space of functions on the cone, however, only the representa
with £ = 0 are single-valued and the representation with € = 1/2 are double-valued.

According to (6.21), the wave function of a massless particie with the fixed § = ~1,
tA/2 and with the projection ! has the form in the momentum representation

] M) = p-l/2+i.\/zei£é/2,n_’ (5
A NEY = 8((X - XY/

3. m # 0 and is imaginary. The operators L* (3.18) and ones
Ly = e¥®(+itanh 08/84 + 5/9),

> a° 7} 1 &
2 _ .
£ -, :
V= + b b — e o8 (
are acting in the space of functions on one-sheeted hyperboloid. Unitary IR of the dis
series can be realized in such a space, The result of the action of the arising operator L
the highest weights f;(8)e'/® of the discrete negative series IR must be zero,

Lo F(8)e = eUHD%(—j tanh 0F;(6) + 85;(6)/06) = 0,

thus, f;(f) = (cosh#)/. By analogy, we get the expression (cosh 6)/e~'* for the lowest w:
of the discrete positive series. Normalizing these functions by means of the scalar pro
{3.17) and denoting them as ¥;;(8, ¢) and ¥; _;(8, ¢), we can write

Coi oy \ M2

a0 = () (commyese, ¢
The fynctions Y;:(8, 8), ! < j (IR T;) can be derived by the action of the lowering ope
L on the highest weight ¥;_;(8,), and the functions ¥;i(f, ¢}, { > —j (IR T}) ca
derived by the action of the arising operator L, on the lowest weight ¥;;(6, ). By an:
with the spherical functions we will call (3.27) the functions of one-sheeted hyperbc
The wave functions of tachyons in 2 + 1 dimensions have the form,




|31} = Y;u(6, 6), (X | XT) = §andur, (3.28)

where j < ~1 and is integer (for the multivalued IR j < —1/2, and non-integer), whereas
the momentum projection ! > |j|. The functions (3.28), similar o the ordinary spherical
functions, differ from tbe adjoint Legendre functions Pf by a factor only. X

In general case one has to consider eigenfunctions of the operators L7 and L° with the

eigenvalues j(j + 1) and !. These functions have the form f(#)e"®, where f(f) obeys the
equation

32 6 1 2 Iy
(5@3 + tanh B + — ) £16) = 37 + 1) £(9), (3.29)

which coincides with one for the adjoint Legendre functions,

2 2
((1 — zg)—éa—;; - 22% - H’é’;;j) P;(z) = —j(7 + 1)PJ!{2)1

at z = isinh#. At j € —1 we get the above considered IR of the discrete series. The
functions P/(isinhd) at j = ~1/2 4+ 1}/2 could correspond to the principal series of the
unitary IR, but the corresponding norm is divergent in this case.

Thus, our consideration shows: in course of the reduction on the subgroup 50(2,1} the
representations T(g) and T3(g) of M(2,1) with real (in particular zers) mass are split
into IR of the principal series, j = —1/2 + i}, L* € —~1/4, whereas | are arbitrary integer.
For tachyons, the representations Tw(g) are split into IR of the discrete series, j < —1 and
integer, L2 = j(j+ 1) > 0 (i.e. the space component of the angular momentum L° is greater
than the bust ones). For the tachyons the absolute value of the projection { can not be less
than ||, in particular, [ can not be zero. ‘

Below we present three sets of wave functions of scalar particles, which are eigenfunctions
for the commuting operators, {#.}, {p? po, L'} and {p?, L%, L°} respectively:

1. States with a given momentum, f(z) = e~%*,
2. States with a given energy po and angular momentum projection / (in z-representation),

f(:c) _ es‘poz0+ild‘fl (P‘ /pa — m’) . (3.30}

where g, 4 are the polar coordinates in the z*,z? plane, and J; are Bessei functions.
3. States (3.21) in the p-representation with a given orbital momentum j and its projection
I. According to the eq. (3.22), {3.25), and (3.28), we have three cases:

m>0, | M)=Bl(cosh)e™, j=—1/2+i)/2, (3.31)

where § and ¢ are coordinates on two sheet hyperboloid p* = m? > 0, and }5} are adjoint
Legendre functions;

m =0, | /\l) — p-1/2+:')«/28ﬂ6, (3‘32}
where ¢ and ¢ are coordinates on the light cone p* = 0; ‘
m — imaginary, | 31} = Yu(6h, @), (3.33)

where 6 and ¢ are coordinates on one sheet hyperboloid p* =m? <0, and Yi(d, ¢) are one
. sheet hyperboloid functions (3.28).

IV. GENERALIZED REGULAR REPRESENTATION AND 241 SPIN

In the previoys section we have considered the quasi-regular representation, which
duces description of scalar fields or spinless particles. To get a complete picture of all pos:
representations one has to turn to the so called generalized regular representation (G
(11-13]. The GRR is acting in the space of functions f{g) on the group. The left ¢
Tr(g) and the right GRR Tr(g) are defined as

Ti(9)f(g0) = flg7'0)s D
Ta(oMf(a0) = flgns). | (

It is known that any IR of a group is equivalent to one of sub-representation of the
(right) GRR [11]. Taking this into account, we are going to construct GRR of M(2,1
the parameterization (2.5)-(2.7), where go ¢+ (7,2) & (X, 2}, g & (2, 2) < (4, 1),

_ z? 2zt —ig? 7
X—(:cl%-iz’ z° )' Z_(Ez 21)’

_ a® al —ig? Yy g
A_(al+faz a’ )’ U_(ﬁz ﬁl)' {

Using the composition law (2.8), one can get

Ti(g)f(z, 2} = flg7 2, ¢7'2),
gz e U HX =AU, ¢tz e U2, [
Tr(g)f(z,2) = f(zg, 2z9), zg = X+ ZAZ*, zg ++ ZU. [

According to (4.4), X is transformed with respect to the adjoint (vector) representation
Z with respect to the spinor representation of SU/(1,1). One can also see that Z is inval
under translations. If one restricts itself by Z-independent functions (i.e. by the funci
on the coset space M(2,1}/5U(1,1)), ther (4.4) reduces to the quasi-regular represent:
(3.1), which corresponds to the scalar field case. If one restricts itself by X-indepen
functions, then (4.4) and {4.5) reduce to the left and the right GRR of SU(1,1).

Caleulating generators, which correspond to the parameters 4* and —o,, in the left
{4.4), we get

P, =18/8z*, J*=L* + &,
where [# are the angular momentum operators (3.3), and $* are spin operators,

5 = Lyo, + 1vos,

&= lyaa, - %Wap,

b

5 = ~Volde + -;-Vo‘lap,
[S‘#)S'y] = -iem";’m. [S'u,ﬁv] =10,

-

o

and V = (2, %), ¥ = (%, 22). The algebra of the generators (4.6) has the form
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[ﬁu: ﬁu] =0, Lﬁﬂl jv] = _icpmﬁm [j.u, ju] = —iE‘w"jr, . (4.8}

Genera.tq‘r‘s of the right GRR. we denote by the same letters but underlined below, The
generators J do not depend on 2 and are only expressed in terms of z,

B,=—(A"Np (xB=-27P(z7), ['=£ {4.9)

“u
o 1 1.
& = 5x00 - 5%,

.

sl 4 i _

-‘E = §X°'23x - 5)(”232,

51 i 1

_S = —Exalax - E)Zd‘ai, (410)

where x = (21 22), ¥ = (& ). All the right generators commute with all the left generators
and obey the same commutation relations (4.8). The operator p? = p* and Pauli-Lubanski
scalar W = ﬁj = éi are the Casimir operators. Thus, IR of 1\:{(2, 1) can be marked by their
eigenvalues. X X R X

It follows from {3.3) that pL = 0, so that always W = pS. The operator W com-
mutes with the total angular momentum operators J¥ = E# + 5% but not with the orbital
momentum operators [# and spin operators 3% separately. The operator of spin square
§? = f commutes with all the generators of the left GRR. That means that objects, which
are transformed under the left GRR or under its sub-representations, can also be marked
by eigenvalues of this operator. However, that operator does not commute with the gen-

erators Eu of the right GRR, [é“,_:f] = ic“""(ﬁyin + _,L,Eu), similar {o the left GRR case,

[ﬁ“,fﬁ] = ig”""(ﬁyjn + .fnﬁu). Thus, the square of spin is not a conserved quantity in all the
right representations, but J? is.

Making Fourier transformation (3.6) in the variables z, i.e. considering representations
in the space of functions ¢(p,z), one can get an analog of the formulas (4.4,4.5) in this
representation,

Tu(9)e(p,2) = €¥'o(r',97'2), p =g 'per P'=UTPUT, (4.11)
Tr(g)p(pr2) = e Pp(p,29), o' & A'=ZAZ", (4.12)

“where P defined by (3.8). 1t is seen that the combination |2;|? — |2|* and p* are ¢onserved
“under the transformations (4.11) and (4.12). The former is always equal to 1 and the latter
to m?, and depends on the representation. Z and P are defined by six real parameters.
Three of them (namely, P = —Z~'P(Z~1)! for the left GRR or P for the right GRR) are
fixed and only three of them vary under the group transformations (for the left GRR two of
them set the direction of the momentum).

The classification of the orbits with respect to the eigenvalues of the operator A* is
completely similar to one was done in Sect.3 for the spinless case. These are orbits O for
real m # 0, OF and Of for m = 0, and finally O,, for imaginary m. However, to describe IR

‘it is not enough only one parameter m, one needs to know characteristics connected with
the spin.
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X Remark that the left and the right GRR are equivalent, CTr(g) = Ti(g)C, wb
Cf(g) = f(g5'). Because of that, and also since the left representations are more &
quate to describe physical fields, we are going to consider further in detail only the left G
of M(2,1). _

Consider the left GRR, which acts in the space of functions f(=,z), f(z,z)
Tr(g)f(z,z) = f(g~'z, g~'z). It is easy to remark that

f{a'7') = flz,2), (4.

where
fe=gr=Az+a e UX+AU, Z=galZ (4

Thus, one can reduce the problem of the classification of left representations to one of
scalar functions (4.13)-(4.14), using the general scheme of the harmonjc analysis [9,11].
_ To classify the functions f(z,z) we are going to use besides the Casimir operators
W the operator of spin square 57, which commutes with all the generators of the left G.
By means of this operator it is convenient to select IR from the set of equivalent ones, :
moreover, to classify IR in the special case of zero eigenvajues of the Casimir operat
where the functions (4.13) do not depend on z. In the latter case IR of the Poincaré gr
coincide, in fact, with ones of the Lorentz group.

Let us consider in this connection the discxete basis Hg¢(z) of the Lorentz group re
sentation Te(g),

§7Fse(2) = S(S + V)Bsc(2), $Fsc(z) = (Fse(2)
Fs(z) = Ts(g)Bs(z) = Rslg™*2), “

where Rs(z) is a columnn with the components Ks¢(z). The number § marks IR of
Lorentz group and further we will call § the Lorentz spin. The possible values of § and
corresponding spectrum of ¢ depends on the type of the Lorentz group representation
Appendix and the Table 2. The cigenvectors f(z, z) of the operator §? can be presente
the form

f(z,2) = Zc:$¢($)ﬁsc(2) = ¥(z)Es(), (¢

where ¥(z) is a line with components ‘{b—c(x) On the other hand one can introduce a |
Rs¢(z) of the contragradient [9] to T's(g) representation . In terms of this basis a funs
f(z,#) can be presented by the decomposition

f(z,2) = Xc:tﬁc(I)Rsc(Z) = Y(z)Rs(z), Rs(z) = Bs(2)Tsg™), (

where Rg(z) is a line with the components Rs¢(z) and 1¢{z) is a column with the compor
te(z). In case if the representation Ts(g) and its contragradient are equivalent, whi
valued for example for finite-dimensional IR of Lorentz group, one and the same fun
has both representations (4.16) and (4.17). Using (4.16) and (4.17), one can find
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¥ () =¥(=)Ts(9), (=) = Ts(g™")¥(a).

The product ¥(z)v(z) is Poincaré invariant.

Thus, the eigenvectors of §? can be described by the columns ¥(z) (lines P(z)) with
the components t¢(z) (¥(x)). Their dimensionality depends on the representation of the
Lorentz group. Further we will call (=) the wave function in §-representation or simple the
wave function. In such a form all the spinning operators can be realized as discrete matrices.
Their explicit form can be easily found.

As is demonstrated in the Appendix any IR of the Lorentz group can be constructed on
the elements of the first column of the matrix Z (4.4). Thus, one can restrict himself by
the functions f(z, z), with z = {21, %;} only. In this case eigenvectors of the operator §? are
homogeneous functions in the variables z; and Z; of the power 25, and the discret basis can
be chosen in the form

Rse(z) = Nsezp ™5 ¥. (4.18)

The Lorentz IR with 25 integer and positive are non-unitary and finite-dimensional, whereas
unitary infinite-dimensional IR correspond to § < 0 (discret and supplementary series) and
= —1/2 + iA/2 (principal series).
Let 28 is integer and positive. (The case § = 0 corresponds to the scalar functions (3.1),
which do not depend on z.) First consider § = 1/2, In this case the decomposition (4.17)
can be written in the form

(a7 = Pyl + Puale)ny $ = 3. (4.29)

Applying the transformation (4.4) to this function
fllz,z) = (Z,F’_l,,,(x) ﬂ;'m(x)) (2) (E-l,fz (g~ 1:) 71’1/2(9 x)) -t (zz) '

we conciude that the line Plz) = (;5-1/2(37) @,lg(x)) is transformed under the spinor rep-
resentation of the Lorentz group,

¥(=) =B(=)U

Taking into account the relation U~! = ¢3Ut¢?, which is valued for the SU(1, l)t‘matrices,
we get the transformation low for the columns (z) = (¥1/a(z) Yo1j2(2))T = o,

$'(z') = Ud(z).
One can find that the same spinor ¢ appears from the decomposition
- _ N - 3
o7 = s = papledn = (o —a) [ P ), g7 =0y Y
Thus, in the case under conSLderation, we have two equwa.leut descriptions. One in terms

of functions (4.13) and another one in terms of lines ¥(z) or columns #(z). One can find
the action of the operators §¥ in the latter representation,
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$*0(z) = 24(z),
where

2

7= (0% i0% ~ich), [N =P, 44, 4] = ~2ie iy, B

are 2 % 2 y-matrices in 2 + 1 dimensions. The functions 9 = (y/; 0)7 and ¥ = (0 y_,
are eigenvectors for the operator 8¢ with the eigenvalues (£1/2).

The product ¥{z)¥(z) = W (2")4’(z') is the scalar density, which is not positive deﬁ
The polynomials of the power 25 can be written in the form

flz,z) Z tpn-s(a" ( )1/2 zl!S—n-n = E E,s(z), (4

where P(z ) is (28 + 1)- component line, Es(z) is a column with elements {CJs)*/? z,25-
n = 0,1,.., 25, which is transformed with respect finite-dimensional IR Ts(g~!) of
Loreutz group, R’S(z) Ts(g*)Rs(2), or in the form

Ezﬁs- J(C5)? (255 = Ro(2)w(z), §*f = 5(S+1)f, (4

n=0

where () is (25 + 1)-component colums, %(z) = I} (z), and (Dan = (—1)"Gnm
In analogy with the case § = 1/2 one cane get ‘

F() =B(@)Tsla),  #(a") = Ts(g™ (). (¢
Here the scalar density has the form P(z)9(z) = ¥'(z)T'(z). The operators $* are (&

1) X (25 +1) spin matrices S* in the space of columns 1(z), and are generators of SU(
in the representation T,

(8% nn = bam (S — n), n=0,1,...,25,
1 —
(8w = ~3 (5,, w31/ (28 = 1t 1)n = s wi/ (25 — m)(nn + 1)) ,

(Sz}nn’ = "%‘ (511 nf+1y/ (25 —-n-+ l)ﬂ -+ 5,1+1 ,.1\/(23 - ﬂ)(ﬂ + 1)) . (4

For the infinite-dimensional ynitary IR of SU(1,1) the values of § can be non-int:
§ < ~1/2 (discrete series), —1/2 < § < 0 (supplementary series), or complex, § = —1
iA/2 (principal series), see Appendix. Consider first representations with highest or lo
weights. These are all representations of the discrete series TF and two representatio
the principal series Ts,, which correspond to § = —1/2 and £ = 1/2, i.e. to half-integer
projections. The eigenfunctions of the operator §? in the representations T§ are neg;
power S quasi-polynomials (see (6.15))},

FHzz) = f P @) (O3 (~ )35,

n—O

Z o (3} (Cps)? (—2)™ 825, (-

e ¥ . -} | bl = S "
p*(a) = TH (g Wh(z), Chs= ((_%F[:(g'%-%_)-)
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The representations of the positive and negative series are conjugated,

(TN =T5(g), (¥¥E)) = (=)' 15 ().

. In contrast with the case of the finite-dimensional representations, here the scalar density is
positively defined,

(¥ ( w’+(‘” Zl‘nﬁﬂn 2: (¥ ()Td’ (z) = Z:Ws-r. 1’)52

nxl n=0

The possible eigenvalues ¢ of the operator 5° obey the inequality {{] = |5} > 1/2 for the
IR of the discret series. The spin projection ¢ can take on only positive values for the
representations T¢, { = —5 + n, and negative values for ones 5, { = § — n.

For the representations T3 the spin matrices S are

(5% = bpn(~S+1n), n=0,1,2...,

(Sl)mﬁ = ""%.' ((5'“ n*+1\,/(ﬂ -1 - 25) - 5,,4.1 n (n - 25)(71 + IJ) s
(8% )an = % (6,. i/ (n =1 = 280 4 Sapy i/ (n — 28)(r + 1)) : (4.27)

For T¢ representations S* is the same and S°, §? change the sign only.
In the case of unitary representations of the principal series, § = —1/2 + iA/2, the
functions f(z, z) are presented by the infinite sum,

Z) = Z wﬂm(z),‘-n(_zl)-l/?-—iA/Z-(H—n)22—1/2—i,\/2+(l+n)’ (428)
f=—o0

$2f = ~2(L4 WS,

The spin projection ¢ can take on the valyes e+ n, where = € [~1/2, 1/2],n =0, %1,
In the space of infinite-dimensional columns 1) with the elements 1 4n(z) the operators S“
have the form of corresponding infinite-dimensional matrices §#,

(8wt =bpm(e +n),  n=0,%1,£2,...,
(5N )nn = _1(5“ wit(=1/2+e+n—id/2) = bopy w(l/2 46+ n + 5)\/2)).

2
1; . .
(5w = E(‘S“ wat(=1/2+e+n—iMN2) + 6 (1/2+c4n+ 1,\/2)). (4.29)
Due to unitarity of the representations under consideration, the corresponding scalar density
o0
2 Ibesalz)l

is positively defined.

In case of the unitary infinite-dimensional representations of the principal and discret
series the matrices §! and 5% are Hermitian, whereas in case of the finite-dimensional non-
unitary representations considered above they are anti-Hermitian, In the space of columns
with elements ¢ the matrices §' and S* have nonzero elements only on the secondary
diagonals,

The spin projection { can take on non-integer values for some IR, of the principal and
diseret series. These IR can be used to describe the anions [4].
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V. RELATIVISTIC WAVE EQUATIONS AND IR OF M(2,1)
A, Relativistic wave equations

As is known, wave functions of relativistic particles are identified with vectors o
spaces of the corresponding Poincaré group. Thus, the problem of the construction of
relativistic wave equations for particles with different spins can be solved by means
decomposition of the left GRR of the M(2, 1) group.

Consider functions f{z,z), which are transformed under the left GRR of M (2,1},
which are eigenvectors for the Casimir operators H?, W= $8, and for the operator §2, w
commutes with all the generators of the left GRR,

(6 = m*)f(z, ) = 0, :
(hu5* = K)f(z,2) = 0, e
(8~ S(S + )f(e,2) = 0. {

The equations (5.1)—(5.3) define some sub-represenf.atmn of the left GRR of M(2,1), w
is characterized by mass m, Lorentz spin S, and by the eigenvalue K of Lubanski-F
operator. Possible values of K can be easily described in the massive case, Here we can
a rest frame, where p,.S“ = m sign po. Thus, for particles X = sm and for antipart
K = —sm, where the spectrum s coincides with one of the operator 5°. The latter spect
depends on the representation of the Lorentz group, see Appendix and the table 2. Atm
we suppose K = 0, that is true for IR with finite number of spinning degrees of free
The general cases m =0 and m imaginary will be discussed below.

At 5 fixed and in the S-representation the equations (5.1)-(5.2) have the form

(5" = m)p(z) = 0, l
(:5”5# -~ sm)p(z) =0, i

where 1(z) are columns and S# are matrices, described in the previous section. They «
the commutation relations of the SU{1,1} group,

[S#,8"] = —ie"S,.

Let us describe possible cases, which correspond to finite-dimensional non-unitary IR,
to infinite-dimensional unitary IR of the latter group.

1. Counsider finite-dimensional and non-unitary IR of SU(1,1). In this case S has t
positive, integer or half-integer. According to (5.5),

() iSH T, + sm) = 0.

It follows from the explicit expressions for §* (4.22) that S = T'S“T', where (I'),
(=1)"8,pr. The function ¥ = 4T obeys the equation

B(z)(iS*E, +sm) =0.
As a consequence of (5.5) and (5.6}, the continuity equation holds
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auj” = Oa ” = II’S“UB (5'7)

At § = 1/2 the density j° = %5% is positively defined (the scalar density ¥ is not
positively defined, as was mentioned before).

At § = 1/2 the equation (5.5) can be rewritten in the form of 2 + 1 Dirac equation,
(Bur* =~ m)(z) =0, (5.8)

where v = 25% are y-matrices in 2 + 1 dimensions (4.21),

Let us consider the states f(z,z) = e~%%(Az; + Bz;) with a definite momentum. The
combination |Af? - |B |"' € remains constant under the M (2, 1) transformations. One can
set A or B to be zero in a certain reference frame, depending on the : sign of C. In the rest
frame we get two wave functlons, which can not be connected by any M (2,1) transformation,

cemy (C > 0), e~ 2 (C < 0). They correspond to two different directions of
the spin projection on the axis z°. Representations of M(2,1) at m > 0 and § = 1/2 are
split into two IR, which correspend to particles with spin projections s = 1/2 and 5 = ~1/2.

The case C = 0, f(z,2) = Ae™# #’ (12, 4+ &*2;), A # 0, corresponds to the massless
particle. Indeed, a stra.lghtforward Ca.lcuiatlon shows that the a.ctlon of the operator pS on
the function (e ““”zt + €922;) gives zero at j% = p, pi = peosp, p* = paing, p = @1 — @y (
see also (5.35)). Thus, at § = 1/2 we have three cases in accordance with possible values of
the Casimir operator $$ (£m/2, 0).

At 8 = | the decomposition (4.17) has the following form

f(z,2) = d1(2)5] — do(0)V221 2, + ()44, (5.9)
where ¥(z) = (¥1(z) Yo(z) ¥-1(z))7 is subjected to the equation (5.5)
(5u5* = smyp(z) = 0, (5.10)

10 0 ; (0-1 0 ; 010)
=100 0|, S'==—x{1 0-1], $SP=—-—}101],
00 -1 vIlg 1 o vZlg1o

where the spin projection s takes on the values £1, 0, If one introduces the new {Cartesian)
components F,, Fi = —(th1 + ¥1}/v2, Fe = ~i(th — vr_1)/v2, Fo = ¥, instead of the
components ¥y(z), Po(z), ¥-1{z} (cyclic components), then the eq. (5.5) takes the form

Fue™ " Fy + smF¥ = (. (5.11)
A transversality condition follows frem (5.11),
8,F* = 0. (5.12)

One can see now that the equations (5.11) are in fact field equations of the so called
"self-dual® free massive field theory [18], with the Lagrangian

Lsp = %ﬂ}‘“ ~ 2—::5““*?,,3“5\ =0. (5.13)
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As remarked in [19] this theory is equivalent to the topologically massive gauge theory
with the Chern-5imons term. Indeed, the trapsversality condition (5.12) can be viewed &
Bianchi identity, which allows introducing gauge potentials A,, namely a transverse vec
can be written (in topologically trivial space-time) as a curl:

FH = ‘T‘:um\avAu = ';'EuVAFv.\v

where F,, = 8,Ax — &) A, is the field strength, Thus, F¥ appears to be dual field streng

whish is a tree-component ‘vector in 2+1 dimensions. Then (5.11) implies the follow

equations for F,
G, F* + 2 "“"Fag =9 (5.
which are the field equations of the topologically massive gauge theory with the Lagrang

+ g Ay .

1
Los = —=F,, F
os =~7F 4

One can find that finite transformations of M(2,1) act on the Cartesian component:
F*¥(z'y = Ay F#(z). Here the combination F,F* = C(z) is preserved. C does not dep
on z for states with a definite momentum. The case ¢ > 0 corresponds to particles v
real mass m # (), the case C' = 0 corresponds to massless particles. The correspondent w
functions will be presented below.,

If a particle has integer or half-integer spin projection s, then the correspondent re
sentation of SU(1,1) of a minimal dimension is the finite-dimensional Ts(g), where 5 =
and dimTg = 25+ 1. To describe states with fractional spin projections one has to cons:
infinite-dimensional representations SU(1,1).

2. Consider now unitary infinite-dimensional IR of S{/(1,1). In this case § cao
non-infeger, § < —1/2 (discrete series), —1/2 < § < 0 (supplementary series), or comg
§ = =1/2 4 i)\/2 (principal series), see Appendix. Matrices $* are hermitian and accort
to (5.5) the conjugated equation has the form

D2} (iS*E, + sm) = 0. 5
As a consequence of (5.5) and (5.16) the continuity equation holds
84 =0, j*=piShy. (s

In IR of discrete positive (negative) series j° = y%!S% is positively (negatively) deft
Besides, for unitary IR the scalar density ¥4 is also positively defined in contrast *
the finite-dimension case. For discrete positive series s can take on only positive val
3 = ~5 + n, and for negative one only negative s =5 —n,n=0,1,2,.... The case s =
was considered earlier in [4,16,17].

There are cases when the equations (5.4) and (5.5} are dependent. Indeed, multipl
the equation (5.5) by §,5* + ms one gets

(PuS* + ms)(pus* — moYb(z) = (Pup{S¥, 8"} = m?s*) (x) = 0. (

o
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In the particular case § = 1/2 we have s = £1/2, §* = 4#/2 and (5.18) is merely the
Klein-Gordon equation (5.4). In genera] case the matrices S* are not ~-matrices in higher
dimensions and the squared eqyation {5.18) do not coincide with the Klein-Gordon equation.

As one can see from the consideration presented, the construction of the relativistic wave
* equations in 2 + 1 dimensions is, in a sense, simpler then one in 3 + 1 dimensions. That is
connected with the vectorial pature of the operators of the angular momentum and of the
spin. In 3 4 1-dimensional case the above mentioned operators are tensors, and namely this
circumstance complicates the problem.

Different IR of M(2,1) with m # 0 are marked by the spin projection s. However, how
one can see from the previous consideration, the classification by the Lorentz spin S, is
also useful. § define the dimension of matrix representation of the spin operators in the
equations {5.4) and (5.5). '

One can easily see that massive particles have only one polarization state. Indeed, in the
rest frame the equation (5.5) has the form

(8° - sy =0 (5.19)

The spectrum s coincides with the spectrum of the operator §°, which is not degenerated
as was demonstrated above. Thus, a fixation of s leads to only one solution of the equation
(6.5). For § = 1/2 and § = 1 that property was demonstrated explicitly in [4]. One
can make the same conclusion, remarking that the non-relativistic group of movements is
M(2) = T(2)x)50(2), where the group SO(2), which describes the spin, is Abelian one and
has only one-dimensional IR.

In case of the infinite-dimensional unitary representations of 2 + 1 Lorentz group, it is
easier to deal with the functions f(z,z), but not with infinite number of their components
¥¢(z) in S-representation.

As an example let us consider the plane wave solutions at m > 0. For § = 1/2and § =1
such solutions were analyzed in [4], There was remarked that, in fact, all the components
are connected, that means that the number of spinning degrees of freedom is one. Here we
are going to present similar consideration for all the representations of 2 + 1 Lorentz group,
which have lowest weights, namely, for finite-dimensional T (S > 0, integer or half-integer),
and for infinite-dimensional unitary representations 7 (§ < —1/2).

The wave function in the rest frame, which corresponds to the spin projection s = -5,
has the form z}*U(pp), po = E = £m. Acting on it by finite transformations, we get at
E > 0 a solution: in the form of the plane wave, which is characterized by the momentum p,

Fp 2) = (218 ~ Bz} U (p), (5.20)
P =y 1R(UN, Py =ml.
The momentum p does not depend on the parameter ¢, p° = E = mcoshf, —py+ip, =

msinh fe. Let us put ¢ = —w (in this case u, is real). Using the relations (2.7), one can
express the parameters 4, and u, via the momentum p,

(‘_")=_~__1____(‘P1+5P’). (5.21)
i am(E+m)\ E+m

In case of finite-dimensional representations one can get 25 + 1 components ¥¢(p) as coeffi-
cients in the decomposition of the function (5.20),
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Yos s _

1/2 _g_
elp) = (C3F) " af~tug*

_ (rsaey 3 (E+ m) ¢ (—=py +ipa) "¢ .

in the parficuiar case S = 1/2 we get. [4],

- 1 -p2+ip |
”b(p)—m( E+m )‘I’(P).

Tor representations of discrete and principal series similar results holds. For example, in
former case one can get the formula (5.23), where CJg are the coefficients from (4.26) :
(=-8 =-5+1,...

Among the above considered relativistic wave equations are ones which describe pa
cles with fractional real spin. These equations are connected with unitary multivalued
of the Lorentz group and can be used to describe anyons. In spite of the fact that the m
ber of independent polarization states for massive 2+1 particles is one, the vectors of
corresponding representation space have infinite number of compenent in S-representati
Thus, 2-representation is more convenient in this case.

(5.

B. Dirac equation and CS evolution

Tt turns out that 2 + 1 Dirac equation appears also in the case of inﬁnite—din_:ensi(
unitary IR of 241 Lorentz group {discrete and principal series with highest or lowest weig]
as an equation for CS evolution. To see that, let us take, for example, spinning CS, rels
to the highest (lowest) weight of IR T3 (TF) (see Appendix),

5 (2, 2) = (n@’(z) + Bal(2))s, (5
v (z,2) = (zwi(z) + HuP(@))S, Wl - =1, (5

Here § can take on the valee —1/2, that corresponds to the principal series of SU(1,1), or
values 8 < —1/2, that corresponds to the discrete series of the group. At § integer or 1
integer the representations are single-valued. We demand {2, z) to be an eigenfunc
for the Lubanski-Pauli operator W = 5§,

Wit(z,2) = mspi(e, 2). (5

The left side of the equation (_5.27) takes the form after the action of the operator W,

)2.5'—1

3 (ﬁo(fzﬁz - ziwt) — }51(21“2 - 5211[) - iﬁ:(zll‘: + fzul)) (7.11.«1 + B’

=5(% zu)py” ( u’(x; ) (zu' + Zu?)?L
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Thus, we obtain an equation for the parameters of CS (5.26),

3 w(z
i -5 (52]) = (529)

which is, in fact, 2 + 1 Dirac equation with mass m’ = $m. The same equation controls the

evolution of the parameters of CS (5.25), and appears afso both in case § = ~1/2, and for
arbitrary § < —1/2,

C. IR of M(2,1): classification and bases

Here we are going to derive explicit forms of eigenfunctions for sets of commuting oper-
ators of M(2,1), decomposing GRR in IR. A classification and a description of ynitary IR,
of the group will also be given.

It is possible to construct bases for particles with spin, which consist of eigenvec-
tors for different sets of commuting operators. For example, for sets of operators:
(P W, 82),  (B7, W, 8%, 0%, 0%, (p,,W,3%), (p?,82,po, L° 5° (we did not include the
Casimir operator W in this set since it does not commute with the operators [* and §#
separately)), {ﬁp,é#, W), and so on,

Let us consider states, which are eigenvectors for the operators j,, W, §2 (plane waves),
They can be written in the following form

fos(z,2) = €% fg(p, 2), (5.29)

where f5(z) is a homogeneous function on the variables 2y, 7; of the power 2. These states
are important to classify IR of M(2,1) by means of the little group method.

It is known that IR of the motion groups of the pseudo-Euclidean spaces {Poincaré
groups) are marked completely by means of parameters of orbits in the space of momenta
and by numbers, which characterize [R of a stationary subgroup of a state, belonging to the
orbit (little group) [9]. Thus, let us consider three cases: m > 0 (orbits OF, O7), m =0
(orbits OF , O5 , 03), and m? < 0 (orbits Oum).

1. At m > 0, in the rest frame, 5 = £mS°, so that the eigenvectors of this operator
with the eigenvalues +ma are

Fos(z,2) = e~P0x* g5te (g5 . (5.30)

One can find the stationary subgroup of the state (5.30) from the condition U~ Py(/-1)t =
Fy, where Py = diag(m, m). The matrices U = diag{e~"*/?, ¢/*/?} obey the condition and
form a one-parametric subgroup, which is isomorphic to the group U (1) with the generator
J® = L%+ 8% The eigenvalues s of this operator together with the characteristic of the
orbit mark IR of M(2,1). Let us denote such representations as T}, and T, They are
single-valued at s integer and half-integer, whereas ms and —ms are the eigenvalues of the
operator p§ in these representations respectively. Subjecting the state (5.30) to a finite
transformations of #(2,1), we get the function

fp'.S.a(m: z) = e_‘.p’:N3|,(Egul — Z1ﬁ2)s+’(22u2 - Zlﬁl)s_', .Pr = (_f'-l.P(:,([I_l)t . (531)

therefore, the o

The spinning part of the function is CS of SU(1,1). The parameters uy, iz are expre:
via the momentum p’ (see (5.21)). This function describes a particle with real mass m ;
momentum p’, Lorentz spin 5, and the spin projection s. The normalization coefficient
depends on IR series, see Appendix. )

The wave function of a massive particle with Lorentz spin. $, energy pn, angular :
mentum projection {, and spin projection { on the axis 2%, have the form, according the

(3.30), '

sl 5) = P (o =) Noga¥ (a6

2. The wave function of a massless particle with p* = p(1,1,0) is
fosle, ) = e 5(2), Whs(z,z) = pe® NS0 — §1) fo(z) |

The operator §° — 5! is the generator of the stationary subgroup of the state. Th
matrices, which correspond to the subgroup, obey the condition

U—IP U—If=P , P ___(PP)
g 01( ) o1 01 pp 1

and have the form

U=i(1+lia ia ) .
—-ta 1-~ig
They form R ® Z group, where R is the additive group of the real numbers, and Z is
multiplicative group, which consist of two elements {1, ~1}. These two elements corresp
to the identical transformation and to ¢ = 2 rotation around the axis z° respecti
U=1TIand U = -I, where [ is the unite matrix. One can see from (4.4) that the la
rotation does not change x but changes the sign of z, T(27)f(z,z2) = f(z, —2).
The eigenvectors of the operator 5 — 51, which correspond to the eigenvalues A, 1
the form
. 5+
fi(e) = Fla = m)exp (A2E2). (5
-2z
The wave functions of a massless particle with the momentum (p, p, 0), Lorentz spin 5,
the spin projection A on the direction of the momentum can be written as

—iplz®—z _ 7+
fosalz,2) = ™™=z — 5) exp ()'Ez - 21) ' (8

They are eigenvectors of the operators W and §? with the eigenvalues K = ph and §(S-
These functions change the sign under the Z-transformations (rotations on 2n) at half-int
§ and remain unchanged at § integer. We denote IR, which correspond to m = 0, as T
and Ty, ;. Here ¢ = 0 (S integer) or £ = 1 {§ half-integer) mark IR of Z group. One car
that (5% ~ §4)" = (%2 — 1) (8/821 + 8/0%) /2" = (22— 21)/2]" (8/8z1 + 8/8z)"
89 — §% can have culy zero eigenvalues in the spare of polypoe:




Thus, as was remarked before in (3], eigenvalues of the Casimir operator W are zero for the
finite-dimensional in spin wave functions of the massless particles. That can be seen directly
using the explicit form of the states (5.33),(5.34). At A # 0 there is an exponential factor
dependent on z, its z-decomposition leads to infinite number of wave function components,
similar states appear in the tachyon case.

At A =0, fs(z) = (z; ~ 5)*® and if § > 0 integer or half-integer, then the number of
components is finite (is equal to 25 + 1). We denote IR at A = 0 via Tg\, and Tg,, where
¢ = { corresponds to the integer and £ = 1 to half-integer 5. The case of an arbitrary
direction of movement, p = p(1, cos, sin¢), can be derived by a rotation around the axis
0, U = diag(e/?, e=#/7), then zi = z1e™"/?, # = /% In particular, at A =0,

fp',s(f»"‘z) = e-ipl-_-{zle-iwﬁ - Ege"“‘“)”. (5'35)

This function describes a massless particle with the momentum p’ and Lorentz spin S,
3. In case of tachyons, the state with pp = p» =0, p1 = 1m,

fos(z,2) = 7P fo(2),

has the stationary subgroup, which can be found from the condition UTR{UY = B,

where
_ coshd/2 isinhé/2 {0 —im
U“i(-isinha/z cosh0/2)’ i —_'(—-im 0 )

This subgroup is isomorphic to R ® Z and has the generator J!. The eigenvectors fp,s(z,2)
for the operators 5! and §?, with the eigenvalues ¢ and S(S + 1) respectively, have the form

Fps(2.2) = €% (3 i) S (5 — i) = e (314 ) (22 ) (5.96)
. _ %+ iz
Functions fps.{z,2) are the eigenvectors for the Casimir operators W and p? with the
eigenvalues pjo and —p} respectively. ¢ has to be real for unitary IR, therefore, for o # 0,
representations, which correspond to the imaginary mass case, are infinite-dimensional in
the spin. The case of arbitrary direction of the momentum can be derived by means of a
rotation, as was done above for the real and zero mass.
4, Unitary IR of M(2,1), which ate connected with the orbit 09, are IR of SU(L,1).
The classification of the single-valued unitary IR of the M(2,1) = T(3)x)SU(1,1) group
can be summarized in a table, which we present below.

TABLE I, Unitary single-valued IR of M(2,1).
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::Z’is :; iR &’;g:_n;g, states remarks
m>0,1 T, ms (5.31) s > 0, integer or half-integer
0%, Ozl Tn, | —ms
"m=0,} Ig, 0 (5.35) e=0,1
0f, 07 [T, 0
Toxe | K =pr | (5.34) |K # 0,real, infinite-dimensional IR
TD-K,c K= p’\
T <0 | Tomox 0 | (5.36) _
O Tnoe Img (5.36) | & % 0,real, infinite-dimensional IK
m=0, |Tq,Ts 0 see discrete series of §U(1, 1
03 Tse 0 Appendix principal series of SU(1,1)
Ts 0 supplementary series of SU(1,1)
Ly 0 invariant
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The IR states of SU(1,1), correspondent to the orbit 09, do not depend on z and are
invariant under translations. The sign (+ or ~) at T is related to the sign of pp. The
characteristics “infinite-dimensional” mean infinite-dimensionality in the spin space.

The finite-dimensional in spin wave functions of massless particles and tachyons are zero
modes of the operator W.

To complete the picture one has to add to this table myltivalued representations T},
and 77, at non-integer 25, and multivalued IR of SU(1,1), described in the Appendix. The
explicit form of states, which are transformed under the representations T, and T}, at non-
integer 23, can also be given by the formula {5.31), however, in this case, z-decomposition
generates infinite number of components. Just those IR are used to describe anyons.

VI. APPENDIX: UNITARY IR AND COHERENT STATES OF THE SU(1,1)
GROUP

The 241 Lorentz group SO(2,1), and close related groups SU(1,1) and SL(2, R) with
the same algebra, where studied in numerous papers [11-13,20-37]. Their finite-dimensional
IR and unitary IR {discrete series) are used to deseribe spin in 2 + 1-dimensions [4]. As is
known, SO(3,1) has only principal and supplementary series of unitary representations, and
the principal series is used to describe spin in 3 + 1 dimensions [38,39). In this connection,
besides of all, it is important to consider the same series of $0(2,1) or SU(1,1).

We are going to describe unitary IR of SU{1,1), their discrete bases and corresponding
CS. The consideration, to be complete, is going to repeat some known results, but also to
present some new ones. For example, we are constructing CS in unitary IR of the principal
series at arbitrary fractional projections of the angular momentum in addition to [35], where
only integer ones were considered. We construct unitary IR, including multivalued, in spaces
of functions on various manifolds connected with S0{2,1) or SU{1, 1), whereas usually they
restrict themselves to the unit disk or to a circle. In particular, we consider decompositions
of functions on a cone and one-sheeted hyperboloid with respect to unitary IR of SO{2,1).

Consider the left representation T'(U), U € §U(1,1), acting in the space of functions
flv),

TO)f) = 1), o= (1), (6.1
The matrices I/~ can be parameterized by two complex numbers u!, u?,
-1 _ [ B —up 12 _,,212 2
N o
The combination
" = Jlf=C (6.3)

remains invariant under the SU(1,1) transformations. Generators J*, which correspend to
one-parametrical subgroups with parameters —a* (see (2.3)), and arising J, and lowering
J_. operators have the following form in this representation
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‘io = ~(1/2)(018/v1 = v28/v2), J-=wdfvs, Jy=vad/u, . (64)
= (1/2)(Js = J-) = (1/2)(v20/v1 — 18/ wa),
= (i/2)(Jy + J.) = (i/2)(mi8/ vz + v2d/vy).

They obey the commutation relations
[ju,ju] = —icwn'fm [j'i'ij"} = zjo: [joyj:l:] = ijﬂ::

so that J2 is a Casimir operator,
3= g = (0 + (J+J_ +JJy) = ——(016/6‘01 + 120/ 803)(118/ vy + 138/0v5 + 2).

Let us take functions of the form f, n,(v) = vf'vj?. The action of the generators on
these functions can be found?,

. - . Rg—m , n;j+n
Jome:mfmﬂzn szn:ﬂ7=3(3+l)f“1“ﬂ m = 22 I’Jz 12 -2’

‘f—fnlna = n-2fn1+1.nz—!| j+fn;ng = nlfm-l.nz+l- (6‘5‘

Thus, quasi-pelynomials of the power 2j form a IR space (j characterizes the IR). Jy anc
J_ are arising and lowering operators for the projection of the angular momentum m =
(ﬂg —n1)/2. If ng > 0 and is integer then f,,,, belongs to IR, whlch has the lowest weigh
v1 i if ny 2 0, and is integer then IR has the highest weight v, iifbothn; >0, i=1,2
and are integer then IR in finite-dimensional (has both the highest and lowest weights)
For unitary IR of SU(1,1) : (SOt = JO, Jt = —Jg, that means ny — ny is real, an¢
ny(ng + 1) € 0, ng{ny + 1) € 0, whereas for IR of SU(2) : J} = Jz and ny(ma + 1) =
0, ny(ny + 1) > 0 [37]. At a given j one can select

Nﬂlﬂz v?lv;hs (6'6

as elements of a discrete basis in the space of functions f;(v), where N, ,, is the normalizatio:
constant, and ny = j—m,nz =j +m.

A classification and weight structure of unitary infinite-dimensional and non-unitar;
finite-dimensional IR of SU(1,1) is presented on the Fig.1.

2We are going to use here the notation m for the angular momentum projection (the same ws
used for the mass), hoping that this will not lead to a misunderstanding.
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finite-dimensional, 7 > 0
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}supplemenfa__ry, -1/2<j <0
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discrete T, \ discrete T,
i< -=1/2 J <7—‘1/2

princ‘@al,j = ~1/241Af2

il

FIG. 1. Weight diagrams for unitary and finite-dimensional IR of SU(1,1)

To describe IR of different series one has to define in more detail the space of functions
f(v). At different C in eq.(6.3) one can use the following parameterization of vy and v, :

C=40: th = pei("’"'“’)/!, Yy = pe"("”_w)/'z’

b<p<too, 0<p<dr, 0<w< 2m (6.7)
C=1: v =cosh(§/2)e+)l? 4, = sinh(§/2)e' ¥/,
0<f<+oo, 0<p<dn, 0<w<2n, (6.8)

The case of negative € (C' = -1) is reduced to (6.8) by the replacement vy « ve. The
parameter w is not changed under the group transformations in the case {6.7), thus, there

are two complex manifolds, on which the group is acting transitive: the complex hyperbeloid
(6.8) and the cone, :

C=0: v =pe? 1v=pe? 0<p< oo, 0<p < dm. (6.9)

Using the components {v;,v;) of the spinor and the complex conjugate components (71, 72},
one can construct objects (z°, !, z%), which are transformed under three-dimensional vector
IR with 7 = 1,

= {|v1|2 + ;Uziz)/z, el = ("3'1‘02 -+ 0152)/2, 2l = (vyTq — Trvg)/ 24, {6.10)
2 = vvy, 2t = (0} +03)/2, 2 = (v} - vd)/2i. (6.11)

The vectors (6.10) and (6.11) have the same transformation properties, since the spinors
(vs,vs) and (T2, 7:) are transformed equally. The latter can be easily checked, using the
explicit form of the matrix (6.2). Substituting (6.9) into (6.1%) or (6.11), we get the cone

0 =p% zl= —pleosy, 2% = -—pising, gl—zl~2}=0 {6.12)
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Substituting (6.8) into (6.10), we get two-sheeted hyperboloid

2° = coshd, z'= —sinhfcosyp, z*= —sinhfsineg, ed—zl—zd=1
If vy are periodic in ¢ with the period 4, then z, are also periodic with the period
Let us turn first to IR of the discrete series T (m = —j, —j+1,~j +2,...} and T}
Hi—-13-2..), § < ~1/2, the theory of which is quite similar to the one of the
dimensional IR, The IR T;" and T; can be realized in the space of functions f(v), w
and vz belong to the case (6.8). The scalar product of functions on the complex hyper

1 7=
(ilh) = 53 [Tuhabltn]® = ool = Do,
T dw [ - d f ® 7, fasinh 8d8, oy = dRtv dv
-2 a

8wt o

allows one to normalize the elements of the discrete basis T}" at 7 < =1/2,

AL 1/2

1Y} 2 ) g
= (SRE55) oo imbojzymentormn iy,
The projection m, and therefore j (j = Mmax in T}, § = =i in TJT"), have to run ¢
integer and half integer, j = —1, ~3/2,—2,.. ., for Tepresentations in spaces of single
functions. )

The lowest weight (vlj — 7} = v}’ has a stationary subgroup U{1) and CS are
eterized by dots of the upper sheet of two-sheeted hyperboloid SU(1,1}/U(1). An
form of CS ¢an be obtained by the action of finite transformations on the lowest we

ie(v) = (v | ju) = (v + u:vz)zj,

where u = (f;, —up), @) = cosh{f;/2)e™# /2, —uy = sinh(8;/2)e~"™#1/? are element
matrix (6.2}. The C§ overlapping has the form

(5" | ju) = &p(urt — tue)™.

A detailed deseription of CS of the discrete series of SU(n,1) one can find in [36]
SU(1,1) in [35-37]. The representations T;" and T} are conjugate; the discrete basis
be derived by means of the complex conjugation from (6.15) or by the replacement 1

For the functions, which are transformed with respect to one and the same repres:
T}, the integral over w in (6.14) gives 27, The completeness relation at a given j
written both in terms of the discrete basis and in terms of CS5,

- i ~2j—1 o= o : .
= Y Limim e S [ dey [T | ipa) b | sink 6140,

o 47 -3

The parameter j takes discrete values and the basis functions are orthonormalize
Kronecker symbol 4;; for the single-valued IR of the discrete series, whereas for the
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simieg. e o S mbﬂﬁ;#rmﬂity contains the d-function é(; — j'). Principal series
£ mice of functions on the complex hyperboloid (6.8), and on

S series on the cone {6.9) with the scalar product

{fi | f) = (1/8=7) f_: dsvfumfx(p, ©)f2{p, ¢)p dp. (6.19}

We get Cryny =1, ny +ng =27 = =1+ 1A, 2m = ny — n,, for the elements of the discrete
basis (6.6) iz case of the principal series,

Jo = e50((1/2)00/0p £ 16/8¢), Jo = —id/de, (6.20)
(pio | Am) = v]*ol? = p—l+i)\e|‘m(w+4rrk), (Am | NmY = 6(A = A)bmmmrs (6.21)

(e 1p'¢'y = (1/pp")8(lnp —ln p'}8( = ') = (1/p}b(p ~ )6 — ¢').

Two IR in the space of single-valyed functions (with integer and half-integer m, the first
and the second principal series accordingly to the terminology of the work [13]) correspond
to each given A,

. 1 27 00 1 +o00 i

1=§;f-—2f_2"dlpj; ipﬁ/))(;m,vI;m:hcmﬁf”oo dz\;H\m)(Ami.
The summation in the last equation is running over all integer and half-integer m. Multi-
valued IR are characterized not only by X but also by a number ¢, [g| £ 1/2, which gives
the nearest to zero value of m {for single-valued IR, ¢ = 0 or ¢ = *1/2}. Elements of
the infinite-valued IR space are not periodic in w. Thus, an arbitrary representation of the
principal series is defined by two numbers (A, ¢), where j = (—1 + i})/2 characterizes the
apguiar momentum square, J* = j(j +1) = (~1~ A*)/4, and ¢ characterizes possible values
of the momentum projection m = e+{m], There is a certain analogy with IR of the principal
series of SO(3, 1), which are defined by two numbers (A, §), where S corresponds to the spin
{38,39], and A defines the square of the four-dimensional angular momentum.

The representation of the principal series T, ; is reducible at A = 0 and j¢| = 1/2, and
is split into two IR: T, ), (¢ = —1/2) and T2, (¢ = 1/2); & = £1/2 corresponds to one
and the same IR at A # 0.

One can remark that, according to (6.21), p-dependence of functions on the cone is the
same at a fixed 7, and it is possible to consider the space of functions f(i) on the circle, what
they usually are doing, considering the principal series of IR. However, such a reduction of
the representation space is not always reasonable because of the space of functions on the
cone appears sometimes naturally in different physical problems.

To construct {S one has to consider orbits in the representation space, factorized with
respect to stationary subgroups [35]. The stationary subgroup of the state |A m = 0) =
p="*+ is U7(1), and CS, which correspond to integer m (¢ = 0), are parameterized by the
dots {8,+) on the upper sheet of the hyperboloid SU(1,1)/U(1). (Such CS were .constructed
in [35,40] in the space of functions on a circle.) Substituting &, = cosh(8/2)eV/?, ~u; =
sinh(f/2)e~"/?, p' = p(cosh § + sinh @ cos{1p + »))*/? in (8.1),{6.2), we get CS in the form

{pp | MY = (p")" 1+ = p=1+(cosh § + sinh f cos{ip + )T+,
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m | 089) = 55 [ [m ] oo | M6w)pdpiy

| .
= (1/27)8() = M) A €™*{cash § + sink § cos(i + @)™/ 2dip

[(m+1) m i
T(m + 172 1 4373)  ~i/ssiv/a(cosh 0)e™™, (6.22

= 8 - A)

where P,y ;z(cosh 8) is adjoint Legendre function. Atm =0 the latter goes over to zona
harmonic £_/34:x/2{cosh 8) (it is also called cone function [13,41]). To get CS at arbitrar
¢ one has to act by means of finite transformations on the state |\ m = g) = p~1tiAgiee,

(e | Aetp) = ((0151 = vquz)(~ ¥ + vzu‘))

= p~ 1+ (cosh § + sinh § cos(yp + 1)) /32
(20l = 91+ b (/D - /21) ‘
cosE (6/2) expli (¢ — ) /2] + sinh (6/2) expl—i (P~ 91/2)) -

—1/24i)/2 (—Ulﬁg + vouy )‘
il — vyuy

(6.23

The case € = 0, which we have considered above, and € = +1/2, correspond to represents
tions in spaces of single-valued functions. In the latter case at m = £1/2 we get

(P2 | A 1/2,00) = (w1l = vaua)™" | w1y — watsa |,
(o | A ~1/2,8¢) = (~u1@iz + vauq) ™" | vty — valiz 2. (6.24

At A = 0 the CS take a simple form

(pe 1 01/2,09) = (18 — vauz) ™},
(po |0 =1/2,00) = (~v1@s + vauy) ™", (6.2

which coincides with the explicit form of CS of the discrete series (6.16) (in this case, all th
difference between CS of different series consists in different domains of v, and vj, see (6.
and (6.9)).

Let us turn to IR of supplementary series. The integral in (6.19) is divergent at real |
However, one can use a convergent “non-local” scalar product

(il £ = [ [Flenfeni(e, za)derdes, (6.2

where the kernel function I{z;, zs) has to be invariant with respect to the group transform:
tions. For the cone one can select an invariant expression (v, 0} —G,v3) = 2i sin(p/2~¢'/2)or
At a fixed j representation functions have the form p¥ f(p). Let us select I(x),z3)
[(v1v] — vo04)/2|~%, then the integrand in (6.26) is fi(¢)fa(¢’)| sin(p/2 — ¢'/2)|"%. It dor
not depend on p, so that at a fixed j (6.26) takes the form

(il = [ [T TG sine/2 - DI dpds, (6.2

where ~1/2 < j < 0, the latter is necessary for the scalar product to be convergent ar
positive defined.
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he :supplementary series m is integer, for the

T uce £, |e| < {7| (restrictions on € follow from

Lt g i 52.1Y. Matrix elements of the supplementary series
IZ a7e ewpresupd 45 30 el tens function [41),

AD invariant dispersion with respect to SO{2,1) transformations can be written as

AT = (LW = (AT — (AT — (A7) (6.28)
It has the value j(j + 1) — m? on the states [jm), At a given j CS minimize the absolute
value of the dispersion (6.28). For CS of the discrete series AJ? = 7, and for the principal
series 8J% = —1/4 — X?/4 — 2,

Below we present a short summary of IR studied.
For single-valued unitary IR of $S0{2,1) the angular momentum projection m is integer,
for single-valued IR of SU(1,1) it is integer or half-integer. For multivalued unitary IR
the projection m can take any real values. Here we meet an essential difference with the
Lorentz group in four dimensions, for unitary representations of the group this projection is
always integer or half-integer. That is connected with the existence of non-Abelian compact
subgroup SU/(2) ~ SO(3). Representations of the discrete series Ti#(g) of SU(L,1) at real,
integer and half-integer 7 < —1/2 are single-valued and have the highest and lowest weights
m = £j. Representations of the principal series Tj((g), 7 = —1/2 + 1}, -1/2 « £ € 1/2,
are single-valued at ¢ = 0 and at ¢ = 1/2. At ¢ # 1/2 representations are irreducible and
have neither highest nor Jowest weights; at ¢ = 1/2 the representation is split in two ones:
T;1/2(9) with the highest weight m = —1/2 and T} 2{g) with the lowest weight m = 1/2.

Now we have to make some technical remark. As it follows from our consideration,
representatives of all non-equivalent finite-dimensional and unitary IR of SU (1,1) can be
constructed in the space of functions on two complex variables v, and v, only. At the same
time, studying the left GRR (4.4) of the M(2,1) group, it is convenient to use functions on
the elements z;, Z; of the first column of the matrix Z. In such a space the spin generators
(4.7) are reduced to the form

50 = (1/2)(218/ 21 ~ £:8[7), 8" = (i/2)(210/% + 220/ 1),
52 = =(1/2)(2:0/ 71 — 58/ 21), (6.29)
In fact, after the re-notation z) —+ vy, % -+ v, they go over to the generators (6.4).

All said about IR of SU{1,1) is summarized for the case of spin operatars in Table 2. We
denote the eigenvalue of 5% as ¢ and eigenvalue of §? as 5(5 + 1), that, in fact, correspond
to re-notation j — §, m -3 {. The parameter n in Table 2 is integer and n > 0; s-v or m-v
signify single-valued or multivalued IR respectively.

TABLE II. Unitary and finite-dimensional IR of SU(1, 1).
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series | S ¢ 1 8-V Or m-v |
" finite-dimensional: Ts | S > @, integer | 5§ —n, | R \
or half-integer | n <28
- discrete: S<-1/2 Tevat S=-1-n/2
T? -S+n
Ts S—n
principal: ) B
Tser ~1/2<e<1/2 |§=-1/24+1i)/2] cxn s-vate=0,1/2
Toypaape = T:-I/Z ®©TI
le/z §=-1/2 1/24n R
T2, §=-1/2 —-1/2—-n v
" supplementary: - —1/2< 5 <0
Ts,e, e| < |5] exn s=vate=10
T (e=9) e+n m-v
T; (e=-8) E~n m-v
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