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Abstract

In the present work we study temperature effects on the classical dynamics
of the SU(3) Lipkin model. We show that the inclusion of thermal effects
gives rise to a new degree of freedom, absent in the zero temperature limit.
The existence conditions of stationary points and bifurcations are studied as a
function of temperature. The dynamical structure of the classical equations is
very rich: contrasting results recently found for the Maser model, we show that
temperature effects give rise to new nonlinear contributions.

]
]

PACs Number: 0545, 0547, 0520, 2160F.

1. INTRODUCTION

The underlying classical phase space structure of quantum models which exhibit
chaotic behavior is of fundamental importance in the context of semiclassical quantum
mechanics: Such classical structure is usually defined by the variational parameters
which characterize a mean field approximation over a family of appropriate coherent
states . This approach has recently been used to characterize the structure of ein-
genfunctions in terms of classical trajectories in the-SU(3) Lipkin model [1]. In this
particular case the classical limit of the model was obtained as the limit when the
number of particles NV goes to ipﬁnity and by using the appropriate coherent states,
parameterized by two complex variables [2]. The classical two degrees of freedom
equations of motion obtained are shown to exhibit fourteen stationary points whose -
stability as a function of the coupling strength were found analytically.

In the present contribution we intend to study how the phase space structure and
fixed points analysis is altered if one introduces temperature in the dynamics. In other
words we use a thermal mean field approach [3] in order to introduce the temperature
in the problem. The first interesting consequence of introducing temperature in the

dynamical equations is the appearance of a third degree of freedom. Also important

are the restrictions imposed on the phase space due to the thermal dynamics. The
temperature effects on the dynamics of the model is far more intricated than in the

recently case of the Maser model [4] where only 2 phase space scaling effect is found.
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® In the general thermal Lipkin SU(3) model the phase space structure is defined by

three complex variational parameters. We were not able to find the corresponding
three pairs of canonically conjugate variables. However, in the strong coupling regime
(SCR), i.e., for temperatures not too high as compared to the coupling strengih we
were able to show that the problem reduces to only two pairs of canonically conjugate
variables and still ma.inta‘in.most of the new thermal effects under discussion. In this
case we give detailed account of the stability and bifurcation of equilibria of the (also)
fourteen points as a function of coupling strength and temperature. We observe that
in the SCR raising the temperature corresponds effectively to weakening the couﬁ]ing
strength. Although the new terms in the Hamiltonian show a rather non trivial
behavior with temperature (c.g. it does not consist of pure scaling effect, but brings
novel nonlinearities), in the SCR this is not seen in the Poincaré sections.

In section IT we briefly present the model and in section III we construct the
thermal dynamics of the problem and its small amplitude limit. The large amplitude
motion in the strong coupling regime is studied in section IV and in section V its fixed
points and bifurcations are analysed. Poincaré sections of the thermal dynamics are

presentted in this regime in the section VI. Coneluding remarks are in the last section.

11. THE 3-LEVEL LIPKIN MODEL [1, 2, 5, 6]

The 3-level Lipkin-Meshkov-Glick model is an exactly soluble schematic shell
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model. In this.model, N interactiﬁg fermions are distributed between three N-fold
degenerate levels with encrgies ¢p, ¢; and ez; each single particle state is labeled by
two numbers, o = 0,1,2 denoting the orbital and P =1,2,..., N referring to the de-
generate state on a given level. In our calculations, we have chosen €3 = —eg = € and

€1 = 0. The Hamiltonian is given by

v
H = Gz — Goo) + 5 (G + G314 o + Gl + Gl + G, ), (1)

where V' is the interaction strength, the generators (y; satisfy the commutation rules

[Gij, G = 6:6Gia — 8aGh; (2)

and obey the relation Gy 4+ G11 + G2 = N. In terms of the creation (annihilation) V
operators aj; (a,) which create {annihilate) a particle in the level ¢ state p, the
operators (7;; are written as
N
Gis =3 afay;, Gl = Gy, 3,7 =0,1,2. (3)
p=1
In the present work all the energies are given in units of Ne. The scaled coupling

. Ve
constant is defined as xy = Me—ll, as usual.

III. FINITE TEMPERATURE DYNAMICS AND ITS SMALL

AMPLITUDE LIMIT




+ The procedure we follow in this section to derive the finite temperature dynamics

of the system is well established and we shall therefore limit ourselves to its application

“in the present case [3].

We start by introducing the thermal classical Lagrangian of the system (& = 1),

L =i Tr(DUUT) — Tr(DUHUM),

where U has the form

U = Uslhply = estgisaltgiall)

with

Sl(t) = Zl(t)Glo + Z;(t)GUl »
32(1) = za(1)Glap + 23(2) Gz ,
s3(t) = za(8)Gan + 23(1)G1a

and D is the diagonal form of density Dy given by

= UDUU';' - %eﬁl(cu—Gon)eﬁQ(Gzszno)"

where
7 e ZN . T1.(6E1(G|1—Gun)eﬁz(Gzz—Gﬂo)) ,
z=eM L4 e-(.@rl'ﬁz}:
- Do = Kexp{—Bhpr) ,
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(4)

(5

(7)
(8)

hyr = 01{Gu = Goo) + a2Gor + @3Gro + 3{Gra — Goo) +

+aiGoz + oy Gap + a5(Ghy — Gaz) + 06Grz + a5Gay

and K is a normalization factor.

(13)

"The definition of classical variables comes from the first term on the r.h.s. of eq.

{4). We get
Tr(DUUt) = ZBT5% g2 o PR TEYH g (g g
22323 2z,25
}:’ * ot - - - -
% St T+ 835~ 8 (T — S275) +
#12]
4 (12523 — 2}2023)  (C1525:C; Ty }+
VE1z] 22z \fz3z} 5
. (&13] + = 7”) . ey S50 o
with

and

5; = sin y/z;2] Cj = cos /z;2}

I=L2,3

- =(B1462) _ o/
T =N Ty = Tr(D(Go — Gu)) = N e—z——i— :

. e—(B118) _ P2
T2 =N Tz = T?‘(D(Goo - Gzz)) =N f 3

Ty=To—T = Tr{D{G1 — Gan)).
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(14)

(15)

(16)

17)

(18)




" In principle for an arbitrary initial condition (6, and ;) we have three pairs of
noncanonical variables. We may choose 1 and #; to correspond to a thermodynamical
* equilibrium state. The second term on the r.hus. of eq. (4) is the classical connter-
part of the quantum hamiltonian of the system defined in section II. In terms of the

variables z;, z; and z; it is given by

H(Z’,‘, Zf)
N

= (-14+25)(Tx - 532T3) + (212523 — z;zgzg)—————SIGESQS?’CSTa +
R Ry Ry

b OSHT 4 STy - SUTy - 2T} + X (2 4 2y (B1)
11 als — 55(Ty - 55 3)}4'5 —(zf +277) R ’

{1y + 21— SKT, — nga)}2 +{[(2225) + (5320)?] G+
* 2 * * *
+ [(2‘2323) + ("12223)2} si+2 (ﬂ+fi) RERACIS?)} -
4 F-£1 Zy 21 E

Se83C, 2 . « . . 225% 2, e
( Hy g ) I3+ {(2f2223 - 2jz323) CT+ _LE?_ - z12m3 5';2}

2f§ﬁ:—%§ﬁﬂ |71 + 8375 — 52 (T, - S313)] - (z§‘+ %)
(9%02)2 (T2 - S315)" + [(2220) + (51237 (_511232103)2T§ +

— 2 (212225 — 2r2)2d) %ﬁfﬁn (T, - 8373) — (2 + 22) -
(B52) 75 e+ o) () [~ sem +

— (2} 2025 — 2 2520) Mn (T, — $213) } . (19)

RyRaRs
One interesting point to remark now is that the effects of the temperature, in
contrast to the results encountered for the Maser model [4], are far richer. It is not

a simple phase space scaling effect, as found in ref.(4]. Also, in principle one could

- now proceed to investigate the full thermal dynamical behavior of the system. This
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cateulation although feasible is highly non trivial and cumbersome. However the most

interesting new feature brought by the temperature on the dynamics of the system
is the “awakening” of a new degree of freedom, z3, absent for zero temperature.
Unfortunately we were not able to cast eq. (14) in the form of canonical variables
for all three degrees of freedom. However we can study this new eflect by means of
considering small amplitude motion,

The quantities Ty, Ty and T3 ate very important in the study of the dynatnics. They
have been obtained in ref. [7] for attracti;\re interaction {y < 0) and are displayed in

Fig. 1 as function of inverse temperature for y = ~6.0.

A. Small amplitude motion for the full system

The small amplitude fluctuations around equilibrium are described by the second

order Lagrangian

3 '

L=y %(1-,{7; —778) = HO,40), (20)
=}
with

T

| A B 3{2
(2) ) '* — o * L3 E 3 21
'H (”fu')':) 2(71 T2 Tz M 73) B A 'fi ( )

T2

T
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where the variables v;, 7,7 = 1,2, 3 are canonical variables related to the small devia-

tions, §z;,2¢, from the equilibrium solution and A, B are 3 x 3 matrices which will be
N .
defined according to the different phases. These three phases were extensively studied

in ref.[7], their validity ranges illustrated in Fig. 1. From now on we discuss the small
amplitude motion in the tliree possible regimes found there. The RPA frequencies are

given by the equation

QR u=(A+B) (A-B)u, i=1,2,3 (22)

1. The weak coupling regime  (WCR)

The state of statistical equilibrium {absolute minimum) is defined by

n=mn=2z=1_0, =0, Bo=-8 (23)
and has the following energy and free energy

Eg FO 1
=T ~ = ~5(Inlt +2cosh(B)). (24)

In this regime we introduce the canonical variables

i T o= le\/i, Y2 = 552\/172, Y3 = 523\/%'; (25)

and the RPA matrices A4, B are given by

100 T, 0 0
A=lozo| B=| 0o —x1n o I. (26)
001 0 0 -xTs

We obtain the following RPA frequencies:

M o=y1-xTF, Q=4 X2}, Qa=+/1-xT% (27}

The transition to the intermediate coupling regime occurs for ¥*T¢ = 1, therefore the

weak coupling region is defined by
IxI < = (28)
2. The intermediate coupling regime  (ICR}

The state of statistical equilibrium (two symmetric minima) is defined by

-1

zZy = —z; = :[:z'a, 605(2(1) = ;“i_,“l', (29)
Zg = zZ3 = 0, 7 (39)

Py PP 30
= i =——(Tix-1), 31
() =30 (B2} =-Zann-y (3)

where P; = T'r(DG;;), § = 0,1, 2. Its energy per particle is

: Ty x sin*(2a
E =1 —Tz + T} sinz(a) + _IX Sl—'n ( )- (32)

N 4
10



We introduce the canonical variables

M =8ay/Tisin(2a) /2, 7y, = Sz\fTy, 4y = S25\/Ts, (33)

and obtain for the RPA matrices in terms of a:

Ay = By =0, i {34)

A = cac(2a) (a sin(2a) + 2a° cos(2q) + X7 (asin(4 in® ‘ 2
3 a)+35 i(asin{da) — 2sin*(2a) + 4a cos(4a))) ,

A =2 —sin’(a) — %T[sinz(Za), Ass =1 +sin*(a) + %T; sin®(2a),

_ csc(2a)

By oq (a sin(2a) — 2a® cos(2a) + ng(a sin{4a) — 2sin®(2e) — 442 cos(4a))) ,

By = —Tox, By = ~Tax.

‘The RPA frequencies are :

N TS ) (35)
% = iB—xrr - e, (36)
% = S[GT D) - Gy (37)

The transition to the strong coupling regime oceurs for T < -3,

3. Strong coupling regime (SCR)

In this regime the state of statistical equilibrium (four minima) occurs for By = Ag,

T3 =0, T} = Ty and therefore the belavior of the system is independent of the value

11

of the variables z3,23. The variables Y,y are pure imaginary, 41 = —7] = ia,

Yo = —7; = *ib, where a* = T}/3 and 6* = (3 + T1x)/(3x) and the energy has the

value
Ey= =Ty +a* + 25" + x ((a? + 0)(T1 — a® - 1%) + 782) . (38)

The RPA matrices in terms of @ and b have the form

Ao 1—x(3a®+ %) 0 B x (3¢* - T} 2aby
- 0 2—x(a®+30%) | - 2aby x(32-Ty) |-
(39)

Since T} = T, we get for RPA frequencies

0 = \/% [(Tlx)z—B:l:\/Q-f—B(T]x)z], i=1,2 (40)

" In the limit of zero temperature, T3 =+ 0, T; — 1, i = 1,2, the RPA frequencies

reduce to the ones given in ref.[6],

VI—x%, VATN2, x| <1

i=1,2 = V20E-D B+ -x), 1< <3

\/% [x* -3+ v3x7F9), 0, Ix]> 3

In Fig. 2 (a) and (b) the RPA frequencies are represented respectively for y = —2
and y = —6.

We conclude that the parameter which defines the behavior of the system is ¥’ =
Tix-

We notice that for finite temperatures the third mode is excited whereas it remains
inert for zero temperature and also for the strong coupling regime. This feature of

temperature dependence of small frequency modes is also described in ref. [8].

12
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. IV. LARGE AMPLITUDE MOTION IN THE STRONG COUPLING

REGIME

We turn now to the discussion of large amplitude motion. In what follows we
restrict ourselves to the SCR where we are able to find canonically conjugate variables
and study the stationary points in complete analogy to ref. [1]. For the strong coupling

regime just mentioned we have two canonical variable pairs defined as follows™

sin /2127

Nn = 2 -———;IN—*COS 2225 T, (41)
V <1<}

in /2223 /= . . .
Y2 = z S—\/—%ﬁ VT, (=T, = 1) (42)

In terms of these variables eq.{14) reduces o

. 1 & .. -
Te(DUOT =5 30 v — %l (43)
o |
The classical Hamiltonian is given by
T ® - v 2 * *
Ha = “TH2nnp+tnnt 0l {_(T - MM — )
(7 + 72 442 D) + (i) + ()} (44)

One of the temperature effects on this dynamics is to restrict the phase space of

the system (see eq.(41) and (42))

* Note that in this work “T'” does not stand for temperature.

13

0<yuy<T (45)
and
N
0 ——— <1
L'~y (46)

We found it is convenient to express the classical Hamiltonian in terms of the new

variables

v =\l &, y=yh €, (47)

with the range of allowed values

0<L+L<T. (48)

In the large N limit (classical limit) the classical scaled Hamiltonian is defined as

E= = =T+ 2 +m+ x{—(T —m — 72)[m cos (20:) + 12 cos (26,)] +

+ mmpcos[2(8 — 6.)]} (49)
with
m=h/N, m=5L/N, T=T/N and O0<m+m<T.

In the limit of zero temperature we recover the result previously obtained in ref [1],

(see eq. (2.9)).

14



« Inthe SU(2) limit, i.c., 5y = 0 we recover the finite temperature SU(2) result f9].

V. FIXED POINTS AND BIFURCATIONS IN THE STRONGQ

COUPLING REGIME

The equations of motion for the strong coupling regime are given by

= ~a = 2mx {=(T —m —m) sin (26,) + ny sin [2(60; - 92)]},  (50)

Th = “ag, = "X AT —m—m)sin (20;) + pysin (200, — 62)]), (51)
. 9B | ‘
8, = Pl Etx {=(T — 201 ~ ) cos (261) + s {cos (26,) +
+ cos [2(01 — 62)]]}, (52)
8, = g?% = 2+ x{mlcos (20,) + cos (206, — 62)]) ~ (T — 1y — 2m2)
cos (262)}. (53)

The variables n; and 7 are dlirectly connected to the population of the levels. The
. model has a very rich classical structure which has been previously studied in the

zgro temperature limit [1). We have studied the stationary points analytically, In
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Table 1 we give the energies,coordinates and validity range of the solutions at finite
temperature. In Fig. 3 we display the zero temperature results for attractive and
repulsive interactions. It is important to notice the difference on the bifurcations of
minirma in the two cases. For negative y values we have two bifurcations of equilibrium:
we find four minima (N solution) for y < —3 which bifurcate to two minima at x=-23
and stay that way in the interval -3 < y < —1 {K solution} and bifurcate again to
one single minimum for y < -1 (# solution). The positive x values present two
minima for ¥ > 1 (A solution) and only one bifurcation to one minimum for x <1
(H solution).

In Figs. 4(a) and (b) we show the behavior of the energy of the fixed points
as a function of x (zero temperature) and T(B) (x = —6) respectively. Here we
observe that the main lemperature effect in the SCR is to “weaken” the coupling,
i.e., increasing the temperature in Fig, 4(b) corresponds to decreasing x in Fig. 4(a),
qualitatively speaking. In fact there is no scaling behavior as can be clearly seen in
Table I. We have not undertaken this study for the other two regimes but we expect

that the temperature eflects there will be more dramatic (see eq. (19)).

VL. POINCARE SECTIONS OF THE THERMAL DYNAMICS IN THE

SCR

The Poincaré sections as a function of temperature show that although there is no

16



scaling, near the minimum solution the temperature qualitatively does not change the
behavior of the system. Note that because of the shrinking effect, it is compli.ca,ted
to compare sections of different temperatures in order to look for new effects brought
by the temperature. In Fig. 5 (a), (b}, {c) and (d) we show the Poincaré sections for
zero temperature y = —6 near the equilibrium point M. They should be compared to
Fig. 6 (a), (b), (c) and (d) where the same is calculated for fnite temperature, We
have also studied the Poincaré sections at the bifurcation point (when the N solution
merges into the A" solution) for x — 6.0 at phase transition inverse temperature 8.

(Fig. 7) and for y — 3.0 at zero temperature (Fig. 8).

VII. CONCLUSION

In the present work we have studlied the SU7(3) Lipkin Model within a thermal
mean field approach. We have explicitly shown that one remarkable effect of the
temperature is giving rise to a new degree of freedom “frozen” in the zero temperature
limit.

The dynamical equations of motion exhibit a very rich structure. Temperature
brings in new nonlinear terms, thus altering the structure of the equation in a more
radical way than has been found in the Maser Model {4]. Although we have not
been able to find three pairs of canonically conjugate variables for the most general
situation, we have shown that the strong coupling sittation can be described by

17

two pairs of such va.;'iables. In this case we have discussed the dynamics in detail:
the behavior of fixed points and bifurcations as well as their existence conditions as
function of temperature and coupling strength are studied.

We find that net effect of temperature is to “weaken™ the coupling strength, but
this relation is highly non trivial. Although the new terms in the Hamiltonian show
a rather nonlinear behavior with temperature {e.g. it does not consist of pure scaling

effect), in the SCR this is not observed in the Poincaré sections.
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FIGURE CAPTIONS

FIG. 1. Plot of Ty, Ty and T3 as function of the inverse temperature # of the

cr2

system for x = —6.0. The values of the critical inverse temperatures 8.,y and

at which there are phase transitions are shown and the three phases (strong (SCR),

intermediate (ICR) and weak (WCR) coupling regimes) are separated by a vertical
dotted line. Note that in the SCR, T vanishes and T} and 7} have the same value.

FIG. 2. RPA frequencies as function of the inverse temperature 8 of the system
forr (a) x = —2.0 and {b) x = ~6.0. Note the “awakening” of the third mode in the
SCR — ICHR phase transition.

FIG. 3. Classical eneigy of stationary points as function of coupling parameter
x at zero temperature. These points are labeled from A to N. The point G can be
found numerically and it is of few importance here, For attractive interaction there are
three minimum sofutions (N (four minima), K (two minima) and H (one minimum)).
For repulsive interaction there are just two minimum solutions (A {two minima) and
H (one minimum)). The ground state energy phase transitions are related with the
thermodynamical phase transitions.

FIG. 4. Classical energy of stationary points as function of (a) y for zero temper-
ature and (b) T(#) for y = —6.0 in the SCR. Note the disappearence of the solutions
with temperature increase as well as with |y| decrease.

FIG. 5. Poincaré sections for several trajectories at zero temperature and y = —6.0

20



near the minimum point (solution N) through the plane 7, = 0.166 for (a) E=-21,
i (b) E = —2.07, (c) E = ~2.05 and (d) £ = —2.03. They are displayed in polar
-, variables (m,8,) for the upper hemisphere (0 < ¢, < ).

FIG. 6. Poincaré sections for several trajectories at finite temperature 8 = 0.62
(T(A) = 0.902) and x = —6.0 near the minimum point through the plane 7, = 0.1340
for (a) E= 175, (b) £ = —1.73, (c) E = —1.72 and (4} E = ~1.70.

FIG. 7. Poincaré sections for several trajectories at the SCR .—> ICR phase

* transition temperature {T(A) = 0.5) and x = —6.0. The sections were made through
the plane n; = 0.05 for F = ~0.47.

FIG. 8. Poincaré sections for several trajectories at zero temperature and ¥ = —3.0 A

Figure 1
near the points i and N. The scctions were made through the plane 7, = 0.05 for :

1.1 T T T T T T T T T T i T

E=-12.

TABLE CAPTIONS

TABLE L. Energy,. coordinates (n;,%s, 01, ;) and range of validity as function of
coupling parameter x and temperature of thirteen of the fourteen fixed points of
classical Hamiltonian (49) for strong coupling regime (Ty = T, = T'). These points

| are labeled from A to N. The point G can be found numerically and it is of few

importance here.
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Figure 5(d)
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Figure 6(c)
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Figure 6(d)
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Figure 8
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Point I m 1z N &, Validity
A R AT 0 - IXT| > 1
B =l A2 - 0 IxT] > 2
C  =LfHP aTe aTh 0 0 XT < ~lorxTz
D OI aTm ara b2 +3 ‘cos(202)=;"“~+“" 1<XT <5
E TS o T 0 z IxT| > 5
L ATH 30T 3 0 T < —dor T >
H -T 0 0 - - T
I 0 T 0 cos (281) = o - XTI > 1
J +T 0 T - cos (205) = :72 [xT}=2
- z - IxT1 21
R e - z IXT| > 2
M h—%lﬁ l% —‘E—;"»l- cos{281)=1(;—$;"—31 & xT<—loryT>.
NN T T z z IxT| >3
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