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Abstract

The behavior of neural networks may be influenced by transmission delays
and many studies have derived constraints on network parameters such as con-
nection weights and neuron transfer functions to ensure that the asymptotic
dynamics of a network with delay remains sirnilar to that of the correspond-
ing system without delay, However, even when the delay does not affect the
asymptotic behavior of the system, it may still influence other important fea-
tures in the system’s dynamics such as the boundary of the basin of attraction
of ihe stable equilibria. As a first step towards a better understanding of the

influence of delay, we study the dynamics of a system constituted by two

q

neurons interconnected through delayed excitatory connections. In this case,
the system with delay has exactly the same stable equilibrium points as the
associated system without delay. Moreover, in both the network with delay
and the corresponding one without delay, most trajectories converge to these
stable equilibria. So that, the network with delay displays an asymptotic be-
havior similar to the corresponding system without delay. However, we show
that even in this simple system, the boundary of the basin of attraction of a

stable equilibrium point depends on the value of the delays.
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L INTRODUCTION

In many neural network applications, such as associative memories, the network is de-
signed so that stable equilibrium points represent the stored information [1,2). Tn this
framework, relevant information is retrieved by initializing the network at a point within
the basin of attraction of a stable equilibrium point, and allowing it to evolve to its sta.ti.ona.ry
state. Therefore, many studies have been concerned with the asymptotic behavior of neural
networks and have derived conditions on network parameters to ensure that all or almost all
trajectories eventuaily converge to equilibria, thus avoiding spurious undamped oscillations
[1,2]. Such networks are referred to as convergent or quasi-convergent. However, loss of
stability may arise in hardware implementations of (quasi-) convergent neural networks due
to the presence of finite time transmission times, referred to here as delay, between units.
This phenomenon, as well as possible applications of networks implementing delay, have
motivated a number of studies dealing with the effect of interneural transmission times on
the asymptotic behavior of neural networks [3-16]. Many of these studies derive conditions
on the network parameters, such as the connection weights, the neuron transfer functions
as well as the delays to ensure that the network with delay behaves in a way similar to the
associated network when the delays are set to zero. These studies are mainly conf_:erncd
with two aspects of the dynamics. i) To ensure that the delay does not induce the %oss of
information stored in the stable equilibrium points. This is satisfied when the system with
delay has exactly the same stable equilibria as the one without delay, that is, the delay does
not alter the local stability of the stable equilibrium points [3-6]. ) To ensure that the
delay does not induce spurious stable undamped oscillations. This is satisfied when both
the system without delay and the one implementing delay are (quasi-) convergent, that is,
the delay does not alter the global stability of the system [4-14].

The above constraints on network parameters avoid delay induced changes in the asymp-
totic behavior of the system. However even under such constraints, the delay may influence

important features in the system’s dynamics. For instance, changing the delay can alter the

boundary of the basins of attraction of the stable equilibrium points. This can be of prime
importance in associative memory networks in which the position of the basin boundaries
determines which information is retrieved for a given initial condition. Thus changing the
shape of the basin boundaries alters the classification.

In this paper, we study the dynamics of a network of two neurons connected through
delayed excitatory connections. This system has been chosen because it is simple enough so
that thorough theoretical and numerical analysis of its dynamics are possible. Indeed, we
show that it satisfies both of the conditions stated above, that is, the delay does not;'a.ffcct
the local stability of its stable equilibria, and, no matter what value the delays tak;:, the
two-neuron network remains quasi-convergent. Yet, we show that the boundary separating
the basins of attraction of two stable equilibria depends on the delays.

In section LI we present the two-neuron network model, The boundary between the basins
of attraction of two stable equilibiia of the system is studied in section IV. In section \‘V the
boundary is numerically estimated for several values of the delays. A discussion is presented

in section VI.

I1. THE MODEL

In the nonlinear graded response model (NGRM), a neuron is described by its activation
at time ¢ and a sigmoidal output function o that depends on the activation. A constant
decay rate of the activation is also taken into account. For details and references on the
NGRM see [1,2]. In this paper, we consider & system of two neurons connected {6 each
other. Denoting the activation of the neurons by z and y, their decay rates by 4 and 7/,
their connection weights by W and W', the delay related to each connection by A and A’
and the comstant input received by each neuron by K and K' (schematically repreéented

in Fig. 1), we write the following system of delayed differential equations {(DDEs) for the

evolution of = and y:
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L(t) = —y'y(t) + K’ + Wal(t — A)),

where ¢ is given by:

oe) = o @)

In many cases, the dynamics of DDEs [17-19] are more complicated than that of the
related ordinary differential equations {ODEs) obtained by setting the delays equal to zero.
This difference comes from the fact that, no matter how small the delays are, DDEs always
generate infinite dimensional dynamical systems. Indeed, in order to determine the evolution
of the variables # and y in Eq (1), it is necessary to give the initial condition for z(¢) and

¥(t} in the intervals [—A',0] and [~ A4, 0], respectively. So, it is natural to consider as the

phase space of Eq. (1) the set § = C({--A",0],IR} x C([— 4, 0], R), where C{I,IR}) designates

the space of continuous functions from the interval I to the real line R. The set § , with the
usual supremum norm, is an infinite dimensional Banach space.

For an initial condition ¢ = (éy,¢2) in S, there exists a unique solution of Eq. (1), noted
2(t, ¢} = (=(t, 8), y(t, ¢)), such that (¢, $) = & (#') for —-A' < ¢ < 0, y(0,¢) = $u(0) for
—A <0 <0 and 2(t,$) satisfies Eq. (1) for ¢ > 0. For such a solution of the DDE, we note
2() = (vi(¢),1:(4)) the element of § defined by w.($)(8") = z(t + 6, ¢), for & € [-4',0],
and y{$}(8) = y(t + 6,8}, for 6 € [-A,0]. 2z is the differentiable semi-flow generated by
Eq. (1} in the space S [20]. From this point on, the dependence on the initial condition ¢ will
not be indicated explicitly in the notations when no confusion results from this omission.

In spite of the differences between DDEs and their related ODEs mentioned above, there
are cases in which their dynamics are, in some sense, very similar. For Eq. (1), this happens,
for instance, when both connection weights are strictly positive, W > 0 and W’ > 0 (positive
feedback). In the rest of the paper we will only consider this case. 7

At this point, in order to be more precise, we need $o introduce some definitions. For
¢ = (¢1,92) and ¥ = (3),9,) in S, we say that ¢ is larger (resp. strictly larger) than 4,
noted ¢ > 9 (resp. ¢ > ), if ¢.(8") > ©,(8") (resp. $:(8') > ¥(¢)) for all &' in [~ 4,0}

i

and ¢,(#) > 1/)2(3) (zesp. $2(8) > 1(f)) for all 8 in [—A,0]. When ¢ < q,‘a, the set dt;ﬁned

.by {U € 8,9 < U < ¢} is an open subset of §.

The positive feedback (W > 0, W’ > 0) condition and theorem 2.5 in [21] (see also [9])

imply that Eq. (1) generates a strongly monotone semi-flow, that is:
If ¢<¢" and ¢#¢ then =z(¢) <zf¢d) for t>2max{4,A}. (3)

Throughout this paper, constant functions in § are identified with the value they take
in IR%.. A constamnt solution of system (1) is referred to as an equilibrium point. 2(t) =
(2(t),y(t)) taking the value (a,b), that is z(¢) = a for t' > A" and y(t) =bfor £ > —A, is

a solution of Eq. (1) if and only if (a,b) satisfies the system:

~va+ K+ Wo(b) =0
46+ K’ Wio(a) =0 . L

(4)

The number and the value of the solutions of system (4) depend on the values of the
parameters (v,v, W, W', K, K" )- The parameter set can be separated into two regions: one
in which the system has a unique solution, and another such that it has three solutions. These
solutions do not depend on the delays A’ and A. Geometrically, they are the intersection
points between the curves —ya+ K + Wa(b) = 0 and —y'd+ K’ + Wo(a) = 0 in the (a,b)-
plane. An exampleis shown in figure 2. In the rest of the paper we will restrict our attention
to the case where system (4) has three solutions. The constant functions associated with
these solutions constitute the equilibria of Eq. (1} and will be denoted by »;, » and =3, s0
that, when considered as constant functions in 5, they are ordered as vy < 73 < 75.

The monotonicity property (3) and the results in [21,9] imply that the a,symptofjc dy-
namics of Eq. (1) and its related ODE (obtained by setting A’ = A = 0) is essentially the

same in the following sense:

(P1) The equilibrium ry of (1) is locally asymptotically stable if, and only if, the same is
true of the related ODE;



(P2) The union of the basins of attraction of the stable equilibria of DDE (1) is an open

and dense set in the phase space 5, the same being true of the ODE related to it.

We remind that the basin of attraction of a stable equilibrium point is the set of initial
conditions in S whose trajectories eventually converge to the equilibrium point.

From the above results it can be deduced that v and #5 are locally asymptotically stable
equilibrium points and that =, is unstable, and the union of the basins of attraction of
and 73 is an open dense set in S. So that neither DDE (1) nor its related ODE have stable
non-constant solutions.

Some authors have studied the effect of delays on the dynamics of neural nefworks
composed of “shunting” units [22-27). The difference between the shunting model and the
NGRM remdes In a term representing the reversal potential that multiplies the inputs a

tieuron receives from other units. So that Eq. (1) is changed into:

() = ~35(0) + K+ (B~ () Woly(t - 4) o

B = 1Y)+ K+ (B y()Wala(t - A},
where I and £’ are the reversal potentials of the first and second neuron respectively.
Under the assumption v > K and TE' > K', and positive connection weights W > 0,
W’ > 0, for any initial condition ¢in 5, thercis a time T, such that the solution z(¢} of (5)
satisfies: 2,(¢) < (B, E'), fort > T. As the semiflow generated by (5) is strictly monotonous
when the phase space is restricted to 5" = {¢ € 5,9 < (E, E")}, the results established for

the two-NGRM network can be extended to the two-shunting-neuron network.

III. NUMERICAL RESOLUTION

Numerical solutions of DDE (1) are obtained by discretization of time. The equation
is then integrated by using the GEAR corrector formula which can be easily adapted to
integrating DDEs when nonlinearities are restricted to the terms which contain the delay

[28]. The time step nsed was 10—+ (smaller time steps had no effect on the results). The

calculations were carried with double precision on a 64-bit DEC AXP 3000/500 runmng
DECOSF/I v3.2.

IV. THE BOUNDARY OF THE BASIN OF ATTRACTION

Our goal in this section is to study the boundary B separating the basin of attraction of
71 from that of r;. Any neighborhood of a point in B intersects the basins of attraction of

both r{ and 4.

Theorem. a) Let u be in S, such that u > 0. There exists a continuous, strictly decreasing

(with respect to the order defined above) map, b,, from § to R suck that:

1. For all ¢ in 8, ¢ + b.($).u is the unique intersection between the line going through
¢ and directed by u (i.e. the set {$+ u, A € IR}) with the boundary separatmg the

two basins of attraction.
2. the set {¢ € 5,b.(8) > 0} is exactly the basin of attraction of T3

3. the set {¢ € S,b,(¢) < 0} is exactly the hasin of attraction of r;

4. the set {¢p € 5,b.(¢) = 0} is exactly the boundary separating the two basins of

attraction;
b} Let ¢ belong to the boundary B, then z(1) converges to r, (resp. r3) as tends to oo
for all 1 < ¢ (resp. ¥ > ¢} such that ¢ + §.
In order to prove the theorem, we need the following lemma:

Lemma. The solution going through an initial condition smaller (resp. larger) than ry and
different from r; converges to ry (resp. r3), that is, for ¢ in 8, if ¢ < », (resp. ¢ > r;) and

¢ # v then z(¢) converges to vy (resp. 73) as t tends to oo,

Proof of the lemma. Let ¢ be in S, such that ¢ < r, and ¢ # 7. Then, from the

monotonicity of the semi-flow, we deduce that zr(¢) < v, for T sufficiently Iarge. The set



@ =1{Uc¢c s, z:r(qﬁ) < U < v} is ati open set. From pfoperty (P2} we deduce that (}
intersects the union of the basins of attraction of the two stable equilibrium points: there is
Y in Q such that z,(v) converges to either ry or ry. However, solutions going through the
points in Q) are upper bounded by 72, so that 2,(3) necessarily converges to r1. In the same
way, it can be shown that there is ¥’ smaller than ¢ such that 2(¢') tends io ;. Therefore,
{or ¢ sufficiently large, z(¢) is bounded by two solutions converging tory, so that z{¢) tends

tory. In a similar way, it can be shown that for ¢ = 7y, and ¢ # 7, z($) converges to 3.

Proof of the theorem. a) Let u in § be strictly larger than zero (u > 0). For a given ¢

in S, and a real number ¢, we define the translated function ¢, given by ¢, = ¢+ cu. Given
¢ € S, there exist real numbers ¢’ and ¢ with ¢ < " such that ¢, < vy if ¢ < ¢ and P > g
i e> " From the lemma we deduce that, as t — co, z,(¢.) — v, if ¢ < ¢ and 2 o) = 73
if ¢ > ¢”. Now, let us denote by ¥(¢) the supremum of the set of values of ¢ such that
zi(¢e) — 71 ast — co and by b($) the infimum of the set of values of ¢ such that z;(d.) — 4
as & —» co, We claim that ¥/'(¢) = b'(¢). Indeed, suppose this is false. Then, there exists an
open set () of initial conditions w € § such that P+ (Pl < w < ¢+ b"($)u. According to
the monotonicity property, solutions going through initial conditions in Q) converge feither
to vy nor to v, This implies that the open set () does not infersect the union of the basins
of attraction of v, and ry, which contradicts property (P2). So, ¥($) = b"(¢} and we denote
this value by b,($). As the basin of attraction of either of the two stable equilibria ry and
T3, is an open set, ¢ + b,(¢).u does not belong to either of the basins and is necessarily in
the boundary. The characterization of the basins and the boundary reported in the theorem
are derived from the construction of b,. The fact that the map b, from § to IR is contr".nuous
and strictly decreasing stems from the continuous dependence of the solutions of DDE (1)

on initial conditions, and from the monotonicity of the semi-flow.

b} Let ¢ be on the boundary, for a1 in 5, such that ¢ < ¢ and 1 # ¢, we have zr() < zp(eh),

for T' sufficiently large. Let u be defined by u — 2r(@) — #r(¥) > 0. Then we have
z1(¢) = z0(¥) + v. As 27(d) belongs to the boundary we have b,(zp(¥)) = 1 > 0, so that

zp(t) and therefore 1 bhelong to the basin of attraction of r. In a similar way it can be

shown that z,(3} converges to ry for ¢ > ¢ and ¢ # .

From the above theorem, we can deduce that the boundary has a “regular” structure.
Indeed, let « > 0 be in §, and H be a hyperplane supplementary to %. So that for all $in §,
we can write in a unique way: ¢ = b4 du, where b € H and A € . Auis the projection of
¢ onto the line IRu along the direction H. We note pu(9) = —A. Then, p.(¢) is the };J..lz"lique
real number such that ¢ + p,($)u belongs to H. -_

Let ¢ belong to the boundary B, we can write ¢ = b — Pu(@)u. From the definition of
by, we know that b,(k) is the unique real number such that & + b.(h)u belongs to B, so
that we have necessarily: p,(¢) = —b,(k). From this we can deduce that the boundary is

homeomorphic to the Jinear hyperplane H.

Corollary 1. The map ¢ — ¢ + p,($)u from B to H is a homeomorphism with inverse:
A b4+ b,(h)u from H to B,

Moreover, the theorem indicates that the boundary cannot be folded in a way that it
be crossed more than once by any line with a strictly positive (for the order defined in 5)

direction. This property can be expressed as follows.

Corollary 2. The boundary B is the graph of a map from the hyperplane H to the line
Ru.

Proof of corollary 2. As the map (h,du) — A+ du from H x Ru to § is an isomorphism,
we identify these two spaces. From corollary 1, we obtain that the boundary B is the subset
H x Ru defined by {(h,b.(h)u), h € H}, which, by definition, is the graph of the map L
from H to Ru defined by: L(k) = b,(h)u.

The basin boundary can also be characterized in terms of the dynamics of the solutions.
We introduce the notion of oscillating functions in §. This is an extension of the deﬁnition

of real valued functions oscillating on an interval.
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Definition. Let ¢ = (c1,c;) be in IR? and ¢ = (¢, ¢,) be in §. We say that ¢ oscillates

around c if it satisfies at least one of the properties below:
1. ¢ — ¢1 has at least one zero on the interval [— A/, 0},
2. @2 — ¢y has at least one zero on the interval [- A, 0],
3. (#1(0) - er)($2(0) — e2} < 0.

Therefore, a function ¢ = (¢,¢2) in § is oscillating when either at least one of its
two coordinates ¢ or ¢, is oscillating or one is larger and the other is smaller than the
coordinates of ¢. This is a weak definition for oscillation [29] that also includes the constant
Tunction taking the value c. Furthermore, if ¢ in 5 does not oscillate around ¢, then we have

necessarily either ¢ > cor ¢ < ¢.

Theorem. The boundary B between the basins of attraction of the two locally stable

equilibria r; and ry of system (1) is constituted by the solutions z, that escillate around

for allt > 0.

Proof. This characterization stems from the definition of oscillating solutions and the pre-

vious lemma.

The above theorems show that the space S is partitioned into three disjoint subsets that
are positively invariant by the semi-flow generated by Eq, (1): the two basins of attrac-
tion of the stable equilibrium points and the boundary separating them. In terms of the
temporal evolution of solutions of system (1), this means that there are only three types
of asymptotic behaviors: solutions tend to either r; or r3 or oscillate around r,. Aithoﬁgh
transient oscillations can be easily obtained in numerical investigations, solutions oscillating
indefinitely around 7, are not likely to be observed as they are unstable.

The first theorem provides a method to estimate numerically the boundary for any class
of initial conditions. A given initial condition can be translated “up” or “down”, along

‘a “positive” direction, until it crosses the boundary {Fig. 3). However, carrying such a

11

task requires extensive computa.ﬁons as solutions close to the boundary tend to ha,v;a long
oscillatory transients before they converge to either of the stable equilibria; moreover, the
duration of this transient regime increases with the delay [30]. To overcome this problem,
we present an explicit linear approximation of b, for an appropriately chosen .

We first remark that W*, the stable manifold of the unstable point 3, is included in the
boundary B. Moreover, when the sum of the delays, A+ A’ is small enough, this manifold
is of codimension-one in the neighborhood of ry, so that the two sets, B and W?, coincide at
least in a neighborhood of r;. Therefore, in the neighborhood of 73, and A+ A’ small enough,
the boundary B can be approximated by the linear hyperplane, noted [, that is tangent
to the stable manifold W* at 7. Based on the above remark, for ¢ in S, we approximate
by(¢), where u is the tangent to the unstable manifold at 7z, by p,($), where —pu(¢)u is the
projection on the line IRu along the direction E. That is, pu(¢) is the unique real nj:imber
such that ¢+ pu($)u belongs to the hyperplane E (Fig. 3). The expression of py is given in
appendix A.

Numerical investigations indicate that F remains a satisfactory approximation of B
close to 72, even when A + A’ is large enough so that the stable manifold of rq, W¥, Lis; not

codimension-one and does not locally coincide with B.

V. COMPARISON OF BASIN BOUNDARIES

The phase space of DDE (1) depends on the values of A and A’. One method to compare
the boundaries separating the basins of attraction of the equilibria 7, and 3 of DDE (1),
for different values of A and A, is to consider a restricted set of initial conditions of the
DDE such that there exists one-to-one correspondence between initial conditions for different

values of A and A’. A natural way of doing this is to consider constant functions as initial

condifions.

In the following, we will restrict our attention to this class. For a given real number ¢y,

let B(c;) be the unique real number such that (e, f{c1)) is on the basin boundary. From

12



the characterization of the basin boundary described in the previous section, we know that
the function 8 is a decreasing continuous function defined on the real line. The graph of A
divides the (|, c;)-plane into two regions. Points “below” this graph correspond exactly to
the constant initial conditions lying in the basin of attraction of ry, and those “above” it to
the ones lying in the basin of attraction of 5. Thus B., the graph of 8 in the (¢, ¢z)-plane,
can be considered as the boundary separating the basins of attraction of the two stable
equilibrium points.

In order to see the effect of the delays on B,, we considered two cases: identical neurons
connected with either symmetrical weights or symmetrical delays. In both situations, the
inpuis are set to: K = —-W/2 and K' = —W'/2.

For these parameters, the coordinates of the equilibria r, T2 and 73 are:
n= ('—G.'-,—b), rr = (‘czuyu) = (0,0), Ty = (ﬂ,, b),

where (a,b) is the strictly positive solution of sysiem (4). Note that in this case, the sys-
tem is invariant under the change (z,y) — (—=2, —y). This implies that B, is also symmetric

under the same transformation.

A. Symmetrical weights

For identical neurons, receiving the same inputs; and connected through symmetrical
weights and delays, the neurons are indistinguishable one from the other. Therefore, the
basin boundary B. is the straight line defined by: ¢; — 2, -+ 5 — ¥s = 0 (dashed-dotted line
in Fig. 4). The theoretical approximation, given by Eq. (A6) in appendix A, yields the same
result. Hence, in this situation, varying both delays together does not bring any change to
the basin boundary. However, when the delays are no longer equal, B, undergoes changes
depending on the values of the delays. In Fig. 4, the basin boundary (thick lines) and its
theoretical approximation (thin lines) are represented for three different values of the delay

A’, when the delay A is kept constant. The dashed-dotted line corresponds to equal delays
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{A = A'). The dotted lines correspond to A = 5 and A’ = 2.2 and the solid lines to A=5
and A" =0.2. Tt can be seen that when A’ decreases from 4 down to zero, the slope é)f the
boundary at each point increases from —1 to a strictly negative limit value which déi)eﬂds
on A. A similar modification is visible on the slope of the straight line representing the
theoretical approximation (thin lines) which is tangent to the boundary at 7. For ¢; < =,
{resp. & > =) fixed, c; = B(e)) decreases (increases) from g, + 2, — ¢; to a limit value
strictly larger (smaller) than y, as the delay A’ decreases from A4 to zero.

The symmetry of the boundaries results from the special choice of the parameters, as

explained above,

B. Symmetrical delays

For neurons connected through symmetrical delays but non-symmetrical weighis; it is
not possible to obtain an analytical description of B,, even when the delays are set to zero,

Figure 5 shows how the boundary B, changes for non-symmetric weights, when the delay
is changed. In the figure only ihe case of symmetrical delays is considered. The dashed-
dotted line corresponds to A = A’ = 2, the dotted line corresponds to 4 = A’ = 1 and the
thick solid kine to A = A’ == 0.1. The thin solid line is the theoretical approximation. The
slope of the boundary decreases as the delays A = A’ are increased from 0 to 2, except at the
unstable point =, (thick lines). This is reflected in the theoretical approximation. The zeros
of the functional (A6) in appendix A form the straight line e; — g, +{e1 ~ mu)f%i =0, and
do not depend on the value of the delay when the delays are identical (4 = A"). Therefore,
the three different boundaries shown in Fig. 5 have the same linear approximation at r;
(thin line). For ¢; < =, (resp. ¢1 > &) fixed, c; = A(c1) increases (decreases) from thci.va.lue
it takes for the ODE associated to Eq. (1) as both delays A = A’ are increased froml?ero.

Here again, the symmetry of the boundaries results from the special choice of t];le pa-

rameters, as explained above.
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VI. DISCUSSION

In this paper, we studied the dynamics of a pair of neurons with delayed excitatory
inter-connection. The asymptotic behavior of the network we have considered is similar to
that of the associated system without delay, in the sense the network with delay has exactly
the same locally stable equilibria as the one without delay and most trajectories converge to
these equilibria for all values of the delays. By relying on the fact that DDE (1) generates
a strongly monotoncus semi-flow (3), we were able to carry out a precise theoretical and
numerical characterization of the boundary separating the basins of attraction of two locally
stable equilibrium points. We showed that the shape of the basin boundary was modified as
the values of the delays were changed. The examples we considered showed this modification
depended on several factors. The first example, a network with symmetrical weighis (sec-
tion V A), showed that the difference between the two delay values was highly influential
in the alterations of the basin boundary. This suggests that, in general, the distribution
of delay values in a network plays an important role in shaping the basin boundari;:s. In
this example, the local linear approximaiion used to estimate the boundary gave satisfac-
tory indications on the direction of modifications as the delays were changed. Therefore,
linear approximations may be one method to investigate the influence of delays on basin
boundaries near the unstable equilibrium. However, the fact that the linear approximation

does not depend on the delays does not rule oui such an influence on the basin boundary.

This was illustrated in the example studied in section V B, where the linear approximation

does not exhibit any dependence on the delay since near the unstable equilibrium the basin
boundary does not depend on the delay. But, as we move away from the unstable equi-
librium, the basin boundary changes with the delay and the linear approximation is not
valid a.ﬁymore. Therefore, near the unstable ;ﬁquilibrium, the linear approximation can be
used to investigate the influence of the delay on the basin boundary however, away frc?m the
un;stable equilibrium, the linear approximation ceases to be valid and we have to res_brt to

numerical investigations to shed light on this phenomenon.
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Our results suggest that, in general, the boundary of basins of attraction of equilibria,

- or of more complicated objects (like periodic orbits), of systems with delay, depend on the

value of the delay. However, the methodology used in this paper relied on the properties of
the monotonous semi-flow and may not be adequate for the study of networks commonly
used in applications that may have both positive and negative connection weights. In fact,
it is well-known that even scalar equations with delayed feedback can display complex dy-
namics (see, for example, [17-19]) and that the basin boundaries in such systems can have
an intricate structure [31]. Therefore, 2 network made of a large number of units, with both
delayed excitatory and inhibitory connections, may display more complex behaviors than

those of the two-neuron network studied in this paper {15,16].
General considerations

In our work, we restricted the set of initial conditions to constant functions. This is
appropriate for the system we are considering, as in many applications the network is started
from such an initial condition. However, it should be remarked that the choice of the gla,ss of
initial conditions is not unique. Different biological or physical problems may requirgj other
restrictions. For instance another choice of initial conditions for this system is the following

class of functions:
(8} = 2, for & € [-A4,0), &3(8) = ys,, for 8 € [—A,0),
Qsl(u) =D ¢2(0) = _‘P’,

where (2,,¥,) are the coordinates of one of the two stable equilibrium points r; or 75 and
P # ®, and p’ # y, are arbitrary real numbers. Such an initial condition corresponds to the
situation in which the system is initially in a stable equilibrium state and is then suddeanly

{at £ = 0) perturbed.
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VII. CONCLUSION

For convergent neural networks used in applications, such as associative memories, the

shé,pe of the basin of attraction of the equilibrium points determines to which information a
given initial condition is associated. In this paper we have shown that even when precautions
are taken, so that the local stability of the equilibria and the quasi convergence of the system
are preserved in presence of delays, these delays may still modify the boundary of the hasins
of atiraction of the stable equilibria. This can deteriorate the performance of the network.
However, our work was based on the behavior of a two-neuron network and represents only

the first step towards the study of the influence of delay on the basin boundaries in neural

networks.
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APPENDIX A: APPROXIMATION OF THE BOUNDARY

We present here some general results on linear DDEs (see [20] for details). Let us consider

the following linear DDE:

dz

E(t) = quz(t) + quay(t — A)

19

%4) = guplt) + ans(t — 4, | ()

whére ¢11:922 < 0 and gu2, g > 0. This equation is defined in the same phase space §
as Eq. (1).

The characteristic equation of this linear system is given by:
(11 — A)gz2 — A) — qragme 4+ = 0. (A2)

Let us order the complex roots A, k= 1,2,..., of this equation in such a way that £(A;)
(the real part of Ay) is lazger than or equal to R();) whenever k < j. Let fi = (fi, fi) be
an eigenfunction associated with A, fi is defined by fi(6') = e el for —A' < § <0 and
J2(8) = eM0} for —A < 6 < 0 such that ¢ = (cf,c}) is a non trivial solution of the linear

equation G{A;)e = 0, where

Y e—AA
guy=| ™ . (A3)

gae™ ™ oz — A
Our choice of signs for the coefficients g;; implies that A, is a simple real root of Eq. (A2)
;md that ¢, can be chosen with both components strictly positive. In this case [20] it is
possible to write any function ¢ € § as ¢ + P($)fi = ¢ where P : § — IR is a linear
functional such that P(fi) = 0 for all k > 1 and & belongs to E, the generalized eigenspace
of equation (A1) associated with the eigenvalues {A;};51. F is a linear hyperplane of S and
all fi € E, k> 1. Using the results in [20] (section 7.3) and setting A = v we write P(4)

as:
P(¢) = ¢1{0)v1 + $2(0)vz + qrav1 ‘/._DA e~ Al gy(s) ds + gz f_UAJ e ¥ (s)ds, (A4)

where the vector v = (v, v2) is a solution of G*(¥)v = 0, with G'(v) being the transpose
of the matrix defined in (A3), normalized so that P(f1) = —1.

S is partitioned into three different regions that are stable by the semi-flow generated by

Eq. (A1): these are the subsets {¢, P(¢) >0}, E = {4, P(¢) =0} and {4, P(¢) < 0}.
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Now, if we linearize Eq. (1) at the unstable equilibrium point r, = (Tu, 3 we.get
Eq. (Al) with gy =7 <0, gup= -7 < Oand gy = Weo'(y) > 0 and gy = We'(z,) > 0.
This implies that A; = » > 0 and it can be verified that if A + A’ is sufficiently small then
A is the only root of Eq. (A2) with real part larger than or equal to zero. In this case, r
has a one-dimensional unstable manifold and a codimension-one stable manifold W*, The
stable manifold is tangent to E at 7, and can be locally described as a graph of a function
from E to § [20]. In this case the boundary B coincides locally with W*. Therefore, B
can be approximated by F as well as W" is. So, near 7y, the set B is approximately given

by {$ € 5|P(#) = 0}, where P(¢} is defined in Eq. (A4). Any initial condition ¢ in the
| neighborhood of r; with P(¢) < 0 is likely to generate a solution that converges to r3 and
any initial condition ¢ € & with P(g) > 0 is likely to generate a solution that converges tc;
1.

Let w = (u1,u,) in 5 be defined by u(#) - Wo'ly,)e® = for —~A' < ¢ < 0 and
uy(8) = (v + 7)e”? for —A < 8 < 0. u is strictly larger than zero. We note v; and ¥y the

real numbers:

oy = = (' )ert .
U W) Gy A A A7)
(A3)
— -1
Y2 T e (A A e ()

From the above counsiderations we derive an explicit linear approximation of the map b,.
Approximation of b,. When A+ A’ is small enough, for ¢ = (¢, ;) in the neighborhood

of 73, bu(¢) can be approximated by the following expression:

Pl @) = ($1(0) = zuYor + ($2(0) — )z + Wo'(ga)on [0 € A (ho(s) — ) ds+ (A6)
Wa'(zu)vs [2, 6 VI (G (s) — w,) ds.
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FIGURES

FIG. 1. Two interconnected neurons
The system formed by two neurons, labeled after their activation » and y. The neurons
interact through connections with weights W and W', and deloys A and A'. K and K’ are

" the comstant inputs the neurons receive.

FIG. 2. Equilibrium points of the two-neuron system
The eguilibrium points of (1) are the intersection points between the curves —ya + K +
Wa(b) = 0 (dotted line) and —y'b+ K' + Wa(a) = 0 (solid line). In the ezample shown in
the figure, there are three equilibrium points v, < vo < r3. Abscissae: a and ordinates: b.

Parameters used: y=4' =1, W=10, W =5, and ¥ = K’ = 3.

FI1G. 3. Schematic representation of the map b,

The three equilibrium points r1, 7, and ry are represented in a plane. The strictly positive
function w in 5 is indicated with o 2-dimensional vector with strictly positive coordinales.
The regions with vertical and horizontal grey stripes correspond to initial conditions smaller
and lorger than v, respectively. The decreasing curved line, B, is the basin boundary, All
points below the boundary are in the basin of r, whereas all points above the boundary are
in the basin of r3. A given initial condition, represented by a point in the plane, has to be
translated in the same direction as u (indicated by the arrow) to reach the boundary if it
is in the basin of v\ (the case of T in the figure), and in the opposite direction if it is in
the basin of vy (the case of g in the figure). The amount by which the initial condition has
to be trenslated to reach the basin boundary represents the walue of b,. The siraight line E
represents the langent o the boundary B ai ry. An approzimation of b, close to vy is given
by pu, the amount by which an initial condition has to be translated io recach E. Noite that

the arrows do not represent {rajeciories in the phase space.
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FIG. 4. Boundary of the basin of attmctfon for s.ymmetriml weiﬁhts
The graph of the boundary B, between the basin of attractions of the equilibrium points
71 and vy for constent initial conditions (cq,¢cz) s shown fory =" =1, W = W' = 8,
K=K =-3, A=235and A" = 0.2 (sokid lines), A’ = 2.2 {dotled lines} and A’ = §
(dashed-dotted line). In each case, the thick line corresponds to the numerical estimation
and the thin line corresponds to the theoretical approzimation (Eq. (A6)). For A' =5 both

lines coincide with the straight line: ¢ + ¢y = 0. Abscissae: ¢, ordinates c.

FIG. 5. Boundary of the basin of attraction for non symmeirical weights
The graph of the boundary B, belween the basin of aliractions of the equilibrium poinis
1 and 73 for constant initial condilions (c1,c2) 15 shown fory=+'=1, W = 1, W' = 16,
K =-05 K = —-18, A = A" = 0.1 (thick solid line}, A = A' = 1 (dolted line} A =
A’ = 2 (dashed-dotied lines. The thin solid line corresponds to the theoretical approzimation

{Eq. (A6)), which in this situation is the same for all delays. Abscissae: ¢, ordinates c,.

24



Figure 1

%w

AI

Figure 2

b 8 : T T

*y,

u,
e,
e,
Ny
RL L L T O ——

o,

sl L LU L LT EEE S

bl
",
£

26



Figure 3

27

g+p,(g)-u

00 -80 B0 -40 20 00

28



Figure 5

c2 800
. 60.0 |
40.0 -
20.0

0.0

-20.0
-40.0

-60.0

-80.0
-2.0

20




