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Abstract

We use a bosonic path integral representation of Dirac propagator with a
spin factor to calculate the Propagator in a constant uniform electromagnetic
field. Such a way of calculation allows us to get the explicit spinor structure of
the propagator in the case under consideration. The representation obtained

differs from the Schwinger’s one but the equivalence can be checked.
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I, INTRODUCTION .

Propagators of relativistic particles in external fields (electromagnetic, non-Abelian or
gravitational) contain important information about guanium behavior of these particles.
Moreover, if such propagators are known in arbitrary external field, one can find exact
one-particle Green’s functions in the corresponding quantum field theory, taking functional
integrals over all external fields. Dirac propagator in an external electromagnetic field dis-
tinguishes from the one of a scalar particle by a complicated spinor structure. The problem
of its path integral representation atiracted attention of researchers already for a long time.
Feynman, who had written first a path integral for the probability amplitude in nonrelativis-
tic quantum mechanics [1] and then a path integral for the scalar particle propagator [2], had
also attempted to derive a representation for Dirac propagator via a bosonic path integral
[3). After Berezin had introduced the integral over grassmannian variables, it turned out to
be natural to present Dirac propagator by a path integral over ordinary and grassmannian
variables, the latter describe spinning degrees of freedom. Such representations have been
discussed in the literature for a long time in different contexts [4-13]. Another attractive
problem was to write Dirac propagator via a bosonic path integral only. So, Polyakov [14]
assumed that the propagator of free Dirac electron in three-dimensional Euclidean space-
time can be presented by means of a bosonic path integral similar to a scalar particle case
modified by the so called spin factor. This idea has been developed in [15] to write the
spin factor for Dirac fermions, interacting with a non-Abelian gauge field in [?-dimensional
Euclidean space-time. In those representations the spin factor itself was presented via some
edditional bosonic path integrals. Surprisingly, it turned out that an explicit form of- the
spin factor in arbitrary external field could be found directly [16]. A representation of Dirac
propagator in an arbitrary external field via 2 bosonic and fermionic path integrals (12] was
taken and all grassmannian integrations there were done, so that an expression for the spin
factor was derived as a given functional of the bosonic trajectory. Having such an expres-

sion for the spin factor one can use it to calculate the propagator in some particular cases of



external fields. This way of calculation provides automatically the explicit spinor structure
of the propagators. In the present paper we are going to use this way of calculations to get
the propagator in a constant uniform electromagnetic field. It turns out to be non trivial to

compare the representation obtained with the one derived by Schwinger [17].

II. THE SPIN FACTOR IN CONSTANT UNIFORM FIELD

The propagator of a spinning particle in an external eleciromagnetic field 4,{z) is the

causal Green’s function §°(2ou, ©in} of Dirac equation in this field,
[‘Y" (ia,u - gA"(-'D)) - m] Sc(ﬂ’y) = _64(3 - y) H (1)

where @ = (2}, [y*, "], =29, @ = diag(1,~1, -1, -1), pe =703
The propagator can be presented [12] by means of a path integral over ordinary and grass-
mannian variables. The integration over all the grassmannian variables can be done {16] so

that a representation in terms of a hosonic path integral holds:

T aut

S out , Tin) = %fow deo [ DuM(eo) Bz, eo] exp {il[z, eo}, (2)
where the measure M(ey) has the form
_ feg f1 ) :
M(eu)—poexp(zfopdr ; {3)

Iz, ey] is the action of a spinless particle

Ilo,ed = - [ ' [ :: + Pm +gmA(m)] POy @

end ®[z, e is the spin factor,
B[z, g) = [m + (239)"':&“ * K, (27/*" — geg B’\") T
i . ' g
—Zg (meg + &" % K,,n’\) By.o™ +m g l)1:3"‘ B"“HTS] exp {—%j‘; dg'Te Q(g") *.7-'} . (5)

The following notations are used:

i v
=Sl ="

1
B‘"" = E‘A * K*\ v qu = Eel‘lluﬂBaﬁ,
KIW = mw + gequ,\(g) * FA o
Qule) = gex Alla) ke, Azl(a)x A¥(g) = 8780 = ),

Il"(g) Tt — g20€ * Fuuxe, (6)

where ¢ is Levi-Civita symbol normalized by °'2® = 1; €y Fuwy Auu(g) and Q. (g) are

understood as matrices with continuous indices 7, 7', and integration over 7 is denoted by

*, .8,y

Frulry 7'} = F (E(T)) 6(r ~ T’) ’ e(r, "J) =¢g(r -1},
1 1 )
ek Fup k€= fo dr fu drye(r, 7 ) Fuwln, m)e(r, 7).

Sometimes the Lorentz indices will be also omitted. In this case all the tensors of second
rank will be understood as ma.tficés where first indices are contravariant ones of the tensors,
indicating the lines, and second indices are covariant ones of the tensors, indicating the
columns. We denote by I the unit 4 x 4 matrix.

In the case of a constant uniform field F,,, = const, which we are going to discuss, @}, K

and B do not depend on the trajectory 2, and can be calculated straightfordwardly,

Qg) = (Ie('r —7') - tanh gegF) exp{epgF{r — )},
2 geoF

F B = — tanh
)exp(geg ), po an

K= (I — tanh geoF (1)

Using them in (5) and integrating over r whenever possible we obtain the spin factor in the

constant uniform field,

1/2 F
Bz, ep) = (det cosh ge;F) { [1 ~3 (t nh 2% ) o
e

2
1 % Fye 1/,
+ 1 (ta.nh ge; )W (tanh gto ) 701 + - (/{; mexp(geuFT)dT)
i F
X (I — tanh ge;F) [( — tanh 2 ) T- %‘)f (tanh ge; ) cr“”]} . {8)
Hu .
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We can see that in the field under consideration the spin factor is linear in the trajectory

2#(7). That facilitates the bosonic integration in the expression (2).

1iI. THE PROPAGATOR IN CONSTANT UNIFORM FIELD

In spite of the spin factor is a gauge invariant object the total prepagator is not. It is
clear from the expression (2) where one needs to choose 2 particular gauge for the potentials

Ay. Namely, we are going to use the following potentials

1 [
Au = ’“5 arll (9)

to describe the constant uniform field F,, = const. Thus, one can see that the path integral
(2) is quasi-gaussian in the case under consideration. Let us make there the shift ¢ — y+ g,

with z. the solution of the classical equations of motion

of
52 =0 Eu—geok, e =10 (10)

subjected to the boundary conditions 24{0) = 2, 2a(l) = 2ow. Then the new trajecto-
ries of integration y obey zero boundary conditions, y(0) = y(1) = 0. Due to the quadratic
structure of the action I[z,eg) and linearity of the spin factor &{z,ep] one can make the

following substitutions in the path integral:
I{‘y -+ Lol EU] —* I[y: eD] + I[mcl, E(]], @[y + ‘Ech.e[)] —* (I)[mch eD] = ‘I'(mouh Einy eD)- (11)
Doing also a convenient replacement of variables p — _\/EL,,’ ¥ — y4/e0, we get
i fede .
5S¢ = 5[] e_%,:, U(zout, Tin, 30)3“‘[%"“] |
"py [ D A Fy)d 12
Xj:) yf peXP{EL(pmy ~ geoyF3) 'r}- (12)

One can see that the path integral in (12) is, in fact, the kernel of the Klein-Gordon propa-

gator in the proper-time representation. This path integral can be presented as

fDUDnypexp{%j: (192 —?z—geusz?) d—r} =
Det (m,,82 — geoF,.,8.)] 7% o il )
Pt [ v e (3 [ G-}

Cancelling the factor Det {—n,,) in the ratio of the determinants, one obtains

Det (107 ~ geoFyu0:) _ Det (—6567 + geo F* ;) a3
Det (mwaz) - Dﬂt (—5533) ' ( )

One can also do the replacement
2 gep
—‘Ia,. + gegFB,. -— ""Ia.,z_ + ‘-4—UF2 ) (14)
in the r. h. 5. of (13) because the spectra of both operators coincide. Indeed,
2 gco 2, 98 2 g¢o
—182 + geo '3, = exp (—Z—FT) -187 + TF exp (_ TFT) , (15)

and the zero boundary conditions are invariant under the transformation y — exp(gﬂ’g)y.

Then, by using (14) and the value of the free path integral [12],

ifo i 2 2 1
5. v [ Drep(s [ ar(e? - i)} = 5, ()
related, in fact, to the definition of the measure, we obtain
. -1/2
1 fo deg . Det (—152 + £ 2) ;
5¢ = _f Wz, . iH{zu,e0] T L
Bty o (o T o) Det (—182) (")

The ratio of the determinants can be now written as

Det (—13,2. + y?—:EF'Z) 2 gze?} " 9
Det (~161) = exp Tr [ln (HIB,_ + TF ) —In (HIBT)]

E(_ZJ 2 f¢ 142 Nef o -
zFfud)u\( 10} + —°F

2 o0 2.2 -1
2pe [fany (w2n21+ 25 EUFZ)
2 o n=1 4

= expTr

= expir (18)

The trace in the infinite-dimensional space in eq.(18) is taken and the one in the 4-

dimensional space remains, Using the formula



b (71'2112 +ﬁ:2)_1 = icothm — %,

n=l1

which is also valid if % is an arbitrary 4 x 4 matrix, and integrating in (18), we find

Det (162 + S FY) _ .  (sink 22 (19)
Det (-I82)  ~ sof  J
Thus,
o inh cef 1Y )
5= 32171'2 . fo deg [det ‘SlngF : ] U(Zout, Tin, eg)e (Pl (20)

where the function ¥(zou, @in, €9) is the spin factor on the classical trajectory zy. The

latter can be easily found by solving the eq.(10):
zq = (exp(genF) — I} [exp(geo Fr){zour — Tin) + exp(geeF oy — Tow) - (21)

Substituting (21) inlo eqs.(4) and (11), we obtain

o [ sinhaE)T
§° = L‘/ deu [det Sln—JJ ‘P(ﬂcuh Tiny EU)

3272 Jo gF
X exp {%‘qzaugFm,-" - %eufm2 - izg(%ut T ) F coth(geOF Wzow — m;,,)} ) (22)
where
U(2outs Zin €0) +3 I (%ot — 3in) F{coth ge;’F 1)'7]
X ﬂdetcosh geoF [ - —% (t nh gBOF) ot
e 30) (s ] »

IV. COMPARISON WITH THE SCHWINGER FORMULA.

We are going to compare the representation (22) obtained with the Schwinger formula

[17], which he had derived in the same case, using his proper time method. The Schwinger _

representation for the spinor propagator in the constant uniform field has the form

1 . 0 co sinh 2ol 1712
el o) o] ]

geaF'

i F
X exp {»% [gmou,Fa:.-,, — egm? — (Tout — z.-,,)g? coth (Tow — Tin) — Q?F,,.,a”"]} . (29

Doing the differentiation with respect to ’,,, we transform the formula {24) to a form which

is convenient to be compared with our representation (22),

1 g sinh 22t 17/
5= Er;/l‘l dey [det _gF_z B s(Tout, Tin,y 20) X

i P
X exp {igﬂsouthin - leu'ﬂ"l2 — ig(muut - -'ﬂm)F Coth (Q'Ee ) (Trout - m,‘n)} 3 (25)
2 2 4 2 _
where the function ¥y is given by
eoF’ N w
Ul Tout, Tin, €0) = [m + -g»(:t:om - :n;,‘)F(coth% - 1)7] exp(—-l%ng,a’ ). (26)

Thus one needs only to compare the functions ¥ and @5, They coincide since the following

formula takes place, where w,, is an arbitrary antisymmetric tensor,

_i uu) — W - ( ) jiv
exp( P \/det cosh — 5 1 5 tanh 5 rwa’

1 w w
g 1< I TH ot - ) 5 . 2
+ 3¢ (ta.nh 2)a5 (tanh 2)rw7] 27)

In fact, the latter formula presents a linear decomposition of a finite Lorentz transformation
in the correspondent y-matrix struciures. We have not found this kind of relation in the
literature, and therefore have to comment it. One ought to say that a direct combinatoric
proof seems to be rather cumbersome to he presented here. Nevertheless, the validity of
(27) can be easily checked by the reader at least in first few orders in w. On the other hand
one can consider the general path integral representations derived in [12,16] together with
the calculations given in the present paper as a functional integral proof of the formula {27)

in general.

V. CONCLUSION

Thus, we have got an exact solution for the Dirac propagator in the constant uniform

electromagnetic field by means of path integration, using a general representation for the
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propagator via a bosonic path integral with the spin factor. In fact, there are only few cases
where these kind of exact solutions can be found: the constant uniform electromagnetic field
considered, electromagnetic plane wave [18,5), crossed clectric and magnetic fields {19,20],
and combination of constant uniform electromagnetic field with plane wave field [6,21,11].
One can believe that all these cases can be treated similar to the constant uniform field
case in terms of the representation used. We find real advanteges in using of the bosonic
path integral with the spin factor. First of all, a part of job in such representation is
already done, all the grassmannian integrations are fulfiled. Second, the y-matrix structure
of the final answer appears right away in an explicit form. Besides, such a representation
sometimes allows one to get the Dirac propagator without any additional path integrations

if the proper-time representation of the correspontding Klein-Gordon one is known.
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