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Abstract

Loop corrected perturbative one-gluon exchange potentials must
be regularized to be used in phenomenoclogical applications due to
the presence of the Landau pole. Such regularization necessarily in-
troduces more parameters or conditions in the theory, We assume
that confinement is generated by some non specified non-perturbative
mechanism and impose that the perturbative one-gluon exchange pro-
duces negligible effects at large distances. The running coupling con-
stant is extracted from the renormalization group # function. It can
be used to evaluate long-distance contributions in approaches devised
to minimize renormalon ambiguities. Consequences of the particu-
lar behavior of the running coupling constant for phenomenalogical

approaches based on linear confining potentials or bag models are dis-
cussed.

Perturbative expansions in field theory are asymptotic and must be truncated
at some finite order in the coupling constant. This truncation introduces
renormalization-scale and scheme dependences. Prescriptions to fix the scale
and scheme are based on the apparent rate of convergence of the series, the
size of the last term in the truncated series or the sensitivity to chang(’es in
the renormalization scale and scheme. There also physical criteria based on
the mass scales in a given problem(1, 2]. In such schemes, effects appearing
at two-loop order are absorbed by the one-loop running coupling constant.
The calculation of diagrams with such running coupling constant leads to
the appearence of the infrared renormalons signalizing that one is using per-
turbation theory in the infrared region where it is not valid. In ref.|2] it was
devised a method based on the operator product expansion to disentangle
short-distance from long-distance effects. The short-distance contributions
are free of renormalon ambiguities. The long-distance contribution must be
combined with other nonperturbative corrections and only this sum is well
defined and independent of scale. Without determining the other nonper-
turbative corrections one can only show that the long-distance correction is
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small, suppressed by inverse powers of the large mass scale. To really esti-
mate the size of the long-distance contributions one can try to incorporate
nonperturbative effects using some realistic ansatz for the running coupling
constant in the infrared region.

Tt has recently been shown that due to the infrared renormalon ambiguity
one can extract either confining or non-confining potentials from the one-
gluon exchange by using particular prescriptions to deform the contour away
from the renormalon poles in the integration to reconstruct the potential from
the inverse Borel transform[3]. Ambiguities in the running coupling constant
lead also to ambiguities in the gluon condensate{d]. Physically motivated
Ansiitze for the running coupling constant and gluon condensate should be
used. Tn the Dyson-Schwinger equation approach one assumes some Ansatz
for the running coupling constant in momentum space to approxinate the
gluon propagator. In quark potential models, one also needs to know the
associated potential. In all cases the high-momentum region should coincide
with the coupling constant calculated perturbalively from the 8 function in
QcD.

We propose to use lieavy quarkonia to define the running coupling cou-
stant in the Jow-momentwm region and, at the same time the nonperturba-
tive mechanism responsible for confinement. As it is well known, in heavy
quarkonia the nonrelativistic limit of QCD is appropriate and phenconienolog-
ical potentials are very successful in reproducing the spectra. Furthermore,
in the limit of static quarks lattice QCD determines a potential which can
be fitted quite well by the perturbative one-gluon exchange plus linear con-
fining potential[5]. It was shown that vacuum effects parametrized by the
gluon condensate lead to the linear potential[6]. A gauge invariant nonper-
turbative calculation of charmonium and bottomonium spectra allows the
determination of the gluon condensate value{7}.

It is the one-gluon exchange part, calculated in perturbation theory that
contains the Landan pole. Theoretically, the better way to eliminate the
Landau pole is to start from the 4 function of QCD and impose that the
running coupling constant extrated from it satisfies specific conditions. This
approach was used in ref.{8] imposing that the resulting one-gluon exchange
potential behaves as determined by perturbation theory at small distances
and at large distances gives the linear increasing potential. Such condition
determines a relation hetween the QCD scale parameter Aprg and the string
tension, However, to reproduce the heavy quarkonia spectra one needs a Ayyg
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value of order of 500 MeV which seems to be excluded by other experimental
data. Other prescription is to use a potential of the form|9):

V(r) = Var + ar, (1)
where
_ _l6r 1 25+ % 4621 f(r)
i 1S U Ry >y @)
with ’
F(r) = {1/ (Apsr)* + 8] (3)

The introduction of the parameter b removes the singularity of the asymptotic-
freedom potential V4r. This prescription does not allow a unique separation
of short- and long-distance effects. Depending on the value of b one has to

‘use different values for the string tension (or condensates that lead to such

linear term). Therefore, in this prescription the nonperturbative contribu-
tion comes also from the “perturbative” one-gluon exchange. Furthermore,
it is not renormalization group invariant,

Since the linear term can originate from the gluon condensate, a genuine
nonperturhative quantity, we think a much better prescription is to use the
running coupling constant defined by the 8 function with the condition that
the one-gluon exchange potential be constant for large distances. This is a
natural way to unambiguously connect short-distance effects with perturba-
tive effects and long-distance with nonperturbative physics only. This can
be implement with the following conditions:

Bly) =By’ + By’ + Oy")  for y—0, (4)
and

Bly) = —y +c+ O(1/y) for y— oo, (8)
From the solution of the renormalization group equation for the effective
coupling constant « as a function of the scale & = In(Ar):
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one sees that for » — oo the asymptotic behaviour (5) of the F-function

implies that the (perturbative) part of the potential

V(r) o _%ay) — constant , ’ (7
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indeed becomes constant at large distances.
We choose the constant ¢ in (5) so that the simplest ansatz for the 3
function satisfying both (4) and (5) :

Boy? + fy® for y < ym
ﬂ(y)={_°f YV rao
y+c Or ¥ > Ym

is sufficiently smooth. Requiring first and second derivatives at y,, to match
determines ¢ and y,, in terms of the scheme independent and perturbatively
known coeflicients Gy, 3y :

€= Ym + ﬁﬂy?n + ﬁlygz (8)
38 y2, + 280ym + 1 =0

This gives ¥, = 0.228, which is the value of o, at the scale ~3-5 GeV, where a
2-loop calculation can still be trusted. If one uses this perturbative potential
to fit the lattice result[5] (in dimeusionless units) a string tension of 2.7A?
or a gluon condensate ¢? == 16A? are needed (fig.1). Comparing to the very
successful Cornell model[10] one sees that while the approach of rel.[9] affords
a string tension 30% smaller than that of Cornell, the above renormalization
group invariant definition needs a 14% larger string tension. It has however
the advantage of reproducing the Cornell potential in the region of 0.3 to 0.8
{m, the important region for the heavy quarkonia spectra. Besides it has the
right small-distance behavior, leading to more reliable calculations of decay
annihilation rates.

If one uses the above definition for the running coupling constant in
the infrared region one is able to estimate large-distance contributions in
the calculation of physical quantities based on mass scales of the processes
studied[2]. It has consequences also in hyperfine splitting calculations. The
splittings depend on the derivative of the potential and since it becomes con-
stant for large distances there are no long-distance spin effects as expected
from phenomenclogy. This allows the use of the running coupling constant
to calculate for instance the nuclecn-delta splitting in the bag model, where
all the nonperturbative effects are on the vacuum pressure.
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Fig.1 - Nouperturbative potentials that must be added to the renormal-
ization group invariant perturhative potential (dashed line) so that the full
potential coincides with the lattice result (solid line) in dimensionless units.
Dots are generated from a linear term with a string tension of value 2.7A2.
Crosses are generated from the gluon condensate of value @% = [BAL,




