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Abstract

We present a detailed analysis of the thermodynamical properties of the
SU(3) Lipkin model. Two phase transitions are found which depend on the
interplay between temperature and coupling strength. The three thermody-
namic phases are characterized by a specific behavior of the levels populations.
The adequacy of the approximation, which allows for analytic results, is tested
rumerically.

PACs Number; 0545, 0520, 2160F

L. INTRODUCTION

Soluble models have always played a decisive role in unveiling the essential physics
of various systems. In particular, we quote the class of Curie Weiss systems [1], i.e.,
systems for which the mean field approximation hecomes exact as the number of par-
ticles tends to infinity. In the context of quantum optics, the Maser model [2] is well
known for predicting the superradiant transition and other relevant thermodynamical
properties. The Pairing model [3] which illustrates properties of superconductivity
and finally in the context of nuclear physics we have the well known Lipkin model
{4, 5]. It has originally been conceived as a toy model to test the validity of various
many body techniques. Recently the thermodynamical properties of the model in its
integrable SU(2) version has been studied [6]. It has been found that the model pre-
dicts two phases {one phase transition) and that, qualitatively speaking, temperature
effects tend to counterbalance the effects of the two body interaction. The mathe-
matical structure of the SU(3) version of the model is far richer. In particular, it is
nonintegrable and its classical limit has been shown to exhibit chaotic behavior [5].
To our knowledge its thermodynamical properties have never been investigated.

It is the purpose of the present contribution to give a detailed account of the
relevant thermodynamical properties of the SU(3) Lipkin model. We find that in
this case there are two phase transitions and correspondingly three different regimes

which we call:weak coupling, intermediate coupling and strong coupling regimes. These



regimes are characterized by given intervals of coupling strength and temperature. For
finite NV (number of particles) we are able to show that in the strong coupling regime
the symmetric representalion of the SU(3) group is the dominant one and therefore
responsible for all thermodynamical properties. For the other regimes the relative
contribution of other representations become nonnegligible. All the results are given
_essentially in analytic form,

In section II we present the model and in section III the thermodynamical proper-
ties are derived in the mean field approximation. Section IV is devoted to the study
of the adequacy of the mean field approximation by comparison with finite N results.

Finaily section V contains conclusions.

II. THE SU(3) LIPKIN MODEL

The model [5] represents a system of N interacting fermions which can occupy
three N-fold degenerate shells. Its Hamiltonian is given by
1

2 2
H = ZE,’G;‘,‘ + 2V Z G?j, (1)
i=0

ij=0
where the Gj; are generators of an U(3) algebra, which obey the commutation refation
[Gijs Grt] = 851G — 0uGj. (2)

In terms of fermionic creation and annihilation operators, they can be written as

3

“;‘I-mﬂ'jm! Gj:; = G_,‘,-, 4,7=10,1,2 (3)

=

G;j =

m=1

An additional constraint is imposed by particle number conservation, 1.e., Goo -+
Gi1 + G2 = N. Therefore the dynamical symmetry corresponds to that of an SU/(3)
algebra. The energies of the shells are chosen to be symmetrical about zero, i.e.,
€2 = —cg = ¢ and ¢ = 0. In the present work all the energies are given in units of
Ne. The scaled coupling constant is defined as y = w—:—lﬂ, as usual.

The coupling term of this Hamiltonian is chosen so that there is no interaction
between particles in the same level. It promotes the scattering of particles between

any two of the levels.

III. THERMODYNAMICS

In this section weshall derive the ﬂncrmo(lyuamical properties of the model from an
equilibrium state which is constructed within the scheme of a variational mean field {7].
In the large N limit, the mean fReld approximation becomes exact and the calculation
of the relevant thermodynamical quantities becomes simpler. This has been done for
the case of the integrable SU(2) Lipkin model with particular emphasis on the phase
transition behavior {6]. In the present case the calculations are much more‘involved.
We find various mathematical solutions which extremize the free energy, only three
of them ;0r1‘esponding to physical situation in different temperature intervals.
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A. Equilibrium States

We start by constructing the variational mean field density matrix as follows,

Dy = Kexp(—Fhar), . ()

where

e = oa{fd) — Goo) + 2Goy + 03Gro + aa(Gaz — G) +

+oyGoz + o Gop + as(G1y — Goa} + asGiz + agGa {(5)

and K is a normalization factor. The set of variational parameters o;’s are obtained

by minimizing the free energy

BF = BTr(DoH) + Tr(Doln Dy), (6).

where (8 is 1/(kgT'), kg the Boltzmann constant and T the temperature. For technical

reasons it is convenient to go to the diagonal representation of Dy.

D = UD(]U* = %eﬁl{cn-Guu)eﬁz(a'zn—cun)’ . (7)
where
AL . T,.(em(G'u—Goo}eﬁz(Gzz—-Guu))’ (8)
U= Ul = el Bisz_e‘l" s . (9)
5]

with
sy =G+ Z;Gm, 83 = 22Gigg + ZsGoz, s3 = 23Gm + 25912- (10) '

The free energy becomes

BF = BTr{(DUHUY) + Tr(D1n D). (11)

The variational paranieters are f) = iz(, 02 = iz, 03 = iz, By and By, It is easy
to check from the expression for the free energy that the.real part of z;, z; and 23 are
irrelevant for the stationary properties in the case y < 0.

The free energy scaled by N can then be written as

oy

Il
=y

It

~ cos (20 (T, — sin? 85T3) + %sin (28,)sin By sin (263)75 +
+sin? 0y (T + sin? 05T — sin? 6(T, — sin® 0373)) +

+§ {cos? 0, sin? (205)T2 + sin® (20,)(T; — sin® 0:T5)? +

+{sin (20,)(Ty — sin® §273) + Ty[sin (20,)(1 + sin® 8;) sin® 05 +

+ cos (20;) sin 0, sin (20,)]} 2} - % (51T + 5T +1nz), (12)

where

TriDGop — (4 =(B143) _ of
7, - 2 (?f, u) _ e —, (13)




T""(D(GUD - Gzz)) 8_('6’+52) — P2

- = aOF .
T = o = - ; (14) Ja; = 05 (202)sin (205)Ts + sin (201) sin 0y cos (202)T + sin® 0y sin (202)75(1 + sin® 63} +

+%T3 {cos? 0, sin (46) Ty ~ sin® (20,) sin (205)(T5 — sin? 65T5) +

T = Tr{D(Gi ~ G)) 7T ‘ (15) +{sin (20, T} — sin® 0,T3) + Ta[sin (26,)(1 + sin® f;) sin? 85 -+ cos (26;) sin 8, sin (263)

3= N - 1
{sin (26;)(1 + sin® 0;) sin (203) + 2 cos (20 ) sin 0, cos (265)}}
= 0, ' (1
z=e Loy e~ B3] (16)

Minimizing eq. (12} with respect to these parameters, setting

g—g = —[cos(20;) + sin? B, sin® 0] Az, + sin® 0,.41; + (Ajz — Ayj)
g—g = cos{20,)sin 0;sin (26;)75 + sin (26,) (T1 + sin® 9575 — sipz 05(T; — sin® 93T3)) + {cos (20,) sin® 83 + % sin (20} sin 6y sin (203) + sin’ ) sin® O3(1 + sin? 6,)}
+ x{{sin (201)(T1 — sin® 0,T3) + Ta[sin (201)(1 + sin® 6;) sin® G5 + cos (201} sin 8y sin (26,)]} + S {(As2 = Ay cos? Oy sin (203)Ts+ sin® (20,)(Ts — sin® 0573)[ A2 — (A0 — Ayy) sin? 6
{cos (20,)(T} — sin® 82T) -+ Tafcos (205)(L + sin® fy) sin? 6 — sin (26,) sin 0 sin (263)]} } +{sin (20,)(T} — sin® 0272} + Ta[sin (26;)(1 + sin® 6;) sin B3 -+ cos (26, ) sin &, sin (203)
=0 | (17) {sin (200)(Ar; ~ Ajzsin® 07) + (Ao — Aij)[sin (26,)(1 + sin? 3 sin? 6 + |
| +cos (20,) sin 0y sin (205)]} } — %(Tj b+ B+ E% m5)=0, L2
aF . . ) i Ts . ‘ l ) where
0 = 2sin (20,)(Ty — sin® 05T3) + sin (26;) cos 0y sin (203)? — sin? @y sin (20;)(Ty — sin® 6:73) +
+§ {—sin (20;) sin? (205) TF + 2sin (40,)(Ty — sin? 65T%)* + |
+2{sin (201)(T; — sin? 02T2) + Talsin (201)(1 + sin® 6,) sin® 05 + cos (261 ) sin B sin (265)]} Ay = %Z% = —% (e +de® 4 lfrsa) 1)
{—sin (201) sin (202)T; + Ts[sin (201) sin (20;) sin? s -+ cos (20;) cos By sin (265)]} }
= 0, _ (18) A?z = % = “;15 (e—ﬁz +de P 4 ol +.Gz}) . (22)



aTy _ 0Ty _ ....i (QE—,G: + 9e~f2 _ e(ﬁ1+ﬁ2)) , (23)

Aip=Ay = 3_,@2_3_131_ 2

N[

2 nz (eﬁ, _ e—(ﬂw.@zl) , j=1,2. (24)

i)

95;

We find numertcally that the extremum condition can be obtained for #; = 0 or .

Substituting this results in the above equations we obtain analytical expressions for

candidates of solutions &y and &; in various x and temperature ranges. These results

are shown in Table 1. The solutions found in this table are sﬁbstituted in eqs.(20}) in

order to find f; and @; numerically. We find that the solutions which correspond to

a minimum are three (1,9 and 11 in Table I), each one of them valid in a different
temperature and coupling strength interval. We describe them in detail next.

Strong Coupling Regime (SCR): Valid for xT7 < --3. Tt implies that x < —3

and 8 > B (B is found numerically and displayed in the figures).

The parameters in this case are
Bi=F = Nhi=T=T,

_3
32T’

i

cos{20,) =

Intermediate Coupling Regime (ICR): Valid for x < ~1 and temperature

interval that has to be found numerically

Bers S B < B for x<-3

B2 Pz for  -3<x<-1
or in more compact form
-3<xh £-1L

And the parameters

1

€08 (20{) = —E,

02=0, 93:0.

Weak Coupling Regime {WCR): Valid for all values of x being a minimum

when
B S Bera for x<-1
and
any 3 for x>-—1
or in more compact form
xTh £ -1,

And the parameters

O=0,=0=0, =0, B2 = ~p.

The free energy corresponding to these solutions are shown in Figs. 1(a),(b) and

(c). In the first case (Fig. 1{a)) we show, as a function of inverse temperature a
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particular x value, y = —6.0 for which the three solutions are present. Note that
one has two phase transitions, the first one from SCR selution to ICR solution at
Ber1 = 0.4621 and the second from ICR solution to WCR solution at Bz = 0.4258.
In Fig. 1{b) which corresponds to a lower x value one finds only one phase transition
from ICR solutio-n to WCR solution. In this case SCR solution does not exist. Figure
H{c) does not present any phase transition, WCR solution is the oﬁ]y one. Thus,
we conclude that increasing the temperature effectively “weakens” the coupling. In
the SCR the coupling is “active” in all shells in the sense that neither &, nor 0 are
zero. In the ICR the solution is identical to the oﬁe obtained in the SU{2) case for
the deformed case [6]. The WCR is always a mathematical solution and becomes
the physical solution for sufficiently high temperature values or weak enough coupling
strengths. In this case y does not play any role.

Another instructive quantity is the average population difference of the levels as

a function of y and 4, namely

T Tr{DU(Go — t
p[u:(_ﬁ;_) = I (‘l"v G _ o (20T, -+ sin® 05T, +

~sin? 0(T; — sin® §3T5)) + sin (20;) sin 8, sin (205)75,  (25)

T Tr(DU(Goo — Gaa)Ut -
Pm:(_;_) - (DY . Sl _ cos (26,)(T — sin? 85T +

1
~3 sin (20;) sin 07 sin (203)T; — sin® 8,(Ty + sin? 8575 +

11

— sin? 0y(T — sin® 0373)), (26)

where Ppy(o) stands for the dillerence of the average population of the first (second)
excited level and the ground level.

They are shown in Figs. 2 (a) and (b). For the strong coupling regime both
population differences are held constant up to 8 = B..;. This is certainly due to the .
fact that the coupling term is important. For #,3 < 8 < f,1 one sees the increase
of temperature eflectively diminishes the role played by the interaction. In this case '
the difference of population belween levels 0 and 2 diminishes whereas the behavior
of difference of populations between levels ) and 1 remains the same. Below 8., the
coupling strength is no longer important, and as expected, the system will tend to
populate all levels equally as required by maximizing the entropy.

The entropy and internal energy are shown in Fig. 3. For low temperature the
entropy is very small and the free energy will be dominated hy the contribution of the
internal energy. As the temperature is increased these roles are inverted, as expected.

The two second order phase transitions are clearly reflected in the specific heat of
the system, shown in Fig. 4. The hehavior of the order parameters of the model is
shown in Fig. 5. The average values of the operators Ggy (or Giap) and Gy {or G1o) can
be chosen as order parameters of the first (SCR — [C'R) and second (ICR —+ WC'R)
phase transitions respectively. This is due to the fact that their expectation values

vanish for temperature higher than the corresponding critical temperatures.
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IV. FINITE ¥ RESULTS AND THE MEAN FIELD APPROXIMATION

The mean field approximation used in the present work involves all the different
irreducible representations of the SU(3) group. It is possible to investigate their role
in an exact calculation for finite N. For example, in Fig. 6 we display the eingenvalues
of the Hamiltonian (1) for ¥ = 6 and y = —6.0. They are separa.te;d according to
the irreducible representations they belong to. The 3¢ states are distributed in the

various representations in the following way

BleBleBloBo3])9]3] = [28]@5x [35]89x 27| 10 x [10]¢5 x [10]@ 16 x 8] @5 x [1]
(27)

where the symbols in brackets correspond to the representation illustrated in Fig. 7.
We are now in a position to calculate the relative contribution of the various

irreducible representations as a function of temperature. For this purpose we define

exp (—GF;)
A= X Ya—7p (28)
E;ela)

where ¥}, is the multiplicity factor of the representation {u].

In Fig. 8 we show Py as a function of temperature. We see that for the strong cou-
pling regime the main contribution comes from the symmetric representation. As the
temperature increases the other irreducible representations start to give nonnegligible

contribution.

13

_ In order to illustrate the adequacy of the m.f.a. we compare the exact result for
the free energy obtained for ¥ = 4 and N = 6 with the mean field result. The
numerical calculation is very invo]ved; therefore we have stopped at N = 6. However
the convergence is well illustrated (see Fig. 9). For low enough {emperatures when
the symmetric representation alone dominates the hehavior of the system it is seen

that the mean field result reproduces very well the exact average free energy.

V. CONCLUDING REMARKS

We have presented a detailed investigation of the thermodynamical properties of
the SU(3) Lipkin model. We show that depehdiug on the temperature and cou-

pling strength range the system can exhibit three regimes and two phase transitions.

_ For finite N the strong coupling regime is shown to be dominated by the symmet-

ric representation of tlie group whereas in the two other regimes other irreducible
representations also play a role.

The present investigation is an essential step towards the study of bifurcation of
equilibria in the thermnal (lynamicg of the system. The {ull therimal dynamics can also.
be derived in the context of the same approximation. Investigation along these lines

is presently under way.
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FIGURE CAPTIONS

FIG. 1. The free energy F as function of inverse temperature 3 for three different
values of coupling parameter (a) y = —6.0, (b) x = —2.0 and (¢) ¥y = —0.6. Note
that in (a) there is three phases (they are separated by a vertical dotted line), in (b}
two phases and in (c) just one phase. The critical inverse temperat.ures are indicated,

FIG. 2. Py and Py as function.of inverse temperature F for two different values
of coupling parameter (a) y = —6.0 and (b) x = —-2.0. |

IFIG. 3. Theinternal energy  and the entropy 5 as function of inverse temperature
for y = —6.0. The values of critical inverse temperature 3,1 and s at which there
are phase transitions are shown and the phases are separated by a vertical dotted line.

FIG. 4. The specific heat of the system as fu.nction of inverse temperature for
X = —0.0. Note the two second order phase transitions.

FIG. 5. Order parameters < Gy > (ou < Gap >) and < &gy > (ou < Gig >) of
the SCR —) ICR and ICR - WCR phase transition respectively as function of the
inverse temperature 3 for y = —6.0.

FIG. 6. Ail the eingenvalues of the Hamiltonian (1) scaled by the number of
particles for xy = —6.0 and N = 6. They are separated according to the irreducible
representation they belong to (see Fig. 7). The quantity n.,q, is the number of
eingenstates of each irreducible 1'ep1'ésentation.

FIG. 7. Lireducible representations for N = 6.

It

FIG. 8. Relative contribution of the irreducible representations Fy) for ¥ = 6 and
X = —6.0 as function of inverse temperature 8.

FIG. 9. Mean field result (solid line) and exact result obtained for N = 4 {dot-
dashed line), N =: 6 (dashed line) for the average free energy F as function of inverse
temperature 3 for x = —6.0. The dotted line represents the results for 30 particles,
but just considering the symmetric representation. For the SCR, this representation

is responsible for the system behavior.

TABLE CAPTIONS

TABLE 1. Candidates to minima of free energy found solving equations (17) and

(18) for 63 = 0 (or m).
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Figure 2 (b)
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Figure 8
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n 8, B, Y range
1 0 0 -
2 0 z -
3 0 1 arccos (:—,122) x| = 2
4 z 0 -
5 3 z -
6 z 3 arccos () x| > 1
7 - z h="T

8 arcsin /2 4+ (T — 271)

1., -1
9 ialCCOS(ﬁ)

10 { arccos

11 % arccos(

3 )
J4+(T2-21)

arcsin

arcsin /Ty /T2 1<y<2

0 x| =1

3 2T, =T v
+\(3x;‘2 3] hi >3

Table 1



