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Delay-induced transient oscillations in a two-neuron network

Abstract: Finite tzansmission times between neurons, referred to as delays, may appear in hardware img
tation of neural networks. We anaiyre the dynamics of a two-neuron neiwork in which the delay modi
trensicnt and pot the long-term behavior of the netweork. We show that the delay causes some trajectoria
cillate transiently before reachking stationary behavior and the duration of these transients increases expon
with the delay. Such a phenomenon detexiorates network performance.

1 Introduction

In many neura] network applications, “informaiion” is stored as stable equilibria of & convergent or almost
gent system [1,2], Thus, a given information is tetrieved by injtialising the network at a point within the |
atiraction of the corresponding equilibrium point and letting the system reach ils steady state.

Finite inter-unit transmission times, referred to as delays, present in hardware implementation of neural ne
can interfere with information retrieval in three ways. i) Delays may cause a stable equilibrium point to
unatable, thus rendering the retrieval of the stored information impossible. ii} The network with delay mu
attraciors thai are not present in the system without delay [3,4]. For initial conditions (ICs) within the t
these attractors, the network activity displays systained oscillations and no information is retzieved. iii} Th
of atiraction of the stable equilibria and, consequently, the classification of ICs performed by the network,
altered by the delay {5].

These can be avoided if the fo]lowi,nglthtee tespective propertics hold: (P1) local stability of all stable eg
iy preserved in presence of delays [6-8), (P2) ihe network with delsy is convergent or almost convergent {6,
(P3) for consiant initial functions, the basins of atiractions of stable equilibria are independent of the delg;

The dynamizs of & two-neuron network satisfying (P1), (P2) and (P3), is studied. It iz shown that even wi
stendy siate ig unaffected by the delay, information retrioval may deteriorate due to considerable lenghte
the transient regime duration, '

2 The model

The dynamics of two identical nonlinear graded response nenzons (NGRNs) [1] connected to each other t
metric positive weighta W > 0 and delays A > 0, are determined by the following delayed differential equa

{ 82 (1) = —2(1) + Wea(y(t — 4))

Wit} = —y(t) + Waa(z{t — A))

1 for £ >0
—1 for <0

o _m—on

where oq{z)= .tanh(az) = G for0<a<cnand oofz) = { fora=«

For @ = o0, there ate two locally asymptotically stable equilibria, r1 = (=W, ~W) and r3 = (W, W) (Fig
The busins of attraction of »; and r3 for constant initial conditions are {(u,v) € R*, u < —v}J{(0,¢
{(v, 7}, u > —v} respectively, Thus, (P1) and (P2) are satisfied, and (P3) Lolds for r.

For 0 < a < oo, the positive feedback condition (W > 0) [5,13,14} and the invariance of (1) under the
formstions 2 —+ —z, ¥ — ~y and 2 — y, y — #, imply the following. For 0 < aW < 1, rg = (0,
globally asymptotically stable equilibrium point. For 1 < aW < oo, there are one unstable (r3=10,0)) &
locally asymptotically stable (¥, = (—a, ~a), ra = (a, a)) equilibrinm points (g is the strictly positive solu
—z + Wianh{az) = ¢). The basina of attraction of 1 and r3 for constant initial conditions age {(w,v), &
and {(%,9), ¥ > ~v} respectively. Thus, for 0 < @ < oo, (P1), (P2) and (P3) are satisfied.




3 Transient regime

In this section, the iransient regime for the ICs r = (v,v) with v > v > 0 is studied. The transient regime
refers to the dynamics before the system stabilises {o its steady state. Practically, the transient regime ends whken
the state of the system cannot be distinguished from the equilibrium point with some giver precision n. We
denote by T(r, A) the iransient regime duration (TRD) of a solutien z({,7) = (z{t,v), u(¢, 7)) of (1) with iC r.
z(t, r) = (¢, r), y(1, 7)) bas a sexo at time ¢ if 2(¢,r) x y(¢, r) = 0, and we denote by N(r, A) the number of zeros
of £(t,#).

Case of o = o0, For a = oo, solutions are characterized by iterates of a one-dimensional map (eppendix A), which
yields the foliowing rasult.

There is a sequence v1(4) > v7{4) > ... > w(4) > ... > 0, tending to zero as k — oo, such that for an integer p:

1 v~ (14 e
N(ir,A)=¢ 2p(p21) and T(r, A) > pA for v=1— (14 )

p+1(p>1) Yot = (L e <o <oy — (14 B

FIGURE 1 HERE

The tempaoral evolutions and trajectory of a solution with 29 zeros are represented in Figs. 1-A and 1-C, showing

the oscillatory tzansient prior to stabilization at r3. In Fig. i-B, dotted lines correspond to ICs r with even N{r, 4) -

indicated on the line, and regions between iwo consecutive lines correspond to IGs ¢ with the odd N {r, 4) iiidjcated.
From the description of the trajectories it can be derived that the TRD increages with the number of geros. This
is lustrated in Pig. 1-D showing the TRD for ICs (—107%,v). Fach “hamp” {for 4 = 2 and 4 = 3} corresponds
to ICs that have the same number of seros. For example, the humps indicated by stars correspond to the TRD of
solutions with three zeroa,

Furthermore, for a fixed IC r = (1, v) (v > —u > 0), there is an ynbounded sequence of delays 0 € 4y < 4y < ... <
Ap <..., such that z{1,r) has exactly 1, 2p or 2p+ 1 zero(s) for 4 < Ay, 4 = 4, or Ap € A < Apy, respectively.
Thus, for iarge enough delays, N(r, 4), and consequently T'(r, A) ere increasing functions of 4. The expression of
va(4) (sppendix A), indicates that the ratc of increase is exponential. This is in accord with numerical resplts as
exemplified by the dotfted line in Fig. 1-F.

Case of 1 < aW < co. For ICs r = (u,v) with 4 = —v on the bd\;ndnry, thesolutions sa.trii;'fy a scalar delay
differential equation with negative feedback:

42 (i) = —=(t} - Wtanh(az (i — 4))) 2
{2 @

Thus, for large enough delays {4 > muccos(ﬁ)) solutions of constant initial conditions » = {u, ) witk
u = —v #0, tend to periodic oscillations [15]. The continuons dependence of solytions om ICs for finite @ irmplies
that, for large enough delays, solutions of (1) close to the boundery, display transient oscillations before converging.
The closer the IC is to the boundary, the longer the duration of the tremsient oscillations. Figure 1-E represents
the TRD for & = 2.5 and for three delay values (4 = 0.1, 2 and 3), for ICs (—10-3,v), with v ranging from 10~3
to 100. Solutions dispiaying transient oscillations correspond to ICs to the left of the sudden change of slope in the
curves (around v=3 for A = 2 and v = 12 for A = 3, indicated by arrows).

Figure 1-F shows the TRD for a given IC (u, v} = {«~10~3,5) as function of the delay 4, for three values of a (0.5,
1 and oo}, As the delay increases, the TRD undergoes an exponential increese in all three curves. For larger a,
the increase in the TRD is faster. However, for a given a, the rapid increase in the TRD does not take place at
the same delay value for all ICs.

In summary. For 1/W < o < o0, we have shown that: i) For & fixed delsy, there are ICs in the neighborhood
of the boundary that display delay-induced oscillatory transients, the size of this neighborhood increases with the
delay so that i} for any IC (u,v) such that v > —u > 0 the TRD increases exponentially with the delay, due to
the onset of transient oscillations, ) ' )

4 Discussion and conclusion

We showed that due ic the onset of delay-induced transient oscillations, the TRD of some ICs underwe:
increase with the delay, even though the presence of delay did not alter the asymptotic behavior of the sy

An important issye is to delermine whether a given network architeciure, is prone to delay-induced t
oscillations similar to those described in this paper. The lengthening of the TRD which results from the
oscillations can be detrimental to the network performance. This preliminary investigation suggests tha
induced transient oscillations can be related to the behavior of the disciete-time system obtained at the
limit A — oo, For Eq. (1) the discrete time system is given by:

{ z(t+ 1) = Wea{y(t)
¥t +1) = Wou(z(t))

System (3) has the same stable and unstable equilibria as Eq. (1). However, the former has also a stable pei
cycle formed by the succession of (@, —a) and (—a, g}, which atiracts trajectories of ICs (u, 1) with v.v <

The transient oscillations observed in the continuous time system reflect this change of behavior at the
limit. Therefore, stable limit cycles in the discrete-time system associated with an almost convergent
sysier, indicates delay-induced teansient oscillations and the respective ICs.
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A Analysis for a = o

For r = (u,v} € R, such that v > ~u > 0, let V{r) = W{v + )/(W — 4) and n the integer such that
-A

UV < w £ fA(V(r)), where v = W(ed — 1), f(v) = TK%—FW)'&'TA’ and f® represents f iterated n times.

Then, there is T > n4, and § > 0 such that for ¢ > T z2(¢,7) = 2(! ~ 8,7 ), where z{t, £} is the solution of (1) for

the IC 7, and r, represents (0, /*(V(r))), for n even, and {f*{V(r)}, 0) for n odd. An example of a tzajectory with

n = 3 is shown in Fig. 1-G.

2W(2-e~ A (et yet

Thns, the sequence v, is defined by: v, = f~" (v} = PTPET Ry (PR= Lry Lty ooy ey O 2 zfﬂ,g 85 A —+ 00.
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Figure 1: Transient regime for consiunt initial conditions. ‘
4: Temporal evolution of o(t) (thick line} and y{t) (thin fine) for & = o0 and deloy A = 3, IC (2, %) = (~1079,5). ; e e S N— e e m———
Abseissar activation in g.u.; ordingte: lime in seme a.y. os delay. B: Regions in ihe (u,v)-plane corresponding ) '
to different transients for @ = oo. The line v = —v is the boyndary separating the basins of the two equilibria, B
ry and r3. For v > —u > 0, solutions of ICs within a given srea delimited by twe consecutive dashed fines hgve "o D G
the odd number of zeros indicated. Even numbers correspond fo the number of zeros of solutions with ICs on the N \
dashed lines. C: Trajectory in (z,y)-plane of same IC (u,v) as in A. Abscissa and ordincle: aclivation in LR =i |
D-E: TRD with precision n= 1072, for delays equal 1o A = 0.1 (solid line), A = 2 (doshed line) and A = 3 (dotted » " S
line) for ICs (u,v), wilh v = ~1073, and v ranging from 10-3 10 100, for a = 0 (B} and o = 2.5 (E). Abscissa: S y
v in a.u.; ordinale: TRD in a.u.. F: Transient regime dyration (TRD) with precision 1 = 1073, for o given IC

(v,2) = (—1073,5) as o function of the delay for three different gains & = 0.5 (solid line), @ = 1 {dashed line)
ond @ = oo (dotted line). Abscissa; delay in arbitrary units (e.) and ordinate: TRD same ynils as delay. G:
Trajectory of r = (@, ) in the (z,y)-plane. For oll figures: W = 3.
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