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Abstract

A. short survey of the pseudoclassical theory of spin one half relativistic
particle in 3 4.1 dimensions is given. In particular, the canenical and path
integral quantizations of the theory are presented in. details. Diflerent rep-
resentations of the Dirac propagator in terms of path integral are derived.
Introduction of an anomalous magnetic moment in the model is considered.
Massless case, theory of the Weyl particles, and reduction of the model to the

2 + 1-dimensional case are discussed.
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I. INTRODUCTION

The systematic utilization in theoretical physics of the algebra and analysis of anticom-
muting variables, initiated to a great extend by Felix Berezin [1], has undoubtedly exerted
considerable influence on its development. Among uumérous examples of the application of
these methods a visible place takes the so called pseudoclassical theory of relativistic spin
one half particle. One of the originator of this theory was also F.Berezin.

Classical and pseudoclassical models of relativistic particles and their quantization where
discussed lately in different contexts. One of the reason is on these simple examples to learn
how to solve some typical problems which arise also in string theory, gravity and so on.
On the other hand, it is a important question itself whether there exist classical models
for any relativistic particies (with any spin), whose quantization reproduces, in a sense, the
corresponding field theory or one particle sector of the corresponding quantum field theory.

In the frame of this paper I would like o give a short survey of the pseudoclassical theory
of spin one half relativistic particle and recent development in this direction, since that can
serve as convincing demonstration of fruitfulness of the methods and ideas introduced by

F.Berezin.

II. ACTION OF RELATIVISTIC SPIN ONE HALF PARTICLE IN EXTERNAL
ELECTROMAGNETIC FIELD

First an action of spin one half relativistic particle in 3 + 1 dimensions, with spinning
degrees of freedom, describing by grassmannian (odd) variables, was proposed by Berezin
and Marinov (2] and just after that was discussed and investigated in papers [3-7], In the
most symmetric form the action of spinning particle in an external electromagnetic field can

be written as [4,6,7]

1 32 m? . . ) T o
S=f0 [—2—8——6"‘5’“_9-?; Aa+29t’.Faﬁlb ’SLIJ'G-E-E (T—m¢5)x—z¢nw ]dT, (2.1)



where £, ¢ are ordinary (bosonic or even) variables and ¢", y are odd variables dependent
on a parameter 7, 7 € [0, 1], the latter plays the role of the time in this theory, Au{z) is an
external electromagnetic field potential, F,4(z) is the Maxwell strength tensor, and g the
electrical charge. Greek indices run over 0,3 and Latin indices n,m run over 0, 3,5 The
metric tensors: 744 = diag(l1 —1— 1 — 1) and #mp = diag(l — 1 ~ 1 — 1 — 1). The spinning
degrees of freedom in such a model are described by odd variables ", that’s why the model
is called pseudaclassical. There are two type of gauge transformations in the theory with

the action (2.1): reparametrizations,

. d n_ in d
Gomit, de= (e, 0=, bx=ie), (22)
and supertransformations,
o Y- . - @ 1 LN : o 5 m.
0z =up%e, de=iye, Ox=¢, & :ﬂ(m —ixy¥™e, & =3¢, (2.3)

where £ is even and ¢ is odd 7-dependent parameters. The lagrangian equations of motion

have the form:

d 1, . . ,
E [E (-'l-"q — 't’,bax)] + gzﬁFﬂa + 339F.@')‘:0¢ﬁ¢7 =0,

1 5O YR m? : ed :
g7 (% —#°X) — - +igFagh™ = 0, 4o0® — mey’ = 0,
2%+2m&m3—%x=o,wﬁ_mxzm (2.4)

Calculating the total angular momentum, cclvrresponding to the action (2.1), we get
My, =L+ S0,
Liw=2upy —2upu s S = ity — Yu3p,) .
The spatial part of §,, forms a tree—dimensional. spin vector 5 = (sx)
1 .
sy = -2-6kjr5'ej = ey (2.5)

where ;) is tree-dimensional Levi-Civita symbol. To demonstrate that this vector really

behaves like a spin one can use, for example, the nonrelativistic approximation dzi/dz® <« 1
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and consider the case of a magnetic field only. In such a case Fo; = 0, and Fi; = —ei B, -
where Bj;, are components of a magnetic field B. Selecting the gauge x = 0 and 2% = 7, the
latter leads effectively to e = 1/m in the approximation in question, one can find from the
equations (2.4)

d*x [dx

g% Ivy¢s. 2.6

& &

=%[s><13], m

The equations (2.6) describe [8] a nonrelativistic motion of a particle with total spin mo-
mentum s and total magnetic momentum gs/m, what confirms the interpretation of the
action (2.1).

Going over to the hamiltonian formulation, we introduce the canonical momenta

oL 1 .
= = ——(&s — =1 - Aa s
Pa= g =——(da ?;)9 .
oL . . .
= —_—= P = — = 0: Pn = = —’.',1}‘}.,1, . (2.7)
Pe ER 01 X ax Ba,b“

It follows from the equation (2.7} that there exist primary constraints ) =0,
o0 = (8] = By, ) = P, 8G] = Potivn) . (28)

We construct the Hamiltonian H{V), according to the standard procedure [9,10]} (we use.the

notations of the book [10]),
HY = H 42,00, H= —g (P2 + 2ig Fagyp®yf — m?) « i (Potp™ - my®) x,

where P = —p,, —gA,(z). From the conditions of the conservation of the primary constraints

3 in time r, Y= {@&‘%,H(l)} = 0, we find the secondary constraints ® =0, -.

8? = (¢ = Poyp” —my® = 0, o) = P? 4 2igFupp™y” —m? = 0) (2.9)

and the same conditions for the constraints @f,l,) give equations for the determination of As,.
Thus, the Hamiltonian H appears to be proportional to constraints, as one can expect in
the case of a reparametrization invariant theory, H = ixfbgz) - %@gz). No more secondary

constraints arise from the Dirac procedure, and the Lagrange’s multipliers A; and A; remain
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undetermined, in accordance with the fact that the number of gauge transformations pa-
rameters equals two for the theory in question [10]. One can go over from the initial set of
constraints (@(1), ‘IJ(Z)) to the equivalent one ('I)“), T), where 7' = $(® — (i/Q)@;(;ln)a,@W&,bn.
The new set of constraints can be explicitly divided in a set of first-class constraints, which

is (@&2, T) and in a set of second-class constraints, which is @Qi)

III. CANONICAL QUANTIZATION

Consider here the canonical operator quantization of the theory in question. Because
of it contains first-class constraints, well known problems arise in course of quantization.
Moreover, in this particular case, due to the reparametrization invariance, an additional
problem appears, namely, Hamiltonian equals zero on the constraint surface. Usually they
try to avoid this difficulty using the so called Dirac method of quantization (9], in which one
considers first-class constraints in sense of restrictions on the state vectors. In the problem
in question the Dirac wave equation arises namely in such a way (3,6]. Unfortunately, this
scheme of quantization creates many questions, e.g. with Hilbert space construction, what
is Schrédinger equation and so on. A consistent, but more complicated technicaily way is
to work in the physical sector, namely, first, on the classical level, one has to impose gauge
conditions to reduce the theory to one with second-class constraints only, and then quantize
by means of Dirac brackets, We present here this way of quantization [10,11], which gives
the Dirac equation as Schrddinger one. For simplicity, we restrict ourselves with the free
particle case.

We fix a gauge, imposing preliminary three additional conditions
@f=a:9—§"‘r=0, 85 =y =0, <I>G=¢v5=0,

where { = —sign py. The gauge zp — Cr = 0 was first proposed in [11] as a conjugate gauge
condition to the constraint p? = m? in the case of scalar and spinning particles. In contrast

with the gauge zo = 7, which, together with the continuous reparametrization symmetry,

breaks the time reflection symmetry and therefore fixes the variables {, the former gauge
breaks only the continuous symmetry, so that the variable { remains in the theory to describe
states of particles { = 41 and states of antiparticles { = —1, Namely this circumstance
allowed one to get Klein-Gordon and Dirac equations as Schrodinger ones in course of the
canonical quantization. From the condition of the consistency #¢ = 0 we find an additional -

condition
B = e~ [po|™" .

The total set of constraints @ = (&', &2, ®%) is already of second-class one. However, now
we are dealing with constraints, which depend on time. In this case the canonical way of

quantization by means of Dirac brackets, generally speaking, has to be medified [10,12]. To

avoid this new problemn one can go over to a time-independent set of constraints, making the
canonical transformation o4 = ¢ — { 7, " = ', p|, = p,, with the generating function,
having the form W = z*p), 4+ 7|ph| + Wo, where Wy is the generating function of the identity
transformation with respect to all the variables except g, po. We change, in fact, only the
coordinate zg, and therefore the primes on the other variables are henceforth omitted. The
transformed Hamiltonian H*) is of the form H') = HO) 4 8W/dr = H 4 {®} , where H

is the physical Hamiltonian,
H=w=(@"+m" ), p=(m), (3.1)

and {®} are terms proporticnal to constraints ®. We present the constraints ® in an
equivalent form, dividing them into two groups K and ¢, each of which is a set of second-

class constraints
K=(e—w™, Py x, Py ¥, P, 5y, Il =), &= (P+ith, pv) . (3.2)

In (3.2) and below py = —(w. Next we eliminate the variables e, P., x, P, ¥°, Ps, z} and
|po| from the consideration, using the constraints X. These constraints have a special form

(10], that means that for the rest of variables n = (z*,p, ¢, 9%, P,) the Dirac brackets
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with respect to all the constraints ® reduce to ones with respect to the constraints ¢ only.

Calculating the Dirac brackets between the variables n, we obtain?

{27, 2} pgy = —(i/m*)[R, R*_, {2, p}peg) = &1,
{9*, 9 Yoy = (/2)(™ — p*p*m™2), {27, ¥*}pe) = —RipPm=2,

{pipetow) = {p5 ¥*}ow) = {Gmdpwy =0, B =i —¢%p;t . (3.3)

According to the recipes of quantization of theories with second-class constraints [9,10],

the operators # corresponding to the variables 5 must satisfy the relations?

9,7} = itn, 1Yo, Bt iba=0, =0, (3.4)

Besides, we assume the operator ¢ to have the eigenvalues { = +1 by analogy with the
classical theory, so that {? = 1. We can construct the realization of the algebra (3.4} of the

operators # in the Hilbert state space R whose elements f € R are four-component columns

g fi(x) ,
fa(x)

where fi(x) and f,(x) are two component columns. We seek all the operators in the block-

diagonal form, in particular, the operators ¢ and fr we immediately choose in the form?
é: v0, o= —id], - (3.5)

where I and I are 2 x 2 and 4 x 4 unit matrices. By the assumption concerning block
diagonality, the general form of the operators 1;3“ should be 12"‘ = Al + B{E*, where

X = diag(o, ) and o*, k = 1,2,3 are Pauli matrices. The commutation relations involving

'We mean a generalized Dirac bracket whose form depends on parities of vatiables involved [10]

“In (3.4 [..., ...} stands for the generalized commutator which is either a commutator or an de-

pending on parities of the operators involved,

%We use the standard representation for the 7 matrices, [v#,v"], = 2p#¥.

7

PH imply that for non-zero Bj the equation A¥ = 0 must hold and that B} may depend
on the operators gy and C only. Assuming that under spatial rotations the $° behaves as a
scalar and the ¢¥ as a 3-vector, one can write 1,69 = aXp, Pk = bEF cHFEP + deMTHEN,
where a, b, ¢, d depend on p? and ¢ only. From (3.4} and (3.3) it follows that (d;o)z = p?/dm?,
Hence, we can choose ¢ = 1/2m. Besides, we immediately set d = 0 since this coeflicient can
always be made equal to zero using the similarity transformation ezp(rp2 ) erp(—rpE)
for a certain r. The coefficients b and ¢ are uniquely determines (up to the similarity

transformation mentioned above) from the relations (3.4) and (3.3). We are finally led to

0 1l o A° #Ep ) A BN
0= ol fphp 222 ) o={-8+m . 3.6)
One can similarly find the operator 2% to be
' kijziﬁj
sk _ ok € )
Bt e m)

The evolution within the time r of the state vectors from R is described by the
Schrédinger equation (i8/87 — H)f = 0, where, according to (3.1) and (3.5), # = &L

Going over in the equation to the physical time zq = (7, we obtain [11],
i .
i f =% (3.7)
a.To )

We interpret fi{z) = fi(z) as the wavefunction of a particle and f_(z) = o f;(z) as that

of an antiparticle and define accordingly the scalar product in R,

(£.9) = [IFtou+ 0 fldx = [ frocdx, (==

The operators H, ¥* and &* are self-conjugate with respect to this scalar preduct. The
equation for f.(2) follows from (3.7), (18/8zq — &)f; = 0. In this case, the equations for
the wavefunctions of a particle and antiparticle have an equivalent form dug to the absence
of an external electromagnetic field. In the rest frame the spin operator & acts upon the

wavefunctions as zo* and coincide with *.



The quantum mechanics constructed is completely equivalent to the Dirac theory. In-
deed, (3.7) is simply the Dirac equation in the Foldy-Wouthuysen (FW) representation [13].

Making unitary FW transformation, we come to the usual Dirac equation,

&+ m P

f="Uep, U=W,

{iv*8, —m)p =0.
Applying the FW transformation to the operators * and 2%, we obtain

N s i N A .
U+'¢’DU = 9% = 2_,_],5,3 O‘kﬂ, U+'lf)kU — q,k — %75 [ﬁjo'jk + HDo_Uk ,

U3 = X* = 2T + -———(7 - pEyBT?) |

The operators £¢ and X* are the operators of middle position in the FW and Dirac pictures,
respectively. The expression for these operators were .obta,ined from cqvariance‘ considera-
tions by Pryce [14].

Let us discuss the quantization of massless spinning particle [15,16]. In this connection,
one can consider the limit m = 0 of the massive case and compare it with an independent
quantization of a classical action, describing massless particle in the beginning. To consider
the limit it is convenient to use a different gauge at m # 0, namely, to use instead of gauge
condition %% = () another one 1y = 0. -After the gauge fixing and eliminating of a part
of variables, we arrive to the theory with the variables o, p;, ¢, %', P, [ = (4,5), and

second-class constraints ¢ = 0,
¢ = (p¥' + my®, P +ivy). (3.8)

It is useful to introduce the transversal ¥** = [y, IIf = &i - p~?p;p;, p = |p|, and the
longitudinal 4" = p;* parts of %', because of it is convenient to treat in these variables
'both cases m # 0 and m = 0 on the same foot. The first constraint (3.8) is, in fact, a
relation between 1,1.’)“ and °, '4’;" = —m® | whereas ¥+'L are not constrained. Nonzero Dirac

brackets between all the variables have the form

{wk,:cj} ["ﬁklﬂfﬂl

(Pk [, 9°]_ - p; [%b“ ¥ ) ,

9

2
{m:‘, WL}D(@ . %f) P: + H'hf’s {mi’l’bs}ﬂ(é) — _gd)u + w’?pzp‘_ws ’
. . -
A P _§H} : {T’bs""f’s}nw) =g (Bl =4 (3.9)

One can introduce new variables # and X* instead of 2¥ and ¢#, %,

i

k. ok
X' =z w+m

[wF, ¢5] L O =yt I%p.-w;

which are independent with respect to the second-class constraints (3.8). Using (3.9), one
gets for nonzero Dirac brackets
ko — gk LY = _i .
{x ,p,}w) =ak, {00 }Dm 50 - (3.11)
Now the commutation relations between the corresponding operators ' By C , 6* have to

be calctilated by means of Dirac brackets (3.11), so that the nonzero commutators are

IXE | =df, [é",éi]+ = %5,,,- . (3.12)

One can construct a realization of the algebra (3.12) and relation ¢? = 1 in the same Hilbert

space R as before. Realization for ¢ and pj remains the same and

. - 1 '

Xt=Xx'1, ¢ = gzk . (3.13)
In the realization the operators of angular momentum Mw and the spin 3% have the form

Mo; = Xop; ~ Xipo — =21 + Po )Ejkfﬁkz! )

20(w +m
1
MIJ = ti;l th e §E1sz H Sk = 35?: l"»bjd)’ = _Ek (314)

As it is known, the square of the Pauli-Lubanski vector W* = 1/26”“)‘&1{;{””]&0 is a Casimir

operator for the Poincare algebra. For this realization and in the center mass system

We=o, WEomPs, W= - ()= S
w 4

The latter confirms that the system in question has spin one half.
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Since the Schridinger equation has the same form (3.7), the quantum mechanics con-
structed in this gauge is completely equivalent to the standard Dirac theory, namely it is
connected with the latter by the same Foldy-Wouthuysen transformation. Moreover, ap-
plying the same transformation to the operators (3-14) we get the operators of the angular

momentum in the Dirac theory,
+ 3 A 5, 1 i
UTM U = Xy, — Xop, — Ea';w v T = 3 (o757

Considering the limit m = 0, one can remark that all formulas are nonsingular in the

mass and admit such & limit. On the classical level, after the gauge fixing, it is possible to

use both the variables 2¢, p;, {, %', ¥® or the variables X, p;, ¢, #, the Dirac brackets -

of the latter do not contain mass at all and expressions of the former via the latter are
nonsingular in the mass. The first set of the variables at m = 0 splits into two (anti)
commuting one with another groups z, p;, ¥, and ¥*. The Poincare generators are only
expressed via the first group of variables and commute with ¥%. Instead of the Casimir
operator W2, which vanishes at rn = 0, appeats a new one, helicity A = p~15,3%. It turns
out that at m = 0 the variable ¥¢ can be omitted from the action (2.1). The quantization
of such modified action reproduces the physical sector of the limit of the massive quantum
mechanics. As we mentioned above, the Dirac brackets for the variables X op, € 85 do
not depend on the mass, that means that realization (3.13) remains in the limit m = 0. Tt is
clear that the realization does not depend on the presence of the operator ¢/°. In the limit
we have ¢° = A . The Schrédinger equation (3.7) with m = 0 gives the Dirac equation with
m = 0 after the corresponding FW transformation. The total Hilbert space forms now a
reducible representation of the Poincare group (right and left neutrinos). It follows from the
described structure of the quantum mechanics that in the limit s = 0 one does not need
the variable 1® in the theory. Indeed, one can take the action (2.1) at m = @ and omit
¥® in the beginning. In such a theory, after the same gauge fixing (in particular, ¥y = )]

we have only the variables 2, p;, ¢, ¥** on the constraint surface. Their Dirac brackets

and the expressions of the Poincare generators coincide with the corresponding expressions -
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of the massive theory at m = 0. The same realization is available. If one introduces the
operator ip~!frexyhtt i+, which is in fact the operator @° of the massive case, then the
theory literally coincides with the limit of the massive case. In this connection one can
remark that the dimensionality of the Hilbert space in the discussed realization does not
depend on the presence of the variable %° at m = 0 and coincide with dimensionality of the

massive case,

IV. PATH INTEGRAL REPRESENTATION FOR DIRAC PROPAGATOR IN
EXTERNAL FLECTROMAGNETIC FIELD

Here we are going to discuss path integral representations for the propagator of relativistic
spinning particle in an external electromagnetic field. We will demonstrate that in such
representations integrands have the form expiS.y;, where effective actions S,z are very close
related with the action (2.1). One ought to say that different kinds of such representations
were derived and discussed in papers [17-24]. Below we follow mainly to the work (4.8),

As known the propagator of a relativistic spinning particle is the causal Green’s function
5°(z,y) of the Dirac equation. For our purpose, it is convenient to deal with the transformed
by 4% = ~%lv243 function gc(z,y) = 5%z,y)7" , which obeys the properly transformed

Dirac equation for Green’s function
(B3 — mv%) (2, y) = 6%z — v), (4.1)

where ?f’u = 10, — gA,{z) and 7* = 454*. The matrices 4*, have the same commutation
relations as initial ones 4%, [§#,%"], = 27", so that the tilde sign will be omitted hereafter.
For all the y-matrices we have [y™, 4], = 2p™, m,n =10,3,5 ™ = diag{1—1-1-1~1).

Similar to Schwinger [25] we present S”;ﬁ(m, ¥} as a matrix element of an operator 5':3,

but, in the coordinate space only,

See(zy) =< 2] 8ly >, (4.2)
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where the spinor indices are written explicitly for clarity only once and will be omitted

hereafter; |z > are eigenvectors for some hermitian operators of coordinates X*, the corre-

sponding canonically conjugate operators of momenta are P, so that:

Xtz >=z*lz>, <zly>=8{e—y), [le><zldz=1I,
(P X*)_ = —idy,  Rulp>=pup>, <plyf >=8(p-p),
flp><pldp=1, <z|Ply>=—-iddz—y), <zlp>= ﬁ,}-;)—fe"p“,

L] = —igFu(X), .=-P,—gdJX). (4.3)

The equation (4.1) implies the formal solution for the operator Ge, §o= [M~* — m‘f’}_l .
The operator in the square brackets is a pure Fermi one, if one reckons y-matrices as Fermi
operators. In general case the inverse operator to a Fermi operator F' can be presented
by means of an integral over the super-proper time (A, x) of an exponential with an even

exponent [24],
[ fo * / MFH (4.4)

where ) is an even variable and x is an odd one, the latter anticommutes with F by definition.
Here and in what follow integrals over odd variables are understood as Berezin's integrals
[1]. The representation (4.4) is an analog of the Schwinger proper-time representation for
an inverse operator, convenient in the Fermi case. Using {4.4) and taking into account that

(IL4* — my®)? = 112 — m?, one can write for the operator 5
5e = f “dx f e~ ROX) gy |
0
(A x) = A (mz —I? + %Fam“*rﬁ) + (MLy* —m7®) x .
Thus, the Green’s function (4.2) takes the form
§° = 8ot} = [ A [(aoule 0z (4_..5)

Now one can present the matrix element entering in the expression (4.5) by means of a path

integral. In spite of the operator ?:i(z\,x) has the y-matrix structure, it is possible to do as

13

usual. Namely, first we write exp —i# = (exp —i?ft/N)N and then insert (¥ —1) resolutions
of identity [ |¢ >< z|dz = I between all the operators exp —i7{/N. Besides, we introduce
N additional integrations over A and x to transform then the ordinary integrals over these

varjables into the corresponding path-integrals,

. 00
§o= limfo d)\gfdxodml...dxm,ld)q...d)\Ndx1...dXN

Naeo
N

x TT{ele MO0 (2 36(A% — Mem1)8(xk — Xk-1) 5 (4.6)
k=1
where A7 = 1/N, 2o = Zin, ¥ = Tow. Bearing in mind the limiting process, one can

calculate the matrix elements from (4.6) approximately,
(a:k|e“"?“‘()"“x")m!mk_1) R (xkfl—i’;':i(/\k,x,k)Argm;c_l), (4.7)

using the resolutions of identity [lp >< pldp. In this connection it is important
to notice that the operator ?:i()\;c,Xk) has originally the symmetric form in the oper-
ators £ and p. Indeed, the only one term in ﬁ(Ak,Xk), which contains products of
these operators is [Pa, A*(X)]+. One can verify that this is maximal symmetrized ex-
pression, which can be combined from entering operators (see remark in [26]). Thus,
one can write ?:l(,)\,x) = Symy; s H(A x, £, 5), where H(A, x,2,p) is the Weyl sym-
bol of the operator ?rl()\,x) in the sector of coordinates and momenta, H(A, x,z,p) =
A (mz —-Pr 4 %Fam"’qﬂ) + P,y —m7°)x, and P, = —p, — gA,(z). That is a gen-
eral statement {27], which can be easily checked in that concrete case by direct calculations,
that the matrix elements (4.7) are expressed in terms of the Weyl symbols in the middle
point Tx = (zr + z4_1)/2. Taking all that into account, one can see that in the limiting

process the matrix elements (4.7) can be replaced by the expressions

d ok — T
/#e}(pz [PkkA—Tkl' - 'H()\k,xk,fk.,pk)] AT, (48) _

which are noncommutative due to the y-matrix structure and are situated in (4.6) so that

the numbers & increase from the right to the left. For the two é-functions, accompanying
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each matrix element (4.7) in the expression (4.6), we use the integral representations
(A — de-1)8(xe — xp1) = 2i f emea= Ml O —xe-ild ary d
T

where v are odd variables. Then we attribute formally to 4-matrices, entering into (4.8),
index k, and then we attribute to all quantities the “time” 7, according the index k they
bave, 7, = kA7, so that © € [0,1]. Introducing the T-product, which acts on y-matrices,
it is possible to gather all the expressions, entering in (4.6), in one exponent and deal then

with the y-matrices like with odd variables. Thus, we get, for the right side of (4.8)

o= [T [d I"“'D;c Dp[ DA [ Dx [ D [ Dy 4.9
nf Xo f Pf o X (4.9)
><o:3xp{j0 [ (’P2 m ——Fa577)+(m7 ~ Py )x+pm+1r5\+y)'(]dr},

where z, p, A, 7 , are even and x, v are odd trajectories, obeying the boundary conditions

z(0) = @in, (1} = ow, A0) = Ag, x{0) = xo. The operation of T-ordering acts on

the y-matrices, which suppose formally to depend on time 7. The expression (4.9) can be

reduced to:
f d)\g/dngr Da:poL D,\f Dfo*n‘fDuexp{z'fl[/\(Pﬂ_mz
ngaB 5;1 5‘;fﬁ) + ( 5(:;5 731,6;2 )X + pd + A + VX] dﬂr} Texpf pa(T )y dr p=u,

where five odd sources p,(7) are introduced, which anticommute with the ~-matrices by
definition. One can present the quantity Texp pr{T)y"d7 via a path integral over odd

trajectories [24],

Texp/ pn(T)Y"dT = exp (ry 3?9") ]w(a]+¢{1}=9 exp [/01 (wnil;n - 22';071?,/)“) dr

-1

+ @ (1)$™(0)] Dibloy, Dy = Dop [];b(n)+;;(1)=o Dipexp {fol Tbn#’-’nd"}] ) (4.10)

where 6™ are odd variables, anticommuting with 4-matrices and ¥™(7) are odd trajectories

of integration, obeying the boundary conditions, which are pointed out below the signs of

integration. Using (4.10) we get the hamiltonian path integral representation for the Green’s

function in question:
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¢ = exp (w%ﬂ)‘/ dAofdxoj D)‘fx Zous ijDprﬁny
% fw(o)+¢{1 D XP{ ./ [)‘ (.Pz —m? + 239€Faﬁ¢u¢ﬁ) + 2 ( P® —¥ map )X

—ithu " + pE+mh+ VX] dr + ¢n(1)¢n(0)}[ezo’

Integrating over momenta, we get a path integral in the lagrangian form,

5 = oxp (“7 aen)f deo f def De/xo Dx z Dx/ P [ D fw(owm P

r 2 e

<M exp i [ [—f— = Sl = g A(z) + ieg P ey +i (‘” - mw) x

2e 2

—itba " + me+ v dr + SO} _ (4.11)

=0

where

M{e) = poexp{%/ol epzd‘r} . (4.12)

A discussion of the role of the measure (4.12) one can find in [24].

The exponent in the integrand (4.11) can be considered as an effective and nondegenera,fe
lagrangian action of a épinning particle in an external field. It cousists of two principal parts.
The first one, which unites two summand with the derivatives of e and X, can be treated
as a gauge fixing term and corresponds to the gauge conditions é = ¥ = 0. The rest part
of the effective action, in fact, coincides with the gauge invariant action (2.1) of a spinning

particle.

V. SPINOR STRUCTURE OF DIRAC PROPAGATOR

In this section we are going to demonstrate that Dirac propagator can only be expressed
through a bosonic path integral over coordinates; the integrand of this path integral differs
from the corresponding expression in scalar case by a spin factor, which spinor structure
is completely described. This problem attracted attention of researchers already for a long
time. So, Feynman, who_ had written first his path integral for probability amplitude in

nonrelativistic quantum mechanics [28] and then a path integral for causal Green’s function
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of Klein-Gordon equation (propagator of a scalar particle) [29], had also been attempting to
write a representation for Dirac propagator via a bosonic path integral [30], After Berezin
bad introduced his integral over grassmannian variables, it turned out to be possible to
present this propagator via both bosonic and gragsmannian path integrals, as that was
demonstrated in the previous section. Nevertheless, attempts to write Dirac propagator via
a bosonic path integral only where continued. So, Polyakov [31] assumed that the propagator
of free Dirac eleétron in I = 3 Euclidean space-time can be presented by means of a bosonic
path integral, similar to scalar particle, modified by a so called spinor factor. This idea was
developed in [32] to write spinor factor for Dirac fermions, interacting with a non-Abelian
gauge field in D dimensional Euclidean space-time, Unfortunately, in that representation
the spinor factor itself was presented via some additional bosonic path integrals, and its
Y-matrix structure was not defined explicitly. As was shown in [33] the problem can be
solved directly on the way of doing all grassmannian integrations in the expression (4.11).
Let us consider here this solution. So, we start with the representation (4.11) for Dirac
propagator, in which we first integrate over = and v, and then use arisen d-functions to
remove the functional integration over e and Xs

— Cn 8{ ] Zout 1 i—ﬂﬁ}# 5
5= exp{z'y 86‘"}]0 deg -/x.-n Dz L(D)+¢(1)=9D¢ M(eo)/‘; (? my” | dr (5.1)

X exp ZL _2_6;“‘2_”1 - gzT (:B)'f-%geo uu(m)ﬂb d’ ""‘”vbn"»b T+¢n( )v’) ( )

=0

Then, it is convenient to replace the integration over ¥ by one over related odd velocities w,

(1) = %/:S(T — T w(r)dr + %9 , wT) = '4’:(1") , (7) = sign r . (5.2)

There are not more any restrictions on w; because of (5.2) the boundary conditions for 1
are obeyed automatically. The corresponding Jacobian does not depend on variables and

cancels with the same one from the measure (4.12). Thus?,

4Here and further, we are using condensed notations, e.g. wew = fa drar'w(r)e(r — ') w(r') and

50 OI.
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8= -—--;-exp {z"y” O }]:odeo f: Dz f‘Dw M(eg)[ o (ewt + 8%) — (sw5+05)]

aom
[l G - ) F, Y 46" +in5wn]} )
X exp {z [_E —5m g2 A(z) 2 (whe ) Fu(z) (ew ) 5 (e
where
1 -1
Pw = Duw [ Dw exp {—é—wnawn}] . (53)

One can prove for a function f{§} in the Grassmann algebra the following identity holds

w0 } B, .
exp { i7" = F() =f (—) exp {:(.7"}
p{ 7 B oo ac o
8 &4 Car™) (5.4)
_Z z Joye g %Zﬂ(rﬂ ; .
k=0 110y & 1=0 =0
where (, are some odd variables. Using (5.4}, we get
1 jeo Tou Ty & § )] 55
_ifo deo f "D M(eg){ (Jpﬁ%) (J 5ot (5.5)
R -’L~2 €0 o . 1609 65 (9,3 ]} [ Bg:' . "
—— e~ —m - —=F, |t B |z, 0, o= exp {il~y
X GXP {Z [ 260 2 m gmA(:c) { )agﬂ a(u z 14 BC p{ C# } .
with
R{:c,p, 6(] waexp{—gw Tor(zlg)w® o+ L™ } (5.6)
eog &,
Io= pu= =5 g Pule)e Is = s
Ay 0
Tulzlg) =] " (¢19) » Aw(zlg) = fue — %EQFW(SS)E - (5.7)
0 —

where p,.(7) are odd sources for w™(7). Integral in (5.6) is gaussian one. It can be easily

done [1], remembering its original definition,

o] [ wlemears) e

The ratio DetT(z|g)/DetT(z{0) in (5.8) can be replaced by DetA(z|g)/DetA(z]0), due to

the structure (5.7} of the matrix T(z]g), and the latter can be presented in a convenient:
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form, which allows one to avoid problems with calculations of determinants of matrices with

continuous indices,

DetA(z|g)

DetA(z]0) ~ ¥ {‘eﬂ fog dg’ Trg(xlg’){“(w)}, Q””(a:lg)=%s [Aizlg)] e, (59)

Substituting (5.9) into (5.5), and performing functional differentiations with respect to p,,

we get

Ze 1 r= Lout ok Be . 5 .
5¢= _5./0 deg L‘ Dz M(eq) [EKW(:C)E'_C» iy } exp{z [—‘% —5m

in

_gaA(z) + ’—;E [ ¢ T 9(elg) Fiz) + "—?2 (Fle)K(2)) ifﬁ;] } exp {iC4*}

Ku(2) =t + 0g (9(219) F(2)),,, -

Now the differentiation over { can be fulfilled explicitly, using (5.4). Thus, finally, remem-
bering that 5° = $°¢°, and the y-matrices in the last expression have to be replaced by +5v*

if we are interesting in the propagator ¢, one gets

. o T out . 72 € 4 .
S =35/ dea [ Dz M{eo)®(2,e0)exp i |—5=~ — 5-m? — gz A(z)| ¢ , (5.10)

&(z, e0) = [m + (260) K (2) (2 ~ geoF(x) K (2)) 7 — im?j‘_g (F(2)K(2)),, o

—i K@) F@K @), 0" + mEE (P E), (PR )]

X exp {—Z—Ufog dg' Tr g(mlg’)F(w)} . {6.11)

where (F(m)K(m));u = %e“mg (F(m)[((m))“ﬁ, and €45 is Levi-Civita symbol, normalized
by €o1zs = —1.

Thus, we get a representation for Dirac propagator aé a path integral over bosonic trajec-
tories of a functional, which spinor structure is found explicitly, namely, its decomposition
in all independent y-structures is given. The functional &(z,ep) can be called spin factor,
and namely it distinguishes Dirac propagator from the scalar one. One needs to stress that
spin factor is gauge invariant, because of its dependence of Fo(z) onlj. In the same manner

one can describe the isospinor structure of relativistic particle propagators [33].
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VI. SPINNING PARTICLE WITH ANOMALOUS MAGNETIC MOMENTUM

It is possible to get a generalization of the action (2.1) of a spinning particle in the
presence of an anomalous magnetic momentum [34]. The relativistic quantum theory of a
spinning particle, which has an anomalous magnetic momentum p, was formulated by Pauli

(35]. In this case he generalized the Dirac equation to the following form:
(ﬁnv —m— %a“"ﬁFag) W(z)= 0, B, =8, — gAu(2) . (6.1)

An analog of the action (2.1), which after quantization reproduces the Dirac-Pauli theory

can be written in the following form:

1 T 114'2 C o . 5 8 . o, 8
5= A il e (gAD,+4zm£: Fopt ) +igeF gb*y

2e 2
+i ("”“Tf[’a - M*«fﬁ) X - izp,,z,&n] dr, (6.2)

where M = m — 2uF,p°yf, and M* = m + 2uF.9*¢®. The symmetry (2.2) and
{2.3) remains for the action (6.2). One can derive equations of motion and check that they
really describe a classical particle with anomalous magnetic momenturﬁ 4. Doing the Dirac
quantization of the theory we arrive to the equation (6.1} as a condition on the physical
state vectors [36].

In the same manner as in Sect.IV one can find a path integral representation for the
transformed by 4® causal Green’s function §¢ = S"C(.’Ein,youg), of the Dirac-Pauli equation

(6.1),

) fooo de”] f @xo jco De/m Dx f:m ij DW/ by fw(o)w{l)ﬂ i

2

1 n2
x M(e)exp {1]{1 [mx— - f:£ -z (gAa + 4iw!)5Fugl,bﬁ) + ige Fogth™d®

8o = exp (i'y“ ;;n

2e 2
) (6.3)

=0

4 (%_j“ - MW,S) X — "™ + 7Té + V;gJ dr + ¥ (1)9"(0)}

where M* = m + 2ipFogp™y”®, and the measure M(e) has the form (a.11).
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One can treat the exponent in the integrand (6.3} as an effective and nondegenerate
lagrangian action of spinning particle with an anomalous magnetic momentum; the gauge

invariant part of this action coincides with (6.2).

VII. DISCUSSION

As we have seen from the discussion presented in Sect.Ill, the quantum mechanics con-
structed from the Berezin-Marinov action (2.1) admits the limit m = 0.- As a result one
gets the quantum theory of massless particle, which is described by the Dirac equation with

m =0, without any additional restrictions on the four-spinor U(z),
10" ¥(z) =0, (7.1)

How is was said, the variable ¥* can be omitted from the action {21) at m = 0. The
quantization of such a modified action reproduces the physical sector in the limit m = 0 of
the massive quantum mechanics. Unfortunately, such a quantum theory, describes massless
spin one half particle with the all possible values of helicity (right and left neutrinos). As
it is known, the right (left) neutrino is described by a four-spinor, which obeys, besides the

Dirac equation (7.1), the Weyl condition as well,

(75 - a) U(z)=0, a=1(-1), v =iy"y'4%°. (7.2

There were several attempts [37,38] to modify the action (2.1} at m = 0 so that in course of
quantization one can get a quantum mechanics with wave functions obeying both equations
(7.1) and (7.2) at the same time. Unfortunately, all they do not solve the problem (see a
discussion in [39]). |

In the paper [39] we have proposed a new pseudoclassical action to describe the Weyl

particles,

ol o , .
S= fo [—52 (mﬂ — GFx £ e bab, . + %bu)z B i'ﬁbud)u] dr (7.3)
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where z#, e, ¥*, x have the same meaning as in (2.1), the variables & form an even four-
vector, and o is an even constant. The action admits both quasi-canonical quantization (with
fixation of the gauge freedom, which corresponds to two types of gauge transformations of

existing three ones) and the Dirac quantization. Both of them lead to the theory of the

Weyl particles in the above mentioned sense.

Recently [40] we have also proposed a new pseudoclassical maodel for a massive spin one
half particle in 241 dimensions, interacting with an external Abelian gauge field. Such
a model has an important meaning not only for the deeper understanding of the quan-
tum theory of relativistic particles, but also because of a close connection with the theory
of interacting anyons, which attracts in recent years great attention. As it is known, at-
tempts to extend the pseudoclassical description of the spinning particle to an arbitrary
odd-dimensional case had met some problems, which are connected with the absence of an
analog of 4"-matrix in odd-dimensions. For instance, in 241 dimensions the direct gen-
eralization of the Berezin-Marinov action (standard action} does not reproduce a minimal
quantwm theory of a spinning particle, which has to provide only one value of the spin
projection (1/2 or —1/2). In papers [41,42] they have proposed two modifications of the
standard action to get such a minimal theory, but these models can not be considered as an
satisfactory solution of the problem. The action [41], in fact, is classically equivalent to the
standard action and does not provide required quantum properties in course of canonical
and path-integral quantizétion. Moreover, it is P- and T-invariant, so that an anomaly is
present. Another one [42] does not obey gauge supersymmetries and therefore loses the main
attractive features in such kind of models, which allows one to treat them as prototypes of
superstrings or some modes in superstring theory.

The action, we have proposed, to describe a Dirac particle in 2 + 1 dimension has the

form

P2 m? 1 j
s [_EE — e = i A+ igeFu P — i — s — ity | dr
0
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1
Ej LT, s=3; 2/ = 3% — sy + i e ; (7.4)
o
the Latin indices @, b, ¢, ... run over 0, 1, 2, 3, whereas the Greek (Lorentz) ones y, v, ...

run over 0, 1, 2; z#, e, x are even and ¥°, x are odd variables; F,, = 8,4, — 8,A, is the
strength tensor and g is the U(1)-charge of the particle, interacting with an external gauge
field Au(z), which can have the Maxwell or (and) Chern-Simons nature; £4** is the totally
antisymmetric tensor density of Levi-Civita in 2 + 1 dimensions normalized by %2 = +1;
ey = diag(1, -1, -1, 1), 5, = diag(l, -1, ~1).

It obeys three gauge symmetries-one reparametrization symmetry and two supergauge
symmetry. It is P- and T-noninvariant in full accordance with the expected properties of
the minimal theory in 2 + 1 dimensibné, which has to describe only one-value of the spin
projection. Dirac quantization (without explicit gauge fixing on the classical level) and
quasicanonical quantization with fixation of the gauge freedom, which corresponds to two
types of gauge transformations of the three existing, leads to the quantum theory of spin
1/2 Dirac particle in 2 -+ I dimensions. Teéhnically, the Dirac equation in 2 4+ 1 dimensions
arises in both schemes of quantization in different ways, but both quantum theories appear
to be equivalent. It is interesting that the model (7.4) of can also be derived in course of a
dimensional reduction from the model (7.3) of the Weyl particle in 3 + 1 dimensions.

In the conclusion one ought to say that lately models of superparticles and particles
with higher spins were constructed by analogy with the case of the spin one half relativistic
particle. For example, a direct generalization of the action (2.1) for particles with arbitrary

spin N/2in 3 + 1 dimensions was proposed in [43,44]. It can be written in the form

5= [ [F5s (2 = ) = =i + 3 o (W, V5L + ) ]
where 2, ¢ and f,; are even and 9%, x, are odd variables (fab Is antisymmetric), dependent
on a parameter 7 € [0,1], p =0,3; a,b=T,N; n = (1,5) = T,3,5; ., - diag(l—-1~1-
1}; fmn = diag(1--1—1—1—1). The summand Lkas Jo fapdr, with even coeficients x,; plays

the role of a Chern-Simons term and can be added only in case N = 2 without breaking

2

of the rotational gauge symmetry [37]). Thus, K = ey with an even constant « and
two dimensional Levi-Civita symbol €. Dirac quantization of theories with this action,
particularly, for N = 2 was considered in [45,46,37] and canonical one in the case ¥ = 2
in (16). However, the problem to construct classical or pseudoclassical models for particles
with any spins in arbitrary dimensions is not solved completely presently. .

The author thanks Brazilian foundations CNPq for support.
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