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Abstract: Little attention has been paid in the past Lo the effects of inter-unil transmission delays on the
boundary of the basin of attraction of stable equilibrium points in neural networks. As a first step towards a better
understanding of the influence of delay, we study the dynamics of a single neuron with a delayed excitatory self-
connection. In this system, most trajectories converge to stable equilibrium points for any delay value. However,
changing the delay modifies the boundary of the basin of attraction of these stable equilibrium points. Qur results
suggest that when dealing with networks with delay, it is not only important to study the effect of the delay on

the asymptotic behavior of the system, but also on the boundary of the basin of attraction of the equilibria.



1 Introduction

The time it takes for a signal to be transmitted from one neuron to another, referred to here as delay, can influence
7 the behavior of biological neural network nodels (an der Heiden, 1981; Plant, 1981; Gerstner & van Hemmen, 1992;
Vibert et al,, 1894; Pakdaman ¢t al., 1995). It has been shown that the adjunction of delay to discrete time networks
made of binary units enables then; to store time-varying sequences (Sompolinsky and Kanter, 1986; Herz et al.,
1988). In analog neural n-et.works composed of units with nonlinear graded responses, the same phenomenon may
- deteriorate the network performance. For example, in an associative mermory network, in which stable equilibrium
points are used for storing information (Hirsch, 1989), increasing the defay beyond a critical value may render a
locally stable equilibrium point unstable. Such considerations as well as other applications have motivaied a number
of studies on the asymptotic behavior of neural networks with delay (Marcus and Westerwelt, 1989; Marcus et al.,
1991; Roska et al., 1992; Bélair, 1993; Burto-n, 1993; Civalleri et al., 1993; Gilli, 1993; Roska ef al., 1993; Gopalsamy
and Ife, 1994; Ye ef al., 1994).‘ By studying the local stability of the equi“bria, criteria have been derived {0 avoid
delay induced instabilities in some networks (Marcus and Westerwelt, 1989; Bélair, 1993). It has even been possible
to provide constraints on network parameters so that all or almost all tzajectories converge to stable equilibrium
points in networks with delay (Roska et af, 1992; Bélair, 1993; Burton, 1993; Civalleri et al., 1993; Roska et al.,
1903; Gopalsamy and He, 1994; Ye &t al., 1994). However, even in such (quasi) convergent networks, important
- {oatitres in the system’s dynamica may still depend on the delay value. Fér instance, changing the delay can alter
~dary of the basins of attraction of the stable equilibrivm points. This can be of prime importance in an
associative memory nelwock: the position of the basin boundaries determines in which basin a given information
fa.,lis: Thus changing the shape of the basin boundaries alters the classification.
In this paper we provide an example to illustrate how the delay may alter the basin boundary. To this end, we
study the dynamics of a single neuron with a delayed excitatory seli-connection. This system has been chasen
because 1) it is simple enongh so that thorough theoretical and rumerical analysis of its ciynamics are possible,
and #i} most trajectories converge to stable equilibrium points for any value of the delay, allowing to focus on the
effect of delay on the basin boundary.
In section 2 we present the neuron model. The stationary regime is described in section 3. The boun.dary of the
basin of attraction of a locally asymptotically stable equilibrium point is estimated for different delay values in

section 4. Details of the mathematical aspects are left to appendices.

2  The neuron model

In the nonlinear graded response model (NGEM), a neuron is described by its activation at time i, noted aft),
and a sigmoidal output function o(a). A decay rate v is also implemented tn the model. For more details and
references on the NGRM see (Hopfield & Tank, 1986; Pasemanu, 1993). We consider a neuron that has a delayed
self-connection with strictly positive connection weight W and delay 4. The neuron receives a constant input & .

The neuron activation evolves according to the following delay differential equation (DDE):

20 4) = ~va(t) + K + Walalt - A)) | (1)
Where o is defined by:
1
o{a) = T¥e—< 2

Here, the initial condition of the system is constituted by the history of the neuion activation during a time interval
’ corresponding to the delay. Thus, initial conditions for DDE (1) are the continuous functions ¢ defined on the
interval [~ A, 0] of length equal to the delay (appendix A). Since changing the delay alters this interval, we need to
specify how to identify initial conditions for a given delay with those for another value. In this paper we u-se two
methods. An initial condition defined for a given delay (Fig. 1-1 middle) is restricted to a shorter interval (Fig. 1-2
top) and defines thus an initial condition for a shorter delay (appendix B.1j. The second method is theoretically
advantageous. In this method, a change of variable rescales the time unit to the delay (Fig. 1-3 bottom), so that
for all delays, initial conditions are defined on the same interval of unit length [~1,0] (appendix B.2).
FIGURE 1 HERE
One of the important properties of DDE (1) is that it preserves the order of initial conditions. That is, if an
initial condition is larger than another one then the correspending solutions will have the same property. The

activation corresponding to the larger initial condition remains larger than the one corresponding to the smaller

initial condition (appendix A.3).
3 The stationary regime

The asymptotic behavior of DDE (1) is analyzed in appendix A. The results can be summarized as follows. For
W < 4y there is one globally asymptotically stable point, noted zg. For W > 47, there are two input values K_

and Ky such that when either K < K_ or K > K, there is one globally asymptotically stable point, also noted



#g; and for K- < K < K., the system is bistable: there ace two locally asymptotically stable equilibtia, noted =,

and z3, and one unstable equilibrinm point noted T3, with #1 < £3 < 23. For the bistable system most trajectories

converge to the stable equilibrium points in the sense that the union of the basins of attraction of the two stable
eﬁuilihrium points is a dense open set. In fact Lhe orbit of & constant initial condition conve;gcs to xy, & or x3
depending on whether it is smaller than, equal to or larger than z» respectively. The situation is similar for an
arbitrary initial condition ¢. There is a unique real number &(¢), such that the orbit of ¢ + ¢ tends to z, (resp. z3)
Aif and only if ¢ < 5(¢) (resp. ¢ > b{¢)). For ¢ = 8(¢), the salution going through ¢ +¢ oscillates indefinitely around
z3. (appendix A.3). For instance, for a constant initial condition & taking the value ¢, we have b(¢) = z, —¢.
FIGURE 2 HERE
Figure 2 shows the temporal evolution of the activation a(t) for several initial conditions for a bistable system. [t
can be seen that the orbits of initial conditions that are either smaller or larger than the unstable point x4 converge
to the stable equilibrium point ; or 23 respectively, Moreover these solutions can be bounded by the solutions of
properly chosen constant initial conditions. The situation is more complex for an initial condition ¢ that oscillates
around x, that is when there is at least one value @ such that ¢(f) = 3, with —4 < @ < 0. In this case the
selution going .through ¢ may oscillate transiently and then converge to one of the two stable equilibrium poinis
(1 or z3) or it may even oscillate indefinitely around x3. Such an oscillatory solution is not stable. It belongs to
the boundary separating the basins of attraction of the two st.abllf: equilibrium points.
_FIGURE 3 HERE
In ﬁéure 3, examples of the temporal evolution of solutions for initial conditions oscillating around z4 are shown.
The figure is based on nusnerical investigations carried out for two delay values (4 = 1 and 4 = 5). For this
system we nhave W > dyand . < K < K, so that there are two locally stable (z1 >~ —2.6 and 25 ~ 2.6)
and one unstable (z; = 0) equilibri-um points. The initial condition is set to ¢(z) = sin(102) for ~4 < t < 0
with A =1 (dotted line}, and A = 5 (thin line). The initial condition for the shorter delay is a restriction of the
initial condition for the longer delay as exemplified in figures 1-1 and 1-2. It can be seen that for the short delay
(dotted linc) the solu!ﬁion converges rapidly to the lower locally stable equilibrium point z1, whereas for the longer
delay (thin line) the system displays transient oscillations before converging (far from the end of the figure) to the
upper locally stable equilibrium point z3. The thick line represents the solution going through the initial condition
$(t) = sin(2f) for -5 < ¢ < 0. This initial condition corresponds to the function ¢(t) = sin(10f) (=1 < t < 0) when
the unit time is rescaled to the delay as described at the end of section 2. The initial condition for the dotted line

is a rescaling of the initial conditicn for the thick line as exemplified in figures 1-1 and 1-3. In this case there are

a1

also transient oscillations before the system converges to ihe lower locally stable equilibrium point ;.
4 The boundary of the basin of attraction

Based on the description of the asymptotic belavior of solulions given in section 3, it can be seen that the basin of
attraction of z; and x3 are the sets of initial conditions ¢ such that b.(qS) > 0 and b8{¢) < 0 respectively. The basin
boundary is the set of the zetos of b. This set is formed by the solutions that oscillate indefinitely around zj.
As can be seen in figure 3, the equilibrium point to which the orbit of an initial condition that oscillates around 23
converges, may switch from either of the two stable equilibrizm points to the other as the delay is changed. This
example gives evidence for the basin boundary being delay dependent. In this section we investigate how the basin
boundary is maodified when the delay is changed.
As the space of the initial conditions of DDE (1) is an infinite dimensional space (appendix A), it is not possible to
visualize the basin boundary in that space. To overcome this difficulty, a family of initial conditions depending on
one parameter is selected (¢4 (t)). For each value of the real parameter o we note §(a) = b{¢q). The orbit of an
“initial condition ¢(t) = $a{t) + ¢ converges to x| or z3 depending on whether ¢ is strictly smaller than or strictly
larger than B(a). Thus the graph of A(x) in the (a,¢) parameter plane represents the boundary of the basin of
attraction for initial conditions ¢ defined as above: points with coordinates (@, ¢) situated “below” (resp. “above”)
the graph of f(a) correspond- exactly to the functions ¢ with parameter @ and bias ¢ (¢(1) = ¢o(t) + ¢) whose
orbit tends to #; (resp. =3} This allows to compute the basin boundary for a special family of initial conditions,
as a function of the parameter & and to represent it as a one dimensional graph. This method can be easily
generalized to famiies depending on two parameters (fa()) for which the basin boundary A(a,w) = b(da,.) is
a two dimensional surface in the (a,w, ¢) parameter space,
FIGURE 4 HERE
Figure 4 shows estimations of the basin boundary for affine functions $alt) = ot, for —1 < ¢ < 0. For a given
delay A, we solve the rescaled equation (Equ. (1B) in appendix B.2) with the initial condition ¢, 4+ ¢. We note
Be(tx) the value of @ obtained for this family of initial conditions. It has been estimated for two different delays
A = 0.5 (dashed lines), A = 15 (solid lines). The thick lines were obtained by solving numerically the DDE and the
thin lines result from the theoretical approximation (Equ. (17) in appendix A.3). This approximation of 3. {a) is
a linear function. It fits the numerical result over some interval of @ around 0. ITowever the length of this interval
shrinks as the delay is decreased. For a = 0, the initial condition is constant and all four graphs of g go through

£:{0) = xa as expected. DDE (1) preserves the order of initial conditions, so that B-(a) is an increasing function



of &, and its graph has a positive slope, For very short delays close Lo zero, the slope tends to zero and the graph
of B-{a) is close to the straight horizental line going through =3 = 0. This slope increases with the delay.
The basin boundary can also be estimated for a restricted (if A < 1) or extended (if A > 1} initial condition defined

_b_.y: $alt) = ot for —A <t < 0. We note B.{&) the value obtained in this way. Then we have:

Be(Ac) = B (e) ®)

This relation allows to obtain an estimation of the basin boundary for the first method of compatison ~ restriction —
from the tesults presented in the previous paragraph. It should be noted that such a relation does not exist for an
arbitrary family of initial conditions.
FIGURE 5 HERE
Figure 5 shows estimations of the basin boundary for sine initial conditions ($aw(t) = asinfwt), -1<t< 0). For
each value of (@, w), the value 4, (o, w) is shown for delays A = 0.5 (Fig. 5-A)and A = 5 (Fig. 5-B). Both theoretical
approximations and the results of the numerical resolution of the DDE are represented for each delay. In both
figures, the theoretical estimation matches the numerical one for low amplitude sine functions (« close to zero).
For a fixed w, 8.(a,w) is a monotonous function of «, that either increases or decreases from zero as o increases
from zero. For a fixed a, the boundary displays oscillations that are darmped as w increases (Fig. 5-C). The main
difference due to the change in the delay is in the amplitude of the “waves” of the boundary surface. For sake
af brevity only basin boundaries for rescaled initial conditions were presented. For restricted or extended initial
- +itios the results are similar. In fact there is a relation similar to equation (3) linking the basins boundary of

rescaled sine initial conditions to that of extended or restricted sine initial conditions.
5 Discussion

In this paper, we studied the dynamics of a single neuron with a delayed excitatory self-connection. The system
~‘'we have con:‘sidered is simple and atlows us to carry out a precise theoretical and numerical characterization
of the boundary ‘of the basin of attraction of a locally stable equilibrium point. The analysis methods relied
mainly on specific properties of DDE (1} (i.e. it gemerates an order preserving semiflow (apbendix A.3)) and
may not be adequate for the study of networks comimonly used in applications that may have both positive and
negative connection weights. It is known that scalar systems with a delayed feedback can display complex dynamics
depending on both the feedback nature — positive, negative or mixed (an der Heiden & Mackey, 1982; Malta &

" Grotta-Ragazzo, 1991) and the number of feedback loops (Glass & Malta, 1990; Grotta-Ragazzo & Malta, 1992).

Moreover the basin boundary in such systems can have an intricate structure (Losson et al., 1993). Therefore a
network made of a large number of units with both delayed excitatory and inhibitory connections may display
complex behaviors (Marcus ef al, 1991; Gilli, 1993). Nevertheless, our resuits suggest that even in a quasi
convergent system with delay, the boundary of the basin of attraction of the stable equiiibria may depend on the
value of the delay.

The change of the basin boundary with the delay was established for non-constant initial conditions. In our
example, the asymptotic behavior éf constant initial conditions is not affected by the delay and the boundary of
the basin of attraction would not depend cn the delay if the initial conditions were restricted to constant functions.
However this is a special property of the system we considered and a larger network with delay having both positive
and negative connection weights may not display the same behavior.

Studying the orbits of non-constant initial conditions poses the problem of comparing initial conditions for various
delay values. In our work we proposed two methods that were adequate for our purpose. However there is no
’unique way to compare initial conditions, and other methods may be developed that would be better suited for
particular applications.

The influence of delay on network dynamices has also been investigated in networks composed of  slightly different
version of the NGRM, usually referred to as the “shunting model” (Destexhe & Gaspard, 1993; Destexhe, 1994;
Houweling, 1994; Lourengo & Babloyantz, 1994). The resulis presented in this paper can be easily adapted to the
dyn-amics of a single shunting model neuron with a delayed excitatory self-connection. receiving a constant input

(appendix C).
6 Conclusion

For neural netwarks designed to converge to equilibria, such as associative memories, the rate of error in retrieving
the relevant information depends on the shape of the basin of attraction of the ;equilibrium points. In this paper we
have shown that even in a quasi convergent, system, the boundary of the basins may be modified by the presence
of delays. This can deteriorate the performance if the delay is not unde; control. However our work was based on
the behavior of a single neuron and represents only the first step towards the study of the influence of delay on the

basin boundaries in neural networks.



Acknowledgment: The authors would like to thank Dr. E. Av-Ron and Pr. O. Arino for helpful comments,

This work was partially supported by USP/COFECUB under project U/C 9/94. One of us (CPM} is also partially

supported by CNPq (the Brazilian Research Council),

.

Reference

Arino, O, (1993). A note on “the discrete Lyapunov function .. ” Journal of Differential Equations, 104,

169-181.

Arino, 0, & Benkhalti, R. (1988). Periodic solutions for £(t) = Af{z(t), z(t - 1)). Proceedings of the Royal

Soetely of bdinburgh, section A. 109, 245-260,

Arino, O. & Séguier, P, (1979). Existence of oscillating solutions for certain differential equations with delay.
H.O. Peitgen & H.-O. Walther (Eds) Functional Differentiul Fguations and Approzimation of Fized Poinis,

Lecture Notes in Mathematics vol. 738 (pp. 46-64). Berlin: Springer—Verlag.

Bélair, J. (1993). Stability in a model of a delayed neural network. Journal of Dynamics and Differential

Eguations. 5, 607-623.

Brauer, T. (1979). Characteristic return times for harvested population models. Mathematical Riosciences,

45, 295-311.

Bizuo FL(1979). Decay rates for solutions of a class of differential-difference equations. SIAM Journal of

Mathematical Anaiysis. 10, 783-788.
Iéurton, T.A. (1993). Averaged neural networks, Newral Networks. 6, 677-680.

Civalleri, P.P, Gilli, M. & Pandolfi, L. (1993). On stability of cellular neural networks with delay, [EEE

Transactions on Circuits and Systems_I: Fundamental Theory and Applications. 40, 157-165.

Cowan, 1. & Ermentrout G.B. (1978). Some aspects of the ‘eigenbehavior’ of neurai nets. In 8.A. Levin (Ed.)

Studies in Mathematical Biology, part [, 67-117, The Mathematical Association of America,

Destexhe, A. (1994). Oscillations, complex spatiotemporal behavior, and information transport in networks

of excitatory and inhibitory neurons. Physical Review E. 50, 1594-1606.

Destexhie, A. & Gaspard, P. (1993). ‘Bursting oscillations from a homeclinic tangency in a time delay system.

Physies Lefters 4. 173, 386-391.

Gerstner, W. & van Hemmen, J.L. (1992). Associative memory in a network of ‘spiking’ neurons. Network.
3, 139-164.
Gilli, M. (1993). Strange attractors in delayed cellular neural networks. JEEE Transactions on Circutls and

Systems.: Fundamental Theory and Applications. 40, 8§49-853.

Glass, L. & Malta, C.P. (199G). Chaos in multi-looped negative feedback systems. Journal of Theoretical

Biolagy. 145, 217-223.

Gopalsamy, K. & He, X.-Z. (1994). Stability in asymmetric Hopfield nets with transimission delays. Physica
D, 76, 344-358.
Grotta-Ragazzo, C. & Malta, C.P. (1992). Singularity structure of the Hopf bifurcation surface of a differential

equation with two delays. Journal of Dynamics and Differential Equations. 4, 617-650.

Hale, J.K. & Verduyn Lunel, S.M. (1993). Introduction to Functional Differential Equations, Applied

Mathematical Sciences vol. 99. New-York: Springer-Verlag.

an der Heiden, U. (1981). Analysis of nenral networks. Lecture Notes in Biomathematics vol. 35, Berlin ;

New York : Springer-Verlag,

an der Heiden, U. & Mackey, M.C. {1982). The dynamics of production and destruction: analytic insight

into complex behavior, Journal of Mathematical Biology. 16, 75-101.

Herz, A., Suizer, B., Kiihn, R, & Van Hemmen, I L. {1988). The Hebb rule: storing static and dynamic

objects in an associative neural network. Europhysics Lelters. 7, 663-669.

Hirsch, M.W. (1989). Convergent activation dynamics in continuous time networks. Neural Networks. 2,

331-350.
Hopfield, J.J. & Tank, D.W. (1986). Computing with nenral circuits: a model. Seience 233, 625-633.

Houweling. A.R. (1994). The effects of interneural time delay in 2 simple two neuron shunting model.

Personal communication.

Losson, J., Mackey, M.C. & Longtin, A. (1993). Solution multistability in first-order nonlinear differential

delay equations. Chaos, 3, 167-176.



Lourengo, C. & Babloyantz, A. (1994). Control of chaos in networks with delay: a model for synchronization -

of cortical Lissue. Neural Compulation. 6, 1141-1154.

Malta, C.P. & Grotta~-Ragazzo, C. (1991). Bifurcation structure of scalar delayed equations. nilernational

Journal of Bifurcation and Chaos, 1, 657—665.

Malta, C.P. & Teles, M.L.5. Delayed differential equations: comparison of different numerical integration

methods. in prepargtion.

Marcus, C.M., Waugh, F.R. & Westervelt, R.M. (1991). Nonlinear dynamics and stability of analog neural

networks. Physice D. 51, 234-247.

Marcus, C.M. & Westervelt, R.M. (1989). Stability of analog neural networks with delay. Physical Review

A. 39, 347-359.

Pakdaman, K.; Vibert, J.-F.; Boussard, E. & Azmy, N. (1995). Single neuron with recurrent excitation: effect

of the transmission delay. Neural Networks. in press.

Pasemann, F. (1993). Dynamics of a single neuron model. Infernationa! Journal of Bifurcation and Chaos.

3, 271-278.

Plant, R.E. (1981). A FitzHugh differential-difference equation modeling recurrent neural feedback. STAM

. Journal of Applied Mathematics. 40, 150-162,

Roska, T., Wu, C.F., Balsi, M. & Chua, L.0. (1992). Stability and dynamics of delay-type general and cellular
‘neural networks. IEEE Transoctions on Circutls and Systems_I: Fundemenial Theory and Applications. 39,

487-490.

Roska, T., Wu, C.F. § Chua, L.O. (1993). Stability of cellular neural networks with dominant nonlinear and
delay-type templates, JEEE Transactions on Circuils and Systems {: Fundamenial Theory and Applications.

40, 270-272.

Smith, H. (1987). Monotone semiflows generated by functional differential equations. Journal of Diﬁereutial

FEquations. 66, 420-442.

Sompolinsky, H. & Kanter, 1. (1986). Temporal association in asymmetric neural network. Physiﬁal Review

Letter. 537, 2861-2864.

Vibert, J.-F., Pakdaman, K. & Azmy, N. (1994). Inter-neural delay modification synehronizes biologically

plausible neurens. Neural Networks. 7, 589-607.

Ye, H., Michel, A.N. & Wang, K. (1994). Global stability and local stability of Hopfield neural networks with

delays. Physical Review E. 50, 4206-4213.
A Asymptotic Stability

The neuron activaiion evolves according to the following DDE:

£2(4) = ~yalt) + K + Wola(t ~ 2)) @

Where o is the sigmoidal function defined by:

ala) = 1_.{_1675 (5)

-and W and A are strictly positive real numbers. This system is similar to the positive feedback loop with a
piecewise constant transfer function studied by an der Heiden and Mackey (1982).
Let C[—A4,0] be the space of continnous real functions of the interval {—4,0). For # in C[—A, 0], there exists a
unique real function a(t, 4) on the interval [ 4, +00), such that eft, ¢) = $(t) for —A <t < 0, and a(t, $) satisfies
equation {4) for { > 0 (Hale and Verduyn Lune!, 1993). For such a solution of the DDE, we note a(¢) the element
of C[— 4, 0], defined by a($}(8) = a(t +4,¢), for —A< 8 <D,
A.1  Local stability
In this section, the local stability of the solutions taking a constant value, Le. equilibrium points, of DDE (4) is

studied. A function taking the value =, that is a(t) =z for all t > —A, is a solution of equation (4) if and only if

% is a gero of Z, the right hand side of equation (4):

Z(x)=—12+ K+ Wa(z) {6)
The number and value of the zeros of Z depend on the values of the parameters (y, W, K). See also (Cowan
& Ermentrout, 1978; Pasemann, 1093). The parameter set can be sepa):-ated into two regions, one in which the
equ;'ition has a unique zero, noted 24, and another such that it has three zeros ) < 23 < z3.

More precisely we have:



s For0< W <4y, Zhasa unique zero noted zg.

» For W = 4, let:
K- (1, W) = —yLog( 21t F UL =t1]y _ Wo /W)

N oo : )]
Esly, W)= ;.'Lag(w 2v+ E:V(W 4—,)) _ w+\/W2("w_—4-,) .

1. Foreither K < K_ or X > Ky, Z has a unique zero also noted x,.

2. For K_ < K < K, Z has three zeros noted I < z2 < 23,

For the study of the local exponential asymptotic stability of each equilibrium point, the real parts of the solutions

A of the characteristic equation (8) at the equilibrium peint are examined.

Ady —-We'(z))e M =0 (8)

A.L.1 The locally stable points

For the equilibria x¢, 2; and 25 the foIIowihg inequality holds:

¥>Wo'(zi) >0 for i in {0,1,3} ]

From inequality (9) it can be deduced that the characteristic equation (8) admits a real strictly negative solution,
noted p4(z;) and that all its other solutions are complex with real parts smaller than pra(z;). This ensures that
- these constant solutions be locally exponentially asymptotically stable (Hale and Verduyn Lunel, 1993).

Moreover for A > 4 we have:

=7 < pale) < pale) <0 (10)

and in fact pa(xz;) increases and tends to zero as A increases and tends to infinity.
In sunmmary, the local asymptotic stability of the stable .equilibriurn points of the system does not depend on the
delay.

A.1.2 The unstable point

At z2 the situation is different, we have:

¥ < We'(zs) (1)

13

From this inequality it can be deduced that the characteristic equation admits a real strictly positive solution,
noted w4 (23) and all its other solutions are complex with real parts smaller than v4(x2). Therefore the equilibrium
point =3 is a locally unstable point {Hale and Verduyn Lunel, 1993}. Using the same notations and definitions zs

for p we have:

0 < va(za) < va(za) (12)

and in fact p4(%2) decreases and tends to zero as A increases and tends {o infinity.
The characteristic equation at 25 may have other solutions with positive real parts depending on the delay value.

In fact there is an increasing sequence of delays 4, defined by:

tan(Ag /W20 (22)7 ~ 42) = /Wial(22)? — 72 /v (13)

- with 2km /Wi (22)? — 4% < Ap < (2k+ 1/2)n /W ic/(z5)2 — 12

such that there is a pair of complex conjugate solutians of the characteristic equation crossing the imaginary axis
_from left to right at A,.

The mumber of solutions with positive real parls determines the dimension of the unstabic space of the unstable

equilibrium peint of the linearized equation, and it also gives some indication about the extent of instability of the

nonlinear equation near this point (Hale and Verduyn Lunel, 1993). Therefore increasing the delay renders the

unstable point more unstable.

A.2 Return and escape times

The solutions of the characteristic equation at the equilibria change with the delay, even though for the stable
equilibrium points their real parts remain negative for all delay values. This is important for evaluating the response
of the system to perturbations. A system, stabilized at a locally stable equilibrium point 2; (i in {0, I, 3}), returns

to it when perturbed with a characteristic return time Tr(z:, Ay (Brauer, 1979a-b) and we have:

To(ei, Ay = ~Afpalzs) (14)

T (g, A} is an increasing function of A tending to infinity.

Tn the same way we can define a characteristic escape time 7;(z2, A) for the unstable point z3:

To(zs, A) = Afvalzs) (15)

T.{z3, A) is an increasing function of A tending to infinity.



Therefore the characteristic return and éacape times close to the equilibria are lengthened and tend to infinity as

the delay is increased.

A.3 Gilobal stability

" Let #o and ¢1 be two elements in C{—A, 0], then we say that #a is larger (resp. strictly larger) than #; noted
o > ¢ (resp. ¢o >> ¢y) if for all 8 in {—A,0) we have ¢o(8) > $1(8) (resp. do(f) > ¢1(F)). DDE (4) generates

an order preserving semiflow: for g and ¢; in C[-A,0]:

if o2 é1 and do # ¢y, then for £> 24 ar(do) >> ar(dy) (16)

Therefore the orbit of an arbitrary initial condition ¢ in C[-4,0] is bounded by the orbits of two constant initial
conditions.
The fact that DDE (4) generates an order preserving semiflow strongly limits the possible asymptotic behaviors of

the sohations (Smith, 1987; Roska et af., 1692).

s For W < 47, all solutions converge uniformly asymptotically to zq.
e For W > 47

b Foreither K < K_or K > K4, all solutions converge uniformiy asymptotically to z.

2. For K_ < K < K, the union of the basins of attraction of z; and #3 is a dense open subset of C[-—4,0].
T i d[-4.0], there is a unique real number &(#) such that a;($-+¢) tends asymptotically to z; (resp.
23) for all ¢ < &(¢) (resp. ¢ > 4{@)); where for a real number ¢, we note ¢ + ¢ the element of €[4, 0]
defined by (¢ + c-)(t) =$(t)+e for-A<t<o at, (¢ + 5(¢)) oscillates around 23z, in the sense that
the function a(t, (¢ + b(¢)) — 2 has at least one zero on each interval kA<t <(b+1)4, for k » -1,

. The boundary of the basin of atiraction of the two locally stable equilibrium points is formed by such
oécillating solutions. Propertics of these oscillations, such as convergence to 2 and periodicity, depend
on the' instability of z,, and have been studied in '(Arino and Séguier, 1979; Arino and Benkhalti, 1988;
Arine, 1993).

The function b from C[— 4, 0] to the real line is continuous, The boundary of the basins of attraction of
the two locally stable equilibria is the closed set {#, such that b(¢) = 0}.
We approximate b(¢) by the projection of @ onto the most unstable eigendirection of tl.l'e linearized

equation at 2 along the eigenspace of all the other solutions of the characteristic equation (8) (see
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(Hale & Verduyn Lunel, 1993)).

Q0
5() = 4(0) — z2 + Wo'(zg)e=>4 f_ L (#(0) = z2)e~ a7

where v st-aﬁds for v4, the real solution of the characteristic equation, which is also the solution .with
the largest real part (appendix A.1). This approximation is satisfactory near the unstable equilibrium.
When the characteristic equation has a single solution with a positive real part, then the basin boundary
coincides with the stable manifold of the unstable equilibrium point x5, In this case, the zeros of the

above approximation of & represent the tangent space to the stable manifold at zg.
B Comparing initial conditions

The space of initial conditions of DDE (4) is [ 4, 0] the infinite dimensional space of continuous functions on the

interval {—A, 0]. This space depends on the delay A. In order to compare the orbits for various delays, we have to

. be able to compare functions in C[—A, 8] for different values of A.

In this paper the comparison is based on the two following methods.
B.1 Restricting the initial condition

Let ¢ be a function on the interval [ A, 0], then the restriction # of ¢ to the interval [—4’,0], where 4’ < A
belongs to C[-A’,0]. In order to see how the delay changes the basin boundaries, we can compare the orbit of the
initial condition ¢ (for a system with a delay A) with that of the initial condition ¢ (for a system with a delay AN,

Note that a restricted function ¢ corresponds to infinitely many functions ¢.

B.2 Rescaling of the initial conditions

In DDE (4), we make a change of variable by setting t =2 ¢/ A, and we rename the parameters: v = v4, K’ = K/~,

and W' = W/+. The transformed equation is thus:

l%(:f) = —a(t") + K' + Woa — 1)) _ (18)
T

An initial condition ¢ of DDE (4) is transformed o an initial condition 1 for DDE (18) by setting (s} = ¢(As),
for —1 < s < 0; so that ¢ belongs to €[—1, 0], which is independent from A. Therefore one way to evaluate the
effect of the delay on the behavior of the system, is to study the dynamics of DDE (18) for varicus values of the

parameter .



C The shunt ing model

In the shunting model, the neuron activation evolves according to the following DDE:

%u) = —va{t) + K + W(E — a(t))o(a(t — A)) (19)

where £ > 0 is the positive reversal potential. Let K = K[+, we further suppose E > K'.

For any function ¢ in C[—A, 0], there is a unique solution of DDE (19) a(t,¢) going through ¢, and there is a
time T > —A such that the activation is below the reversal potential after T, that is for all.t > T, alt,¢) < E.
The restriction of the set of initial conditions of DDE (19) to continuous functions on the interval [-A, 0] that are
smaller than E, gencrates a strictly order preserving semiflow.

Based on the above considerations, and the study of the local stability of the equilibria of DDE {19), we can state

the following. Let K be the unique solution of the following equation, such that K, < E.

(e - 1) (F—z)+4=0 (20

For K’ > K there is one globaliy asymptotically stable point, noted 24, with K < z5 < E. For X' > Ifo, there
are two positive weight values W_ and W, such that when either W < W_ or W > W,, there is one globally
asymptotically stable point, also noted =y with K’ < #g < E; and for W_ < W < W4, the system is bistable:
: thel:e are two locally asymptotically stable equilibria, noted #1 and 3, and one unstable equilibrium point noted
@z, with K < z1 < 23 < #3 < E. For the bistable system most trajectories converge to the stable equilibrium
points in the sense that the union of the basins of attraction of the two stable equilibrium points is a dense open

set. The basin boundary can be characteriged in the same way as for the NGRM.
D  Numerical solution

* The numerical solution of DDE (1) is obtained by d.iscret-ization of time which makes the problem finite. The
eqﬁation is then integrated by using the GEAR corrector formuia which can be easily adapted to integrating DDEs
when nonlineari‘ties are restricted to the terms which contain the delay (Malta & Teles, in preparation).

The time step used was 10=%. The calculations were carried with double pre_cision on DEC AXP and Microvax

3300.
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Figure 1 Contparing initial condifions
How fo oblein an initial cond.:'tian for ¢ DDE witk delay equal 1o 1, from an initial condition defined for a delay
A > 1. A continuors function defined on the interval [-A,0] {1) (middle), is either restricted ;a a shorter inlerval
(2} {top) — here 1o [«1,0) — or rescaled fo [~1,00 (3) (Bottoni) to define an initial condition for ¢ DDE with

delay equal to 1. Abscissae: fime t, ordinaies: activation.

Figure 2: Eramples of solutions
The time evolution of solutions for § initial conditions are represented. In this case the system has two locally
asymplotically stable equilibrium points at z) = —2.6 and £3 ~ 2.6, and an unsteble equilibrium point gf z» = (.
‘Trajectories of initial conditions lower (resp. larger) than z, corverge to xy (resp. x3). The trajectory of an instial
condition that oscillates aroun.d Ty may converge to either of the stable equilibriym points or oscillate indefinitely.
The trajectory of an initial condition bounded by two constant initial conditions remains bounded belween their
tréjectories. A‘bsc:’ssaﬂl: time t; ordinales; activation aft). Parameters used for the simulation T=1 W =6,
K = -3 with delay A = 1. The instial conditions are: asin{ot) + 8 for (a = 0,8 = ~L6), (2 = 0,8 = -0.8),

(x=04,8=-12), (a= 04,3=0), (6 =04,5= 1.2). -

Figure 3: Eramples of selutions for oscillating initial conditions
This ~ystem has an unstable point 4t z3 = 0, and two locally stable points et &) ~ —2.6 and z3 =~ 2.6, The
- ondition is set {o $(t) = sin(10t} for —A <t <0 with A =1 (dotted line), a.nd A = § (thin line), The
thick line represents the solution going throigh the initial condition (L) = sin(2t) for —5 <t 0. This initial
condilion corresponds to the funetion Bty = sin(108) (-1 < ¢ < 0) when the unit time is rescaled to the delay.

Same coordingies and same parameters T, W oard K as in figure 2.

Figure 4: Basin boundaries for affine functions
The boundary f.(c) of the basin of attraction for affine initial conditions with slope o and bins ¢, o{t) = ot +
¢ (-1 <t <0), is shoun forA = 0.5 (dashed line) and A = 15.0 (solid line). 'The thick lines correspand o the
numertcal resull and the thin lines correspond lo the theoretical apprammatmn (Equ. (17)). Absc:ssac s!opc e,

R ardmaics bias c. Same parametem T, Woand K as in figure 2.
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Figure 5:
The boundary f,(o,w) of the basin of atfraction for; sine initial conditions with amplilude o, angular velocity w
t;nd bias ¢: $ou(t) = asinfwt) {(—1 <t < 0, is shown for A = 0.5 (A} and A =5 (B). C: cross sections af
o =3 of fa,w). The thick lines correspond to the numerical result and the thin lines cerrespond o the theoretical
approzimation (Equ. (17)). Solid lines for the long delay (4 = 5) and dashed lines for the short delay (4 = 0.5).

Abz;'cissac: anguler veloctty .w, ordinates: bias ¢, Same parameters v, W and K as in figure 2,
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