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Abstract

In this paper, it is analyzed the three-dimension parameter space of the Kicked Lo-
gistic Map (KLM), which is the Logistic Map perturbed by periodic kicks with constant
amplitude. In this space parameter, diagrams are numerically determined identifying the
regions with finite attractors and their topology. For the identified periodic regions, isope-
riodic diagrams are also computed. Examples of these diagrams are presented for fixed
kick periods. Dynamical properties of the KLM are characterized by the forms observed
in these diagrams. Furthermore, the considered map has different basins of attraction.
Thus, for the kick period t = 2, an analytical analysis shows the coexistence of two basins
of attraction. In addition, for this kick peried, a stability diagram is presented for the
period-two orbits, without iterating the KLM, reproducing the corresponding regions in
the isoperiodic diagrams. Lastly, the coexistenee of two basins, one for a periedic and
another for a chaotic attractor, causes, in critical regions of the parameter space, the
appearance of a type of crisis named transfer crisis.

1 Introduction

For the specific purpose of controlling chaos, different methods of perturbing a dynamical
system can be applied, as small parameter perturbations {1], parametric perturbations [2], or
additive terms [3] as considered in this work. Generally, these finite perturbations alter the
dynamics of the unperturbed system. However, if this is not possible or convenient, a system
can still be controlled by slightly changing the appropriate control parameter, as it was proposed
by Ott-Grebogi-Yorke [1990]. Other methods to control chaos are mentioned in [1], {4], [5].

A broad variety of papers have considered unimodal maps, as the Logistic one, to study
how a chaotic system depends on the contral parameters [6]. Particularly, the value of a control
parameter can be varied in a previously established sequence to induce attractors independent
of the initial conditions [7]. Maps can be also modulated by an additive periodic forcing,
sometimes creating different basins of attraction [8]. To identify the changes caused by the
application of such perturbations, ome can compute usual investigating tools, as bifurcation
diagrams, for the perturbation parameter.

However, there are systems for which more than one parameter can be varied, or, as consid-
ered by Réssler [6], where one parameter is assuming two different values. In these cases one
should try to make up a new kind of diagram, showing the values of the perturbed parameters
and the effect these variations cause into the system. :

Thus, two-dimensional diagrams were computed with the control parameter values on the
axis and pixels with different colors showing the studied attractor properties or characteristics.’

One of the most used investigating tools is the signal of the Lyapunov function (to represent the
attractor topology), or the magnitude of this function to show the strength of the sensibility to
initial conditions [8]. Another example is the indication of the period in the so called isoperiodic
diagrams [10, 11].

In this paper we consider the Kicked Logistic Map (KKLM) [12, 13], which is the Logistic
Map perturbed by a sequence of kicks with a constant amplitude, q; and a period, t:

$.4=1 if2is an integer 1
Xn+1 - bXn.(l —_ ){n) :!: qén,t { 6n,t = 0 totherwise ( )
where .
0<X <1 (2)

The purpose of this paper is not only to address the control of the Logistic Map trajecto-
ries, but also to discuss the bidimensional parameter diagrams and stability analysis for the
perturbed orbits described by the KLM. Thus, these tools are used to investigate, in the pa-
rameter space, phenomena such as creation of chaos, abrupt disruption of the attractor, crisis,
and bifurcation scenarios. -

In section 2 we consider the KLM, for t = 3, and present bidimensional parameter diagrams.
b x q, to discern regions of chaotic, periodic, and non finite attractors. In section 3 we show
how the period p of the KLM orbits are related to the kick period. Moreover, an equation is
derived to obtain these periodic orbits. Finally, in section 4, we studied the case with ¢ = 2,
to show the existence of more than one basin of attraction and to study their stability. As
we showed [13], this coexistence of different basis of attraction is responsible for a new type of
crisis called transfer crisis [14]. In this paper these basins are presented. Finally, discussion is
given in section 5.

2 The Parameter Space Structure

As we can see in Eq.(1), we have three parameters, namely, q, b, and t. The first two, q_
and b, have a wide range to be varied, but t assumes only integer values.

For a fixed kick period t, the trajectories obtained from (1}, by setting different values of
the other two parameters, can be classified in three different ways: chaotic, non-chaotic, and
non-finite attractor (in this last case Eq.(2) is not satisfied). To get a global view of these
orhits, we made diagrams that show for each pair of values (p,q) the observed kind of motion,
and, in addition, the period p of the periodic orbits.

In fact, instead of showing these characteristics in only one diagram, we made two kinds of
diagrams: one to discern if the orbit is chaotic, periodic or non-finite, and the other one to show
the most observed low-periods p. Comparisons of these two diagrams confirm the relevance of
the shown periods. As mentioned before, this last one is named an isoperiodic diagram [10, 11].

The quantification of chaos and order is obtained by computing the Lyapunov exponent
(9], for the kicked logistic map trajectorics. This is computed from the following expression
obtained from Eq.(1):
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Figure 1: Attractor regions in the parameter space for kick period t = 3 with black and white
pixels representing chaotic and non chaotic attractors. Gray pixels represent points without

limited attractor. :
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Figure 2: Isoperiodic diagram (¢ = 3) showing some of the periods p indicated by numbers and

by the letter o for higher periods. Following the horizontal line we can
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get period doubling and

b - Controt parameter

2
Lol
£
g
o
a
g
=
o
]
-é o
3.406 | SV B
0.042 0.043 0.044 0.045

q - Perturbation amplitude

Figure 3: A) Magnification of the Fig. 2, showing some of the periods p indicated by numbers
and by the letter o for higher periods. B) Magnification of the Fig. 3A, showing some of the
periods p indicated by numbers and by the letter o for higher periods.

where X, is obtained from Eq.(1). The order ( i.e., predictability } is indicated by A < 0,
and the chaos { i.e., sensitive dependence on initial conditions ) is indicated by A > 0.



For each pair of values (b,q), we iterate Eq.(1) and compute the Lyapunov exponent (
considering 3000 iterations ), after a transient of 1000 iterations. Much attention is paid to
obtain highly precision figures. Thus, for parameters near critical values, as that corresponding
to abrupt attractor changes or bifurcations, longer transients were considered (approximately
100000 iterations).

Then, setting the black color corresponding to chaotic attractors, the white to periedic
ones, and the gray to non-limitted ones, we obtain diagrams like that shown in Fig. 1. This
diagram is obtained by setting ¢ = 3 and the initial condition X = 0.2. The computed regions
are cornplex and highly interleaved. The figures obtained for other t values present similar
patterns. In these diagrams, there is a basin of attraction for non finite attractors only for
parameters satisfying the condition:

§+q>1 {4)

To identify the period of the Eq.(1}, whenever we get a negative Lyapunov exponent, we
keep one hundred iterations to find out the oscillation period, which is represented by pixels
with different gray levels in the isoperiodic diagrams (Figs. 2, 3A, 3B).

Some important characteristics of these diagrams are the shrimp-shaped isoperiodic areas,
which appear aligned along one direction, and 2 "structure-parallel-to-structure” of these areas.
These results are similar to those reported for other non linear maps [10, 11]. Furthermore, the
magnifications of Fig. 2 (see Fig. 3) show no structure-within-structure characteristic of fractal
systems {9].
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Figure 4: Attractor regions in the parameter space for kick period ¢ = 3, and ¢ < 0 with black
and white pixels representing chaotic and non chaotic attractors. Gray pixels represent points
without limited attractor. '

In some experiences of control through impulsive perturbations it may be more convenient

to aply negative kicks [15, 16]. Therefore, Fig. 4 shows another space-parameter diagram for the
same kick period, ¢ = 3, and initial condition, Xy = 0.2, but with subtracting perturbations,
i.e., considering in the Fq.(1) a kick with amplitude -q. The main topological difference between
this fisure and Fig. 1 is that the basin of attraction for non finite attractors is given by the
condition

b
179> L (5)

Consequently, part of the chaotic region in Fig. 1 becomes periodic in Fig. 4, and part of the
region without finite attractor in the first figure becomes chaotic in the last one.

The main period-p regions of the periodic regions of Fig. 4 are shown in the isoperiodic
diagram of Fig. 5. Fig. 6 shows the magnification of the box showed in Fig. 5. Similarly to the
abserved in Fig. 3 for the positive kick, no structure-within-structure, characteristic of fractal
systems (9}, was observed. _

All figuzes from 1 to 5 were made using the initial condition Xg = 0.2. However, for different
conditions we may not obtain the same diagram, since we have different basins of attraction
for the system described by equation 1, as deseribed in section 4.

'w

'3 The Trajectory Periods

From the isoperiodic diagrams showed in Figs. 2, 3, 5 and 6, we can get a global view of the
sequences of the period-doubling and inverse cascades [17), as the b and q parameters change.
Thus, the relevant critical attractor changes may be investigated in the appropriate bilurca-
tion diagrams figured out from the corresponding roads observed in the computed isoperiodic
diagrams

As an example, a bifurcation diagram could be made following the road indicated by the line
in Fig. 2, for a fixed b and increasing q. Thus, in this diagram we would observe the following
sequence of period-p orbits: 6,12,higher than 12,chacs,12,6,3. So, we get both, doubling and
inverse cascades in the same diagram.

Another bifurcation diagram could be obtained by increasing b and fixing q, 2s it can be
seen following the line in Fig. 5. Here the sequence of period-p orbits is: 3,6,12,higuer than
12,chaos,9,18,chaos,3,12,...,6,12. '

Though period doubling can be obtained by increasing either b or g, the same does not
occur for inverse cascades obtained only by increasing q.

All the driven period-p orbits indicated in the previous isoperiodic diagrams are, in fact,
multiple of t, with p > 1. As a matter of fact, for any period-p orbit,

p=Nt, where N=123 .., (6)

there are other period-p’ orbits that appear after m period-doubling bifurcations of the initially
considered period-p orbit. Therefore, each sequence of periods P’ given by the following equation

P=2"p, wherem=12,3,.., (M
may describe a road to chaos. .
These periodic orbits can be determined solving equations derived from (1). So, calling F

as the first term of the right side of (1) (therefore F is the Logistic Map function), the equation
that gives us a trajectory with period p = ¢ (given b and q) is:
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Figure 5: Isoperiodic diagram showing some of the periods p indicated by numbers and by the
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Figure 6: Magnification of a region of the Fig. 5 showing some of the periods p indicated by
numbers and by the letter o for higher periods.

F (X)) +q=X, - {8



where F' is the t-th iteration of the function F. Similarly, the orbits with period p = 2¢, can
be determined from '

FFU(X )+ q)+g=Xa {9)

The stability of the solutions obtained by these equations will be considered in the next section.

Thus, we could go further and write equations whose solutions would correspond to all
periodic trajectories with p = Nt. Moreover, the solutions of these equations would be a 2V
order polynomium with period Nt

4 Basins of Attraction and Stability

It was shown in the reference [13] that, for parameters satisfying the condition (4), there are
basins of attraction for finite (either chaotic or periodic) and non limited attractors. Moreover,
the regions shown in the isoperiodic diagrams may have also their own basins of attraction.

To show the existence of more than one basin of attraction, we analyzed the period-two
regions in the isoperiodic diagrams of ¥Figs. 2 and 3. The value { = 2 was chosen since we
wanted to make an analytical study to compare with the results obtained by the iteration of
equation (1), and this analysis would be difficult for periods higher than two.

Then, the period-two regions of two isoperiodic diagrams for different initial conditions
Xo = 0.3 and Xp = 0.5 were computed (Fig. 7), showing that different diagrams can be
obtained. The gray color is now used to indicated values of b and q that gives a period-two
orbit (p = 2), of the equation (1), for ¢ = 2.

To determine all possible period-two regions (for fixed b and q), without specifying the initial
condition X5, we obtain from (8) the equation whose solutions give the periodic trajectories of
{1) witht =2:

FUX, )+ q=Xa {10)

Therefore, with this equation, it is possible to obtain four real or complex period-two fixed
points, X7, of (1). From (10}, we get the following equation

~BX XY (B 4 X (B - D)X +g=0, (11)

whose solutions correspond to the desired fixed points.
However, only the real and stable solutions of Eq. (11 are relevant to compute the isoperiodic
diagrams. For a real fixed point X”* to be stable, it must satisfy the following condition

‘8F'*’(X)

ax || <L : (12)

In the case considered here, for ¢t = 2, there may be none, one, or two stable fixed points
(designated by X?* and X**), depending on the control parameters b and q. With respect to
the other two solutions, one (X'*) does not satisfy condition (2), that is, it is in the basin of
attraction of a non finite attractor. The other (X*") never satisfy condition {12), that is, it is
always unstable as it can be seen in Figs. 9 - 12.

The existence of these stable values explains the existence of basins for the period-two
attractors. So, Fig. 8 shows, for each par of parameters (b,q), whether the fixed points, X2*
and X**, are stable or not. In this figure, the white regions correspond to (b,q) with no

b - Control parameter

0.00 0.05 0.10
q - Perturbation amplitude

Figure 8: Stability regions of the period p = 2 fixed points X** and X4, in the parameter
space, for t = 2.

period-two attractors. The gray regions correspond to (b,q) with one or two stable period-two
attractors, as it is shown in the figure. All the period-two regions obtained in any isoperiodic
diagram (for different initial conditions Xj), for ¢ = 2, are within the gray regions of Fig. 8.

It is important to point out that the Fig. 7 was done by iterating (1) and verifying the
period p of the obtained orbits, whereas Fig. 8 was done considering the stability of the fixed
point of the map (1) by using equation (12).

Four points showed by the letters A,B,C,D in Fig. 7 were chosen to analyze the basins of
attraction. For each of these points we studied their basins of attraction and the stability of
the corresponding solutions of Eq.(11). To do that, we computed two kinds of figures (Figs. 9
to 12} introduced in the next paragraphs.

Each part A of Figs. ¢ to 12 shows the dependence of three different functions on the position
X. So, the dark black line represents the left side of Eq. (10), for each q and b chosen in Fig.7.
Then, the straight gray line represents the identity function and the dashed line represents the
left side of relation (10), that is, the derivative of the left side of Eq.(10) with respect to the
posttion X. Furthermore, in the part A of these figures, the fixed points, X j*, are localized by
the crosses between the straight gray line and the dark black one. To verify if this fixed point
X7* is a stable or an unstable one, we look at the value of the function shown by the dashed
line. Thus, it is possible to identify the period-two fixed points of Eq. (1) and their stability,
that is, whether the condition {12) is satisfied or not. '

Complementary, each part B of these figures represents the attractors of (1), for the same b
and q considered in the part A, that is, the X, values assumed by the orbits {after the transient)
for each indicated initial condition Xy . Thus, in these figures, it is possible to identify the .



Attractor

basins of attractions.
—— Basin of attraction of the chaotic attractor

e Basin of attraction of X**  .__ Basin of attraction of X** — 5. cin of attraction of ™.

1.0 ' e — : 1.0 — —
: Pxyvqg ]
0.5 e L 0.5 L e
H J—— ! 3 : e I §
L |
E0.0 fomm—ee———y —— - : 0.0 - b
x* / it X' i
H P2y b
-05 PPy ! . -05 | i
E4“ e Rl e e e e e e = ] |' A
y i ] A = 4 | :
-1.0 ot : : : -1.0 — ' '
0.0 0.5 1.0 0.0 0.8 1.0
X - Position X - Position
1.00 ' g . T r T . T 1
o | x#=0.8389
0.60 |- : S
2‘_ e
L e RS ] s 0.5  X¥=04528
0.40 . ;4-‘:'-'
0.20 - i
B B
0.00 : : : : : : : : : 0.0 ' '
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.5 1.0
- o X, - Initial condition
X, - Initial condition °
Figure 9 A) Graphical solution of Eq.(10), for b = 3.3 and g = 0.02, showing two stable Figure 10: A) Graphical solution of Eq.(10}, for b= 3.5 and ¢ = 0.05, showing the fixed point
ﬁxe.d points and their basins of attraction. The function plotted with thin line represents the X and its basins of attraction. The function plotted with thin line represents the derivative
derivative of Eq.(10). B) KLM attractors with the same payameters of (A), for different initial of Eq.(10). B) KLM attractors with the same parameters of {A), for different initial conditions.

conditions.



e Basin of attraction of x#.

VAR
................ ,
/
0.0 i l
x™* I
I I I
o () i
5 "3' A
_1 ‘0 .- | I
0.0 ) |
X - Position
1.0 I
s
S 05 o e sin | |
<
B
0.0 | I
¢.0 | |

X, - Initial condition

Figure 11: A) Graphical solution of Eq.(10), for & = 3.5 and ¢ = 0.1, showing the stable point

" X* and its basin of attraction, which contains all initial condition (B).

—— Main regions for which the attractor is not limited

1.0
0.5
0.0 = =
£ [
-05 - Ex) 7]
-1.0 —
0.0 0.5 1.0
X - Position
1.0 T T
8
8 0.5 - : X2 1
<
B
0.0 . '
0.0 ' 0.5 1.0

X, - Initial condition

Figure 12: A) Graphical solution of Eq.(10), for b = 3.55 and ¢ = 0.125, showing the main
regions where the KLM is not limited. In (B), empty spaces correspond to initial conditions

for which the attractor is not limited.



The KLM iterated for parameters corresponding to the point A in Fig. TA has two peried-
two stable fixed points X and X** indicated in Fig. 9A. In this figure, the basins of attraction
of these two stable points can be identified by the huge black and black lines, respectively, that
show the set of initial conditions whose orbits reach one of the two fixed points. The two X,
values assumed (after the transient) by the orbits associated to each fixed point can be seen,
in Fig. 9B, for each initial conditions X,.

Similarly, for the point B, in Fig. TA, we obtain Fig. 10 with only one period-two stable
fixed point, X**. Here, however, there is also a chaotic attractor. The basins of these two
attractors are shown in this figure, and the corresponding X, values are shown in Fig. 10B.

The coexistence of these two basins of attraction may lead to transfer crises. This happens
when, for increasing the control parameter b, the basin associated with the chaotic attractor
became part of the basin associated with the periodic one. So, initial conditions, Xy , initially
in the basin associated with the chaotic attractor but very close to the edge between these two
basins, goes to the basin of the periodic attractor. Thus, increasing b, chaotic attractors are
suddenly transferred to periodic ones. This transfer crisis can be seen comparing bifurcation
diagrams computed for b near the critical values [12, 13]. Thus, this crisis has characteristics
different from other crises also observed in the KLM [13] or in other low-dimensional systems
(18], [19)).

By increasing b further, we can transfer ail the chaotic attractors to periodic ones. This
can be seen in Fig. 11, obtained for the point C in Fig. TA. Accordingly, in this case, equation
(1) is not dependent on initial conditions and there is only one stable attractor.

Finally, for the point D in Fig. TA, there is only one stable periodic finite attractor, X"
However, here, since b and q satisfy the condition (4), there is also a non-finite attractor. Thus,
Fig. 11 shows the basin of X?* as well as X, intervals without finite attractor.

5 Conclusions

In this paper we considered the Kicked Logistic Map (KLM} [12, 13], which is the Logistic
Map perturbed by a sequence of kicks with a constant amplitude, q, and a period, t. We
presented a global view of how the KLM attractors depend on the control parameters, q, b,
and t. To show that, we made two kinds of diagrams, obtained by varying the Logistic control
parameter, b,-and the kick amplitude, q, for each fixed discrete kick period t.

One kind of the presented diagrams show the periodic, chaotic, and the non finite attractor
regions in the parameter space b x q. These regions form complex and highly interleaved
structures in the parameter space. As a matter of fact, fractal structure evidences were observed
in broken bifurcation diagrams, that is diagrams with intervals without finite attractor.

The other kind of diagram shows, in the same b x q parameter space, the isoperiodic regions.
Some important characteristics of these isoperiodic diagrams are the shrimp-shaped isoperiodic
areas, which appear aligned along one direction, and a "structure-parallel-to-structure” of these
areas. These results are similar to those reported for other unimodal two-parameter non linear
maps [10, 11]. Furthermore, magnifications show no structure-within-structure characteristic
of fractal systems [9].

From the isoperiodic diagrams we presented a global view of the sequences of the period-
doubling and inverse cascades [17], as the b and q parameters change. Thus, the relevant
critical attractor changes may be investigated in the appropriate bifurcation diagrams figured
out from the corresponding roads observed in the computed isoperiodic diagrams. Though

period doubling can be obtained by increasing either b or q, the same does not occur for
inverses cascades that are obtained only by increasing g.

The period-p fixed points, p = Nt (N integer), could be determined by solving polynemial
equations of order 2¥t. The stability of these solutions can be determined from a condition
obtained by linearizing the KLM in the fixed point neighborhoods. As an example, we solve the
polynomial equation for ¢ = 2 and determine the period-two stable regions in the parameter
space b x q. This result explains the shape of the p=2 regions obtained in the isoperiodic
diagrams for that t value.

The KLM has basins of attraction of finite (either chaotic or periodic) and non limited
attractors, The coexistence of two basins, one for a periodic and other for a chaotic attractor.
can cause the appearance, in critical regions of the space parameter, of a type of crisis named
transfer crisis [13, 14]. This happens when, varying the control parameter b, the basin associated
with the chaotic attractor became part of the basin associated with the periodic one.
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